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BTG2 is a prototype member of the BTG/Tob family of

antiproliferative proteins, originally identified as a primary

response gene induced by growth factors and tumour

promoters. Its expression has been linked to diverse

cellular processes such as cell-cycle progression, differen-

tiation or apoptosis. BTG2 has also been shown to interact

with the Pop2/Caf1 deadenylase. Here, we demonstrate

that BTG2 is a general activator of mRNA decay, thereby

contributing to gene expression control. Detailed charac-

terizations of BTG2 show that it enhances deadenylation of

all transcripts tested. Our results demonstrate that Caf1

nuclease activity is required for efficient deadenylation in

mammalian cells and that the deadenylase activities of

both Caf1 and its Ccr4 partner are required for Btg2-

induced poly(A) degradation. General activation of dead-

enylation may represent a new mode of global regulation

of gene expression, which could be important to allow

rapid resetting of protein production during development

or after specific stresses. This may constitute a common

function for BTG/Tob family members.
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Introduction

Regulation of gene expression may occur at both the tran-

scriptional and post-transcriptional level. In the recent years,

it has become clear that mRNA degradation plays an impor-

tant role in this process (Fan et al, 2002; Raghavan et al, 2002;

Wang et al, 2002). Indeed, not only are half-lives of various

mRNA very different (Herrick et al, 1990), but also the decay

rates of individual mRNA can also be regulated in response

to different stimuli, as is the case for transcripts encoding

cytokines or proto-oncogenes bearing AU-rich elements in

their 30 untranslated region (UTR) (Chen and Shyu, 1995;

Barreau et al, 2005). Accordingly, several mRNA turnover

pathways with different functions have been identified

including general mechanisms targeting functional mRNAs

and quality control pathways affecting aberrant transcripts

(Fasken and Corbett, 2005; Tang, 2005).

In eukaryotes, the cap structure and the poly(A) tail

protect functional mRNA from degradation by exonucleases.

In the general turnover pathways, mRNA degradation is

initiated by shortening of the poly(A) tail. Most often, dead-

enylation induces decapping of the target mRNA through a

poorly known mechanism. This triggers the rapid destruction

of the mRNA body by the 50-to-30 exonuclease Xrn1.

Alternatively, deadenylation is followed by the exosome-

mediated degradation of the mRNA body in the 30-to-50

direction (Meyer et al, 2004). Deadenylation is a critical

step for mRNA turnover, as poly(A) shortening removes the

targeted mRNA from the translatable pool and initiates the

mRNA degradation process. Deadenylation has also been

shown to be the rate-limiting step of mRNA decay, yet little

is known about how poly(A) tail shortening is initiated and

regulated. Both in yeast and in mammals, the Ccr4–Pop2

complex was shown to bear the main catalytic activity

responsible for cytoplasmic deadenylation (Daugeron et al,

2001; Tucker et al, 2001; Yamashita et al, 2005), whereas the

second known cytoplasmic deadenylase, the Pan2–Pan3

complex, affects more particularly the initial phase of

poly(A) shortening (Brown and Sachs, 1998; Yamashita

et al, 2005). In mammals, two orthologues of Ccr4, Ccr4a

and Ccr4b, and two orthologues of Pop2, Pop2 and Caf1, have

been identified and shown to localize in the cytoplasm

(Yamashita et al, 2005; Wagner et al, 2007). However, the

respective contributions of these factors to deadenylation

remain unclear.

Interestingly, two-hybrid screens have revealed an interac-

tion of the Pop2/Caf1 deadenylase subunit with the mouse or

human BTG2 factor (Bogdan et al, 1998; Rouault et al, 1998;

Ikematsu et al, 1999; Prevot et al, 2001). The BTG2 gene is a

prototype member of the BTG/Tob protein family of antipro-

liferative factors that are found in metazoan cells (Matsuda

et al, 2001; Tirone, 2001; Duriez et al, 2004; Lim et al, 2006).

The BTG/Tob family has been shown to contain six members

in humans, which are divided into two distinct subfamilies,

BTGs (BTG1–4) and Tob (Tob1 and 2), characterized by the

presence of the conserved BTG (or APRO) domain in the

N-terminal part of the proteins but differing in other specific

features (Matsuda et al, 2001). The rat and mouse ortholo-

gues of BTG2 were initially reported to be primary response

genes induced by growth factors and tumour promoters, as

the corresponding transcripts and proteins are detected very

rapidly after phorbol ester treatment of NIH3T3 cells or

NGF induction of PC12 cells (Bradbury et al, 1991; Fletcher

et al, 1991; Varnum et al, 1994). Their expression is transient,

as BTG2 transcripts and proteins almost completely disap-

peared 3 h after treatment. The BTG2 protein is remarkably

labile, exhibiting a half-life of less than 15 min (Varnum et al,

1994), potentially because it is a ubiquitin–proteasome target

(Sasajima et al, 2002). The BTG2 gene is also induced

upon several cellular stresses by p53-dependent and
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p53-independent mechanisms and shows reduced expression

in a large number of tumour tissues (Boiko et al, 2006; Lim,

2006). Overexpression of BTG2 in diverse cell lines induces a

partial inhibition of cell proliferation (Montagnoli et al, 1996;

Lim et al, 1998). The detection of an interaction of BTG2 with

Pop2/Caf1 prompted us to test whether it could affect mRNA

decay. Here, we demonstrate that overexpression of BTG2

causes accelerated deadenylation of reporters and of endo-

genous transcripts. This BTG2 function requires a direct

interaction between BTG2 and Pop2/Caf1 as well as active

Pop2/Caf1 and Ccr4 deadenylases. These observations

implicate BTG2 in the general control of mRNA decay.

Results

BTG2 increases the turnover rates of reporter

transcripts

Several studies have reported that the 30 UTR of the cyclin D1

mRNA that contains AU-rich elements renders this transcript

unstable (Dufourny et al, 2000; Lin et al, 2000; Guo et al,

2005). Because BTG2 expression was shown to downregulate

cyclin D1 mRNA level (Guardavaccaro et al, 2000; Kwon et al,

2005), we tested whether BTG2 could modulate the degrada-

tion of a reporter transcript carrying the cyclin D1 30UTR. For

this purpose, we constructed two reporter plasmids that

contain the LacZ coding sequence fused either to the b-globin

30UTR (LacZb) or to the cyclin D1 30UTR (LacZD1). Both

reporters are under the control of a Tet-regulated promoter

(Figure 1A). Reporters LacZb and lacZD1 were transfected in

HEK293-TOF cells, stably expressing the Tet-Off transcrip-

tional activator, together with either a plasmid expressing HA-

tagged human BTG2 or as a control the corresponding empty

vector. Two days after transfection, transcriptional chase

experiments were performed by adding doxycyclin in the

cell medium to block further transcription of the reporter.

RNA analyses revealed that the turnover of the LacZD1

reporter was increased in cells coexpressing BTG2–HA

(Figure 1B, compare lanes 1–4 to lanes 5–8). Unexpectedly,

similar results were also observed with the LacZb reporter

(Figure 1B, compare lanes 9–12 to lanes 13–16). Quantitative

RT–PCR analyses allowed the precise determination of the

half-lives of the two reporters, confirming the northern

blot results (Table I). We conclude that BTG2 expression

shortened the half-lives of the two reporter mRNAs tested,

independently of their 30UTR sequence.

BTG2 stimulates mRNA decay by increasing the

deadenylation rate

The observation that BTG2–HA affected the LacZb reporter

prompted us to test whether the small b-globin reporter

(pTet-b-globin; Xu et al, 1998; Couttet and Grange, 2004)

was also affected. Pulse–chase experiments were performed

after cotransfection of the b-globin reporter in HEK293-TOF

cells with either a control plasmid or a plasmid expressing

BTG2–HA. Northern blot analysis of RNA extracted at various

time points after doxycyclin addition revealed an increased

rate of deadenylation for the b-globin reporter cotransfected

with BTG2–HA as compared to the control (Figure 2A). This

can be more easily visualized by comparing the evolution of

migration profile of reporter mRNAs (Figure 2B). When the

reporter was expressed alone, a peak shifting slowly as a

function of time towards short poly(A) tail length was

observed, reflecting a slow deadenylation. In contrast, for

the reporter coexpressed with BTG2–HA, a rapid shift of the

peak was observed, indicating a rapid deadenylation. In the

latter case, deadenylation was essentially complete after 3 h

of chase (Figure 2B), whereas in the former case deadenyla-

tion was still incomplete at the 5 h time point (note that

deadenylation did not totally remove the poly(A) tail but left

a few A residues at the end of the mRNA (compare lanes 13

and 7 in Figure 2A), as is usually observed during mRNA

degradation by the general decay pathways (Beelman and

Parker, 1995).) In conclusion, these experiments demonstrate

that BTG2 expression increases drastically deadenylation of

the b-globin reporter.
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Figure 1 Cotransfection with BTG2 increases turnover of two re-
porter transcripts. (A) Schematic representation of the LacZb and
LacZD1 reporters. Black bars, coding sequences; grey bars, 50 and 30

UTR. TRP: tetracyclin responsive promoter; IVS: intervening se-
quence. (B) Transcriptional chase experiments showing mRNA
decay of the LacZb and LacZD1 reporters in the presence
(þBTG2–HA) or absence (þpCIneo) of ectopically expressed
BTG2 protein. HEK293-TOF cells were cotransfected with 0.2mg of
reporter plasmids and 0.4mg of empty or BTG2–HA-expressing
pCIneo plasmids. Chase time indications correspond to hours
after doxycyclin addition. 18S ribosomal RNA (rRNA) staining
with methylene blue is shown to demonstrate equal loading.

Table I Effect of BTG2 expression on reporter mRNA half-lives

Reporters mRNA half-lives (h)

LacZb+pCIneo 3.8070.26
LacZb+BTG2-HA 1.8070.3
LacZD1+pCIneo 2.8070.3
LacZD1+BTG2-HA 1.9570.05

Half-lives of the LacZb and LacZD1 reporters in cells cotransfected
with empty pCIneo vector or BTG2-HA-expressing vector were
quantified by quantitative RT–PCR. Values are the average of
three independent biological replicates.
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Interaction between BTG2 and Caf1/Pop2 is required for

BTG2 activation of deadenylation

BTG2 has been shown to interact directly with the mamma-

lian Pop2 and Caf1 deadenylase subunits. It was thus tempt-

ing to propose that this interaction was essential to mediate

the BTG2 effect on mRNA decay. To test this hypothesis, we

first screened for BTG2 mutants defective in their interaction

with Caf1 and Pop2 using a two-hybrid assay. For this

purpose, the human BTG2, mouse Caf1 and human Pop2

coding sequences were fused in appropriate yeast expression

vectors with either the GAL4 activation domain or the GAL4-

binding domain (GAL4BD). After transformation in yeast, we

verified that the interaction of wild-type (wt) BTG2 with Caf1

or Pop2 was detectable by both colony growth on uracil-free

plates and b-galactosidase production (data not shown;

see also Rouault et al, 1998; Prevot et al, 2001). The

BTG2-encoding plasmid was then mutagenized using a

transposon-based strategy (Mutation Generation System,

Finnzymes) to generate a library of insertion mutants. The

mutagenized library was transformed in yeast, together with

the plasmid encoding human Pop2 fused to the GAL4BD, and

colonies not able to grow further on uracil-free plates were

recovered. These candidates were then tested for interactions

with Pop2 or Caf1 using a quantitative b-galactosidase assay

to ascertain that interactions with both factors were abol-

ished. We finally selected a mutant, mtBTG2-66þ , displaying

barely detectable interactions with Caf1 and Pop2 in the

b-galactosidase assay (Figure 3A). Interestingly, mtBTG2-

66þ contains a 5-amino-acid insertion at position 66 of the

BTG2 factor (Supplementary Figure 1), in the conserved box

A motif of the BTG/Tob family (Matsuda et al, 2001).

Lack of interaction of mtBTG2-66þ protein with Caf1 was

further confirmed in pull-down experiments using recombi-

nant proteins. In this assay, a wt mouse Caf1 protein fused

to GST was expressed in bacteria, either alone or together

with 6His-tagged wtBTG2 or mtBTG2-66þ proteins. After

coexpression, GST–wtCaf1 copurified on nickel column

with 6His–wtBTG2 (Figure 3B, lane 2), whereas no band

corresponding to GST–wtCaf1 was detectable when it was

expressed alone (Figure 3B, lane 3) or with the His–mtBTG2-

66þ protein (Figure 3B, lane 1), thus confirming absence of

interaction between mtBTG2-66þ and Caf1.

The b-globin reporter was cotransfected in HEK293-TOF

cells with plasmids expressing wtBTG2–HA or mtBTG2-66þ –HA.

Transcriptional pulse–chase experiments were performed and

deadenylation kinetics of the reporter transcripts analysed by

northern blot analysis. Deadenylation of the transcript trans-

fected with wtBTG2 was rapid and reached a maximum after

3 h of chase, whereas deadenylation of the transcript cotrans-

fected with mtBTG2 was slower and did not reach a max-

imum before 5 h (Figure 3C). This effect is clearly seen on the

profiles of mRNA migration: the peaks corresponding to the

mRNA reporter from cells expressing mtBTG2-66þ shifted

more slowly towards short poly(A) tails than those from cells

expressing wtBTG2 (Figure 3D). Western blot analysis

indicates that this result cannot be attributed to a lower

expression of the mutant factor (Figure 3C, inset). Thus, we

concluded that mtBTG2 protein unable to interact with Caf1

or Pop2 was unable to activate deadenylation of a reporter

transcript.

Caf1 is an active deadenylase in vivo whose activity is

required, together with Ccr4’s, for BTG2-induced

deadenylation

In the previous section, we have shown that BTG2-induced

deadenylation requires an interaction between BTG2 and

Caf1/Pop2. The Caf1/Pop2 subunit associates with Ccr4a/

Ccr4b, which has been shown to mediate the final phase of

deadenylation (Yamashita et al, 2005). Interestingly, both

mammalian Ccr4 and Caf1/Pop2 subunits are endowed

with deadenylase activity in vitro (Chen et al, 2002b;

Viswanathan et al, 2004; Bianchin et al, 2005; Wagner et al,

2007) but their respective contribution to deadenylation

in vivo is unclear. To test whether the deadenylase activity

of Caf1/Pop2 was required for BTG2 function, an inactive

Caf1 mutant (Caf1A4042) that displays no in vitro nuclease

activity was used (Bianchin et al, 2005). We first checked

whether the Caf1A4042 mutant retained its ability to interact
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Figure 2 BTG2 stimulates poly(A) shortening of the b-globin
reporter. (A) Transcriptional pulse–chase experiments showing
deadenylation of the b-globin reporter. HEK293-TOF cells
were transfected with 0.8mg of pTet-b-globin plasmid and 1.6mg
of empty (�BTG2–HA) or BTG2–HA-expressing (þBTG2–HA)
pCIneo plasmids. Immediately after transfection, doxycyclin (1 ng/
ml) was added to the medium to block transcription of the reporter.
Two days after transfection, cells were washed and a 3-h transcrip-
tional pulse was performed before re-addition of doxycyclin
(2 mg/ml). Chase times indicate hours after doxycyclin addition.
An RNA sample treated with oligo(dT) and RNase H was used as a
marker for the migration of the fully deadenylated b-globin mRNA
(poly(A)�). 18S rRNA staining demonstrates equal loading. Five
independent experiments gave essentially identical results.
Variations in total intensities between lanes reflect mainly differ-
ences in transfection efficiencies. (B) Profiles of mRNA migration.
Northern blot image shown in (A) was quantified with the
ImageQuant software (Molecular Dynamics). Briefly, 30 adjacent
rectangles encompassing the mRNA migration region from fully
adenylated to deadenylated mRNAs were drawn for each time point
to quantify signal intensity. These intensities for each chase point
were then plotted as a function of the poly(A) tail length (i.e.,
rectangle position) as previously described (Yamashita et al, 2005).
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with the Ccr4a/Ccr4b subunit. Plasmids encoding TAP-tagged

versions of wt Caf1 or Caf1A4042 were cotransfected together

with an empty pCIneo vector or a plasmid encoding human

Ccr4a fused to GFP. Two days after transfection, cells were

lysed and interactions between the proteins were tested by

monitoring the co-precipitation of Ccr4a—GFP with TAP-

tagged Caf1. Western blotting using an anti-GFP antibody

demonstrated that Ccr4a–GFP associated similarly with

wtCaf1 or mtCaf1 proteins (Figure 4A, lanes 3, 4 and 5, 6,

respectively) well above background (Figure 4A, lanes 1

and 2). The Caf1A4042 mutant was thus used for activity test

in vivo. Transcriptional pulse–chase experiments revealed

that deadenylation kinetics of the b-globin transcript were

similar in cells expressing wtCaf1 and in cells transfected

with control plasmid, whereas they were slightly slower in

cells expressing mtCaf1A4042–TAP (Figure 4B and data not

shown). This indicates that the mutant protein slowed down

deadenylation through a dominant-negative action. To test

whether the deadenylase activity of Caf1/Pop2 was necessary

for BTG2 function, the b-globin reporter was cotransfected
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Figure 3 A direct interaction between BTG2 and Pop2/Caf1 is required for BTG2 activation of deadenylation. (A) b-Galactosidase assays in a
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proteins. Duplicate wells were transfected under the same conditions and used for western blot analysis. (D) Profiles of mRNA migration.
Northern blot image shown in (C) was processed as described in the legend of Figure 2B.
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with plasmids expressing HA-tagged wtBTG2 and either

TAP-tagged wtCaf1 or dominant-negative Caf1 mutant. This

mutant still interacts with wtBTG2 (Figure 3B, lane 4).

Transcriptional pulse–chase experiments revealed that

expression of wtCaf1 did not change the BTG2-activated

deadenylation kinetics of the b-globin reporter (compare
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Figure 4C, lanes 1–6 to Figure 2A, lanes 7–12 and Figure 4D

to Figure 2B). In contrast, when the catalytically inactive

Caf1A4042 mutant was overexpressed, deadenylation of the

b-globin reporter was drastically slowed down even in the

presence of BTG2 (Figure 4C, lanes 7–12, and Figure 4D).

Because levels of wtCaf1 and mtCaf1 proteins were similar,

the reduced deadenylation cannot be attributed to a differ-

ence in the expression of the transfected constructs

(Figure 4C, inset). We also verified that the BTG2–HA

transgene was correctly expressed when cotransfected with

Caf1-expressing plasmids (data not shown). These results

demonstrate that the deadenylase activity of the Caf1/Pop2

subunit is necessary for BTG2 activation of mRNA

deadenylation.

To assess the contribution of Ccr4, we similarly mutated

the catalytic site of the Ccr4a factor (position 240 changed to

alanine). Consistent with previous observations (Chang et al,

2004; Yamashita et al, 2005), transfection of a catalytically

inactive mtCcr4a fused to a GFP tag resulted in a strong

dominant-negative effect on deadenylation of the reporter

globin mRNA (Figure 5A). Cotransfection of the mtCcr4a

construct with BTG2 resulted in a reduced rate of deadenyla-

tion of the reporter transcript (Figure 5B and C). However, in

contrast to constitutive deadenylation, the effect of the cata-

lytically inactive Ccr4a mutant was not as strong as the one

observed with the Caf1 mutant (compare Figures 4 and 5).

Overall, our results demonstrate that, in contrast to yeast

(Chen et al, 2002b; Tucker et al, 2002; Viswanathan et al,
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Figure 5 The catalytic site mutant Ccr4aA240 impairs, in a dominant-negative manner, BTG2-activated deadenylation. (A) Northern blot
showing deadenylation of the b-globin reporter in cells cotransfected with empty pCIneo plasmid or pCIneo plasmids expressing wtCcr4a–GFP
or mtCcr4aA240–GFP. Transfection and transcriptional pulse–chase conditions were as described in the legend of Figure 2 except that the
transcriptional pulse was for 4 h. Two biological replicates gave essentially identical results. (B) Northern blot showing deadenylation of the
b-globin reporter in cells coexpressing wtBTG2 and wtCcr4a deadenylase or the catalytic site mutant Ccr4aA240. HEK293-TOF cells were
transfected with 0.8mg of pTet-b-globin plasmid, 0.8mg of plasmid encoding BTG2 and 0.8 mg of plasmid encoding wtCcr4a or 1mg of plasmid
encoding mtCcr4aA240. Transcriptional pulse–chase experiments were as described in the legend of Figure 2A except that the transcriptional
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demonstrate equal loading. Three biological replicates gave essentially identical results. Inset: western blot analysis of cells transfected under
the same conditions to verify the expression of BTG2 and Ccr4a constructs. (C) Profile of mRNA migration. Processing of the northern blot
image was as described in the legend of Figure 2.
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2004), efficient constitutive deadenylation in mammalian

cells requires both Pop2/Caf1 and Ccr4 activities. Moreover,

our data indicate that, for BTG2-induced deadenylation, Caf1

plays a preponderant role over Ccr4a.

BTG2 is a general activator of mRNA decay

BTG2 expression activated the degradation of the three

reporter transcripts that we tested in transcriptional chase

experiments, suggesting that BTG2 activity was not limited to

a restricted number of mRNAs but displayed rather a large

spectrum of specificity. To test whether BTG2 affects cellular

encoded mRNAs, we generated cell lines in which stable

expression of BTG2 can be induced using the RheoSwitch

Mammalian Inducible Expression System (New England

Biolabs). Western blot analysis confirmed that, after a 6 h

treatment with the RSL1 inducer, BTG2–HA was expressed in

the 293-R1-BTG2 cell line but not in 293-R1 parental cell line

(Figure 6A). Cells were then treated by the addition of

actinomycin D to shut off transcription, hence allowing the

analysis of endogenous mRNA decay. RNA was extracted at

the indicated times and the poly(A) tail length distribution of

two endogenous transcripts was assayed using a modified

RACE-PAT assay (Salles et al, 1999). Briefly, a synthetic RNA

oligonucleotide blocked at its 30 end and 50 phosphorylated

was ligated to total cellular RNA. These molecules were

converted into DNA by reverse transcription and the region

covering the poly(A) tail and the extremity of the 30UTR was

amplified by PCR. This assay revealed that treatment of

parental 293-R1 cells with RSL1 and actinomycin D induced

little changes in the length of the poly(A) tail of GAPDH and

b-actin transcripts (Figure 6B and C, lanes 1–5). By contrast,

the length of the poly(A) tail of these transcripts shortened

noticeably in 293-R1-BTG2 cells after BTG2 induction (Figure

6B and C, lanes 6–10). During the treatment with actinomycin

D, the poly(A) tail shortening was so accentuated that after

3 h of transcriptional shut-off, poly(A) tails of a large fraction

of the test mRNAs appeared to have no or little poly(A) left

(compare to the signal observed with the sample treated

in vitro with oligo(dT) and RNase H; Figure 6B and C).

These results demonstrate that inducing BTG2 expression in

stable cell lines activates deadenylation of two endogenous

transcripts that are involved in different cellular processes.

Altogether, our results show that BTG2 activation of dead-

enylation is not transcript specific and could rather reflect a

general mechanism to modify gene expression.

Discussion

Two decades ago, the rat and mouse homologues of BTG2

were identified and reported to belong to the primary res-

ponse genes induced by growth factors and tumour promo-

ters (Bradbury et al, 1991; Fletcher et al, 1991). Since then,

the precise molecular functions of BTG2 have been under

study. Here, we demonstrate that BTG2 is a general activator

of mRNA decay affecting reporter transcripts and endogenous

mRNAs. BTG2 acts by enhancing deadenylation through a

direct interaction with Pop2/Caf1 factors. The requirement of

active Ccr4 and Caf1 deadenylases for mediating the BTG2

effect demonstrates a specific implication of BTG2 in the

deadenylation process.

Interestingly, our experiments reveal that BTG2 activates

the deadenylation of all transcripts tested. This observation

leads us to propose that one of the main functions of BTG2 is

to generally activate degradation of pre-existing transcripts.

The existence of general activators of deadenylation has, to

the best of our knowledge, not been reported. Indeed, pre-

vious published examples of activation of deadenylation

involved the recruitment of deadenylases on specific tran-

scripts by factors that interact with specific mRNA sequences

located primarily in the 30UTR, such as AU-rich elements

(Lykke-Andersen and Wagner, 2005). Similarly, Smaug

(Semotok et al, 2005; Zaessinger et al, 2006) or PUF

(Goldstrohm et al, 2006) proteins recruit the Ccr4–Pop2 dead-

enylase complex on specific transcripts to regulate their dead-

enylation as well as their localization and translation. The

existence of general activators of deadenylation, such as

BTG2, suggests that they could act by new, so far undescribed,

mechanisms. It is also possible that other factors interacting

with Pop2–Ccr4, such as some Not proteins (Tucker et al, 2002;

Denis and Chen, 2003; Temme et al, 2004), could similarly act

as global regulators of mRNA decay.

Consistent with a general function, proteins of the BTG/

Tob family all interact with Caf1/Pop2 (Bogdan et al, 1998;

Rouault et al, 1998; Ikematsu et al, 1999; Prevot et al, 2001)

but lack known RNA-binding domains. This observation
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Figure 6 BTG2 activation of deadenylation is not transcript speci-
fic. (A) Western blot analysis showing induction of BTG2 expression
in stable cell lines. Parental 293-R1 cells and 293-R1-BTG2 cells
were treated for 6 h with RSL1 (500 nM) to induce BTG2 expression.
Actinomycin D (5mg/ml) was then added to the cell medium. Time
indication corresponds to hours after RSL1 addition (induction) or
after actinomycin D addition. Western blot was revealed with an
anti-HA antibody. (B, C) Poly(A) shortening of endogenous GAPDH
transcript (B) or endogenous b-actin transcript (C) after induction of
BTG2 expression in stable cell lines. RNA extracted from cells treated
with RSL1 and actinomycin D as in panel A was used in RACE-PAT
assays (see Materials and methods). Time indications correspond to
hours after RSL1 addition (induction) or actinomycin D addition. An
RNA sample treated with oligo(dT) and RNase H was used as a control
for fully deadenylated mRNAs (�poly(A)). PCR products specific for
the GAPDH transcript were resolved on a 6% non-denaturing acryl-
amide gel, whereas PCR products specific for the b-actin transcript
were resolved on a 2% Nusieve agarose gel.
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supports the idea that their function does not involve direct

binding to specific mRNA sequences. One possibility would

be that BTG/Tob factors activate mRNA deadenylation by

stimulating directly the catalytic activity of the Ccr4–Caf1

complexes. However, preliminary in vitro deadenylation as-

says performed with recombinant Caf1 and BTG2 proteins

indicated that the latter was not sufficient by itself to activate

in vitro the catalytic deadenylase activity of Caf1 (data not

shown). For the Tob subfamily, the presence of two PAM2

motifs (PABP-interacting motif 2; Albrecht and Lengauer,

2004; Okochi et al, 2005; Lim et al, 2006) suggests that Tob

factors may recruit the main deadenylase to all poly(A)-containing

transcripts by interacting with the C-terminal domain of the

poly(A)-binding protein (PABP) and supports further the role of

these proteins in mRNA metabolism. Even though BTG factors

lack PAM2 motifs and have not been shown to interact directly

with PABP, it is tempting to speculate that they may also recruit

the main deadenylase to all transcripts with the help of an

unknown protein bridging them to PABP. Alternatively, BTG

factors may interact directly or indirectly with other conserved

features of mRNAs such as the cap, bound ribosomes or transla-

tion factors. In this vein, it is interesting to note that BTG2 has

been reported to interact with diverse partners (Lin et al, 1996;

Prevot et al, 2000; Berthet et al, 2002), which may be involved in

activation of deadenylation. Clearly, more experiments are re-

quired to elucidate the exact mechanism by which BTG2 and

other BTG family members activate mRNA deadenylation.

Our data also demonstrate that overexpression of a cata-

lytically inactive Caf1 deadenylase is sufficient to inhibit

general deadenylation. These results indicate that, in contrast

to the situation in yeast (Chen et al, 2002a; Tucker et al, 2002;

Viswanathan et al, 2004), the deadenylase activity of the

Caf1/Pop2 subunit of the mammalian Ccr4–Pop2 complex

plays a role in cytoplasmic deadenylation in cultured human

cells. Because residual deadenylation is detectable in the

mutated Caf1 context but not with the mtCcr4 (compare

Figures 4B and 5A), this suggests that Ccr4 plays a prepon-

derant role in general deadenylation. Interestingly, inactivat-

ing Caf1/Pop2 provokes a strong block of BTG2-induced

deadenylation, whereas inactivation of Ccr4 has a milder

effect. This observation could suggest that BTG2 recruits

the Caf1/Pop2 subunit independently of Ccr4a/Ccr4b. An

alternative possibility is that both Ccr4 and Caf1 contribute

to all events of deadenylation in mammalian cells, with each

subunit contributing a different level of degradation depend-

ing on the conditions. The use of a dimeric deadenylase may

thus offer a wider range of regulation potential and allow a

fine-tuning of the deadenylation kinetics in mammalian cells.

In such a case, dominant-negative effect resulting from the

presence of one inactive subunit may be explained by the

sequestering of the 30 end of the substrate poly(A) tail

blocking access to the remaining active subunit. Although

the exact contributions of human Caf1 and Ccr4 to dead-

enylation remain to be precisely established, our data demon-

strate that both enzymes contribute catalytically to this

process and indicate that their contribution may vary accord-

ing to the conditions, as observed in the case of BTG2-

induced deadenylation.

Since BTG2 was identified, its expression has been re-

ported to induce pleiotropic effects. Thus, BTG2 has been

implicated in the regulation of cell-cycle progression, differ-

entiation of cell lines as well as the control of cellular

apoptosis (Matsuda et al, 2001; Tirone, 2001; Duriez et al,

2004; Lim et al, 2006). More recently, BTG2 was also shown

to be a downstream mediator of tumour suppression by p53

(Boiko et al, 2006). The function of BTG2 in cytoplasmic

deadenylation is compatible with the previously known

effects of BTG2. Indeed, our results indicate that it may affect

the expression of numerous proteins through a general

destabilization of cellular mRNAs. It is interesting to note

that many biological consequences of the expression of BTG/

Tob proteins may involve rapid and dramatic changes in the

expression profile of cells. This is indeed the case during

differentiation or cell-cycle progression. BTG/Tob factors may

contribute to these events by speeding up the degradation of

previously made mRNAs, thus facilitating the rapid installa-

tion of a new gene expression programme. It will be of

interest to test whether defective reprogramming due to the

expression of BTG/Tob mutants prevents the establishment of

a normal growth control programme and thus explains how

BTG/Tob factors contribute to cancer.

Note: During the revision of this manuscript, two articles

reporting the implication of Tob factors in deadenylation were

published (Ezzeddine et al, 2007; Funakoshi et al, 2007).

Materials and methods

Plasmid construction
Reporter plasmids were constructed following standard cloning
strategies. Construction details of the LacZb and LacZD1 reporters,
the BTG2 expression plasmids and the vectors encoding tagged Caf1
are provided in Supplementary data. The pTet-b-globin plasmid
(Couttet and Grange, 2004) was kindly provided by T Grange.
pBS2560 encoding GFP–hCcr4a has been described (Cougot et al,
2004). Mutagenesis of Ccr4a was performed with the QuickChange
mutagenesis kit (Stratagene) using the OBS2818 and OBS2819
oligonucleotides. Oligonucleotides used in this study are presented
in Supplementary Table SI. All constructions involving PCR
amplification were verified by sequencing.

Two-hybrid and b-galactosidase assays
For two-hybrid assays, the human BTG2 ORF was inserted in
pDEST22 vector (generating pBS2669), whereas ORFs encoding
human Pop2 and mouse Caf1 were inserted in pDEST32 vector
(yielding pBS2676 and pBS2789, respectively) using the Gateway
Technology. Mutagenesis of plasmid pBS2669 was performed with
the Mutation Generation System (Finnzymes). Yeast strain MAV203
(Invitrogen) was transformed simultaneously with plasmid
pBS2676 and a library of mutagenized plasmid as previously
described (Ito et al, 1983). Transformants growing on �Leu �Trp
plates but unable to grow on �Ura plates were identified. DNA was
recovered from such clones and the sequence encompassing the
BTG2 ORF of some interaction-defective pBS2669 derivatives was
determined. After retransformation in the tester yeast strain with
plasmids encoding either wt Caf1 or Pop2 proteins, the interaction
ability of BTG2 mutants of interest was further confirmed by testing
growth on �Ura media and performing b-galactosidase assays
(Seraphin and Kandels-Lewis, 1993).

Cell culture and transfection
HEK293 cells, maintained in DMEM medium supplemented with
10% FCS, were stably transfected with plasmid pTet-off (Clontech)
by the Effectene Transfection Reagent (Qiagen) and selected with
400mg/ml geneticin (Invitrogen). The cell line, HEK293-TOF, giving
a high inducible expression level by the Tet-off Gene Expression
System was selected. HEK293-TOF cells, grown in 60-mm dishes to
approximately 60% confluence, were transiently transfected using
the Effectene Transfection Reagent (Qiagen).

HEK293 cells allowing the regulated expression of BTG2 were
constructed in two steps: first, HEK293 cells were stably transfected
with plasmid pNEBR-R1 to generate a cell clone, 293-R1, allowing
inducible expression of target genes by the RheoSwitch Inducible
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Expression System (New England Biolabs). This cell line was
further transfected with plasmid pBS2943 encoding BTG2–HA and
plasmid pcDNA3.1/Hygro(�) (Invitrogen) and the 293-R1-BTG2
resistant cells, selected with 300mg/ml hygromycin B (Invitrogen),
were tested for inducible expression of BTG2–HA after treatment
with the RheoSwitch ligand RSL1. Addition of RSL1 to the 293-R1-
BTG2 cell growth medium induced BTG2–HA expression, which
reached a plateau after 8 h of induction (data not shown).

RNA extraction, northern blotting analysis and quantitative
RT–PCR
Total RNA was extracted using the RNeasy Mini kit (Qiagen). For
northern blot analysis, 10mg of total RNA was electrophoresed onto
1.4% agarose/6% formaldehyde gels and transferred to Hybond-
Nþ membranes (GE Healthcare). Blots were hybridized to probes
synthesized by the Megaprime DNA Labelling System (GE
Healthcare) or by in vitro transcription with the T7 RNA polymerase
(Promega). Hybridization signals were detected and visualized with
a PhosphorImager (Molecular Dynamics) and analysed with
ImageQuant and Kaleidagraph softwares. For quantitative RT–
PCR, 1mg of total RNA was reverse-transcribed with oligo(dT) and
RevertAid H Minus M-MuLV Reverse Transcriptase (Fermentas) and
RT products were analysed by real-time PCR using the LightCycler
FastStart DNA Master SYBR Green I kit in a LightCycler apparatus
(Roche Applied Science) according to the manufacturer’s protocol.

RACE-PAT assay
A modified RACE-PATassay (Salles et al, 1999) was used to monitor
the length of the poly(A) tail of specific endogenous mRNAs.
Briefly, 3 nmol of the synthetic RNA oligonucleotide T7-rev (for
sequence, see Supplementary Table SI) was oxidized by reaction
with 5ml of 10 mg/ml NaIO4 in a volume of 100 ml for 30 min in the
dark on ice. The reaction was stopped by the addition of 100ml of
50% ethylene glycol and precipitated with ethanol. After resuspen-
sion, 1 nmol of oxidized T7-rev oligonucleotide was phosphorylated
with T4 Polynucleotide Kinase (New England Biolabs) as recom-
mended by the manufacturer. A 50 pmol portion of oxidized and
kinased T7-rev oligonucleotide was ligated to 1mg of total cellular
RNA with T4 RNA ligase (New England Biolabs) under the
conditions recommended by the manufacturer. One-half of the
ligation reaction was then reverse-transcribed with oligonucleotide

OBS2138 and RevertAid H Minus M-MuLV Reverse Transcriptase
(Fermentas) as recommended by the manufacturer. PCR amplifica-
tion was performed with 1ml of the reverse transcription reaction
and oligonucleotide OBS2313 and either oligonucleotide OBS2140 or
oligonucleotide OBS2141 depending on the target mRNA.

Protein purification and western blotting
Transfected cells were lysed in IPP150 buffer (10 mM Tris–HCl pH 8,
150 mM NaCl, 1% Igepal CA-630 (Sigma) and proteases inhibitors)
by standard procedures. For TAP purification, cell lysates were
incubated with IgG Sepharose 6 Fast Flow beads (GE Healthcare),
beads were washed four times with IPP150 buffer and eluted with
IPP150 buffer supplemented with 1% sodium dodecyl sulphate.
Western blotting was performed by standard procedures. The HA
tag was revealed with the monoclonal antibody HA-11 (Covance)
using the SuperSignal West Femto Maximum Sensitivity Substrate
kit (Pierce), the TAP tag was revealed with the immunocomplex
PAP (Dako) and the ECL Western Blotting Detection Reagents (GE
Healthcare) and the GFP tag was revealed with the monoclonal
antibody JL8 (BD Biosciences), a secondary horseradish perox-
idase-conjugated anti-mouse antibody (Pierce) and the ECL Western
Blotting Detection Reagents (GE Healthcare). Chemiluminescent
signals were visualized with the LAS-3000 apparatus (Fujifilm).
Recombinant His-tagged proteins were expressed and purified on
Ni-agarose (Qiagen) essentially as recommended by the manu-
facturer.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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