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Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the
biologic and toxic effects of its xenobiotic ligands. In recent years it has become evident that in the
absence of ligand the AHR promotes cell cycle progression and that its activation by high-affinity
ligands results in interactions with the retinoblastoma protein (RB) that lead to perturbation of the
cell cycle, G0/G1 arrest, diminished capacity for DNA replication and inhibition of cell proliferation.
Hence, the AHR has diametrically opposed pro-proliferative and anti-proliferative functions that
have yet to be reconciled at the molecular level. Work from our own and from other laboratories
suggests that the AHR may function as a tumor suppressor gene that becomes silenced in the process
of tumor formation. To develop preliminary support for a more thorough examination of this
hypothesis we characterized the expression levels of various tumor suppressor genes, transforming
growth factor-β (Tgfb) genes and the Ahr gene in liver tumor samples from mice with a liver-specific
RB ablation and their wild-type littermates. In tumors arising in RB-positive livers, Cdkn2d and
Tgfb1 were repressed and Cdkn2c, Tgfb2, Tgfb3 and Pai1 were induced, whereas in RB-negative
tumors, only Cdkn2c and Tgfb3 were induced. Ahr was significantly repressed in tumors from both
sets of mice, supporting the concept that Ahr silencing may be associated with cancer progression.
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INTRODUCTION
The AHR is a ligand-activated member of the bHLH/PAS family of transcription factors that
plays an important role in controlling a variety of developmental and physiological events,
including induction of drug metabolizing enzymes, xenobiotic detoxification, neurogenesis,
tracheal and salivary duct formation, circadian rhythms, response to hypoxia, and hormone
receptor function (Schmidt and Bradfield, 1996; Crews and Fan, 1999; Pocar et al., 2005). So
far, more than 400 environmental toxicants and naturally occurring compounds have been
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reported to be AHR ligands (Denison et al., 2002). The cytosolic unliganded AHR is one
component of a multi-protein complex containing the immunophilin-like protein XAP2/AIP/
ARA9, the 23-kD co-chaperone protein p23 and two molecules of a 80-kD Hsp90 protein (Ma
and Whitlock, Jr., 1997; Petrulis et al., 2003). Upon ligand binding, the complex translocates
to the nucleus where AHR dissociates from the multi-protein complex and dimerizes with
ARNT, a second bHLH/PAS protein, to form a heterodimeric transcription factor. The AHR/
ARNT heterodimer binds to DNA recognition sequences, termed AHREs/XREs/DREs, found
in the enhancer region of genes coding for many phase I drug metabolizing enzymes, such as
the cytochromes P450 CYP1A1, CYP1A2, CYP1B1, and several phase II conjugating
enzymes, such as ALDH3A1 and NQO1. Binding leads to chromatin and nucleosome
disruption, recruitment of the basal transcriptional machinery and other transcriptional
regulators, and initiation of downstream transcription (Hankinson, 1995; Whitlock, Jr., 1999;
Schnekenburger, Peng and Puga, 2007; Schnekenburger, Talaska and Puga, 2007). Following
nuclear export, the AHR is degraded via the 26S proteasome pathway (Pollenz, 2002).

The AHR has also been recognized as a cell cycle regulator (Ma and Whitlock, 1996; Weiss
et al., 1996; Ge and Elferink, 1998; Kolluri et al., 1999; Puga et al., 2000; Strobeck et al.,
2000; Marlowe et al., 2004) although the precise molecular mechanisms responsible for this
role have not been fully elucidated. In the absence of an exogenous ligand, or after deletion of
the ligand-binding PAS-B domain, the AHR has been shown to promote cell cycle progression
(Ma and Whitlock, 1996; Elizondo et al., 2000; Chang et al., 2007), whereas exposure to its
prototypical ligand, TCDD, inhibits cell cycle proliferation in an AHR-dependent manner
(Bauman et al., 1995;Hushka and Greenlee, 1995;Levine-Fridman, Chen, and Elferink,
2004; Marlowe et al., 2004). Mechanistically, at least two separate signaling pathways
contribute to the AHR role in cell cycle regulation. First, AHR can repress expression of TGF-
β1 (Elizondo et al., 2000) by accelerating TGF-β1 mRNA degradation (Chang et al., 2007)
and blocking TGF-β1-dependent inhibition of cell proliferation and promotion of apoptosis.
Conversely, overproduction of TGF-β in fibroblasts from AHR knockout mice causes low
proliferation rates and increased apoptosis (Elizondo et al., 2000; Chang et al., 2007).
Consistent with these observations, livers from AHR knockout mice showed increased levels
of TGF-β1 and TGF-β3 proteins and elevated numbers of hepatocytes undergoing apoptosis
compared to wild-type mice (Zaher et al., 1998). Second, protein interactions between AHR
and RB further repress the RB-dependent repression of the transcription factor E2F and prevent
entry of the cells into S-phase (Ge and Elferink, 1998; Puga et al., 2000; Strobeck et al.,
2000; Marlowe et al., 2004). Hence, under certain circumstances the AHR could be considered
as a pro-proliferative gene with the properties of an oncogene, and under others as a tumor
suppressor gene. Consistent with this view, AHR has been found to be silenced by promoter
hypermethylation in a significant number of human acute lymphoblastic leukemia cases
(Mulero-Navarro et al. 2006).

Epidemiologic studies have shown that the retinoblastoma tumor suppressor protein RB is
functionally inactivated in most human neoplasms (Liu et al., 2004) with loss of heterozygosity
being frequently observed in hepatocellular carcinomas (Ashida et al., 1997; Kondoh et al.,
2001). In good agreement with the epidemiologic observations, mice with a liver-specific
ablation of the Rb gene showed aberrant ploidy and increased multiplicity of liver tumors when
exposed to DEN (Mayhew et al. 2005; Mayhew et al. 2007; Srinivasan et al. 2007). To explore
the role of AHR/RB/TGF-β interactions in liver tumorigenesis, we have examined the
expression status of Tgfb genes, tumor suppressor genes, Ahr and several of its downstream
targets in DEN-induced liver tumors and normal livers of mice with a liver-specific ablation
of the Rb gene and in their wild-type littermates. The central question in these experiments was
to determine whether AHR expression would be repressed, favoring the hypothesis that it
functioned as a tumor suppressor gene, or would be over-expressed or unaffected, favoring the
hypothesis that it functioned as an oncogene. We find distinct patterns of gene expression that
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for the most part show a significant increase of expression of Tgfb genes and repression of
Ahr in RB-positive and RB-negative tumors.

MATERIALS AND METHODS
Mice

Liver-specific Rb conditional knockouts and their normal littermates were derived from
Rbfl/fl mice, harboring Rb alleles in which exon 19 is flanked by loxP sites, crossed with Alb-
Cre mice to obtain mice homozygous for the floxed Rb locus and hemizygous for Alb-Cre.
These mice were then interbred with Rbfl/fl mice to produce Rbfl/fl (wild type) and Rbfl/fl Alb-
Cre+/0 (RB-knockout) littermates at a 1:1 ratio (Mayhew et al., 2005). Mice were housed in a
pathogen-free animal facility under standard 12-hour light/12-hour dark cycle with ad
libitum water and chow. All of the experiments were conducted using the highest standards for
humane care in accordance with the NIH Guide for the Care and Use of Laboratory Animals
and were approved by the University of Cincinnati Institutional Animal Care and Use
Committee.

Liver samples
Fifteen-day old Rbfl/fl and Rbfl/fl Alb-Cre+/0 littermates were administered a single i.p. injection
of the genotoxic hepatocarcinogen DEN (Sigma) dissolved in saline at a dose of 20 mg/kg
body weight; littermates used as controls were inoculated with an equal volume of saline. This
protocol resulted in the four groups of mouse livers analyzed in this work: RB-positive,
normal, are livers from Rbfl/fl mice inoculated with saline; RB-positive, tumors are livers from
Rbfl/fl mice inoculated with DEN; RB-negative, normal are livers from Rbfl/flAlb-Cre+/0 mice
inoculated with saline; and RB-negative, tumors are livers from Rbfl/flAlb-Cre+/0 mice
inoculated with DEN. Mice were euthanized 9 months post-DEN exposure. Immediately after
euthanasia, livers were excised, weighed and photographed to facilitate scoring of surface liver
lesions. Visible surface tumors were excised from both Rbfl/fl (normal) and Rbfl/flAlb-Cre+/0

animals, immediately frozen in liquid N2 and stored at −80 °C until use. Genotypes were
determined by standard PCR of tail DNA and deletion or retention of the Rb gene was
confirmed by genotyping the mouse livers themselves. Characterization of these tumors has
been reported elsewhere (Mayhew et al. 2005; Mayhew et al. 2007; Srinivasan et al. 2007).

cDNA sample preparation
RNA was isolated from frozen liver tumor and normal tissues using Triazol. cDNA was
synthesized by reverse transcription of 1 µg of total RNA in a total volume of 20 µl containing
1X reverse transcriptase buffer (Invitrogen), 25 µg/ml oligo-dT12–18 primer (Invitrogen), 0.5
mM dNTP mix (GeneChoice), 10 mM dithiothreitol (Invitrogen), 5 mM MgCl2, 20 U of RNase
inhibitor (RNasin, Promega), and 100 U of SuperScript™ II RNase H− reverse transcriptase
(Invitrogen). Samples were denatured and annealed to the primer for 10 min at 70 °C, and
reverse-transcribed for 1 hour at 42 °C. Before amplification, the reverse transcriptase was
inactivated by heating to 70 °C for 15 minutes and RNA was hydrolyzed by incubation with
2 U RNase H (Invitrogen) at 37 °C for 20 minutes. The resulting cDNA products were diluted
in a final volume of 200 µl and a 2 µl aliquot was used as template for subsequent quantification
by real-time PCR amplification.

Real-time PCR
Primers for cDNA amplification are shown in Table 1. Amplification of β-actin cDNA in the
same samples was used as an internal control for all real-time PCR amplification reactions.
PCR product specificity was confirmed using melting curve analyses and subsequent
polyacrylamide gel electrophoresis. PCR reactions were conducted in duplicate in a total
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volume of 25 µl containing SYBR Green PCR Master Mix (Applied Biosystems), and 0.1 µM
of each primer. Amplification was performed on an ABI 7500 (Applied Biosystems) where
the reaction was heated to 95 °C for 10 minutes followed by 40 cycles of denaturation at 95 °
C for 15 seconds and annealing-elongation at 60 °C for 60 seconds. Detection of the fluorescent
product was carried out during the elongation period, and emission data were quantified using
threshold cycle (Ct) values. Ct values were determined in duplicate, averaged and normalized
to values for β-actin amplification of the same sample (ΔCt).

CpG island analysis in the mouse Ahr promoter
A 1,500-nucleotide segment of the mouse Ahr promoter, from coordinates −1295 to +205 and
containing the transcription start site, was analyzed with the Methprimer software program
(http://www.urogene.org/methprimer) for the presence of CpG islands. A 705-nucleotide
segment was identified as a CpG island using an observed/expected CpG ratio of 0.6, a
minimum length island of 200 nucleotides and a minimum G+C content of 50%. A 395-
nucleotide fragment was used for further analysis.

DNA methylation analysis
The methylation status of the mouse Ahr promoter was determined by PCR amplification of
sodium bisulfite-treated genomic DNA followed by cloning and DNA sequencing, as described
(Schnekenburger, Peng, and Puga, 2007). Genomic DNA was extracted using standard
procedures and 750 ng of each DNA sample underwent sodium bisulfite modification using a
bisulfite modification kit (Active Motif MethylDetector™) following the manufacturer’s
recommendations. Specific primers for PCR amplification were designed using the same
MethPrimer software program. Several primer sets were designed such that the target
sequences did not contain any CpG dinucleotide, thus allowing for amplification of both
unmethylated and methylated DNA. Primers were tested for their ability to yield high-quality
sequencing reactions. PCR products were quality controlled by agarose gel electrophoresis.
Inclusion of restriction enzyme sites in the PCR primers allowed for cloning of the
amplification products in the pGEM4Z vector (Promega). For each DNA sample, a minimum
of 10 clones were analyzed by sequencing.

Statistical analyses
Statistical analyses of RT-PCR data was performed using SigmaStat 2.03. Group comparisons
were made using a two-tailed Student’s t-test. A p-value less than 0.05 was considered
statistically significant.

RESULTS AND DISCUSSION
Comparison of mRNA levels of RB-positive tumors (n = 4) with RB-positive normal livers (n
= 3) showed significant changes in the expression of a number of genes. mRNA levels of
Ahr, Cdkn2d (p19) and Tgfb1 in tumor tissue were decreased to 30%, 50% and 40%,
respectively, of their levels in normal liver. On the other hand, mRNA levels of Cdkn1a (p21),
Cdkn2c (p18), Pai1 (Serpine-1), Tgfb2 and Tgfb3 were elevated in RB-positive tumors by 4.9-,
4.3-, 3.2-, 10.5- and 11.3-fold, respectively, relative to their levels in normal liver (Table 2).
In contrast, RB-negative tumors (n = 8) and RB-negative normal livers (n = 3) showed fewer
differences, with Ahr mRNA being the only one showing significantly reduced levels (60%)
in tumors and Cdkn2c (p18) and Tgfb2 mRNAs increased by 6.5- and 8.6-fold, respectively,
relative to their levels in RB-negative normal liver tissues. Expression of several other genes,
including Cdkn2d, Cyp1a1, Pai1 and Tgfb3, was also increased in RB-negative tumors, but
the changes did not reach statistical significance (Table 2). Expression of Trp53 (p53) was
unchanged in tumors relative to normal tissues and Dnmt1and Hdac1, which were assayed for
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their potential role in repression of AHR-regulated genes (Schnekenburger, Peng and Puga,
2007), also showed no significant changes between tumors and normal livers (Table 2).

Changes in DNA methylation have been directly linked to genomic instability and play an
important role in tumorigenesis. In tumors and in cancer cell lines, aberrant methylation usually
occurs at CpG islands, unmethylated in normal somatic cells and hypermethylated in tumor
suppressor gene promoters, representing a major mechanism of gene inactivation in primary
human tumors (Fraga et al., 2004; Esteller, 2007). A CpG island in the promoter of the human
AHR gene has recently been found to be methylated in a panel of 19 tumor cell lines and in
lymphocytes of one-third of acute lymphoblastic leukemia patients (Mulero-Navarro et al.,
2006). This observation suggested the possibility that promoter hypermethylation might be a
potential mechanism responsible for the down-regulation of AHR expression in our liver tumor
samples. Accordingly, we used DNA sequencing of bisulfite-modified cloned PCR products
to test this hypothesis. We sequenced a minimum of 10 clones from each tumor DNA sample
but found no evidence of methylation (data not shown) in the corresponding CpG island of the
mouse Ahr promoter (Fig. 1), indicating that hypermethylation was not the main cause of the
decrease in Ahr expression in the mouse tumors analyzed.

Because of their role as tumor suppressors, the members of the two families of CDK inhibitors,
the INK4 (p16, p15, p18 and p19) and the CIP/KIP (p21, p27 and p57) are often found in a
silenced state in tumors of many different origins (Damo, Snyder, and Franklin 2005; Bai et
al. 2007); however, recent evidence in pancreatic and lung tumors shows up-regulation, rather
than repression of p18 (Cdkn2c) and argues against a pure tumor suppressor role for this gene
(Joshi et al., 2007; Lindberg, Akerstrom, and Westin, 2007; Pei et al., 2007), whereas p19/ARF
(Cdkn2d) is almost exclusively repressed in tumors (Lowe and Sherr, 2003; Canepa et al.,
2007). Our results are consistent with those findings, showing increased expression of
Cdkn2c in both RB-positive and RB-negative tumors, and decreased expression of Cdkn2d in
RB-positive but not in RB-negative tumors. Possibly, in the absence of RB, repression of one
of the main inhibitors of its phosphorylation is less essential for tumor suppression.

The TGF-β proteins are growth modulators involved in cell proliferation, apoptosis,
differentiation, adhesion and migration with their growth inhibitory effects resulting from their
ability to arrest cells in the G1 phase of the cell cycle (Massague, Blain, and Lo, 2000; Siegel
and Massague, 2003; Massague and Gomis, 2006). Reduced expression of TGF-β proteins or
loss of their inhibitory effects have been linked to cell hyperproliferation and tumor progression
(Massague, Blain, and Lo, 2000; Siegel and Massague, 2003; Massague and Gomis, 2006). In
fact, TGF-β appears to have a dual role in tumorigenesis, acting as a tumor suppressor in the
earlier tumor phases, and as a tumor promoter in the later phases (Derynck, Akhurst and
Balmain, 2001; Ten Dijke et al., 2002). At that time, TGF-β is produced in high amounts in
the tumor and it stimulates tumorigenesis by allowing tumor cells to escape immune
surveillance (Hazelbag et al., 2002) and promoting angiogenesis (Zhang et al., 2006; Ten Dijke
et al., 2002). Consistent with this dual role of TGF-β, we find a significant decrease of Tgfb1
expression in the tumors and very large increases of Tgfb2 and Tgfb3 mRNA levels, with a
concomitant increase in Pai1 expression, in agreement with the regulatory role of Tgfb in
Pai1 transcription (Kutz et al., 2006). The Pai1 gene encodes the plasminogen activator
inhibitor serpine-1, whose expression increases filopodia formation and migration and is highly
elevated in many invasive tumors, including breast, brain and gastric cancers (Rao et al.,
1993; Chazaud et al., 2002; Lei et al., 2007).

Ahr expression was significantly down-regulated in both RB-positive and RB-negative liver
tumors, although not by promoter hypermethylation. These findings are consistent with the
hypothesis that the AHR may have tumor suppressor gene properties in these tumors and is in
good agreement with recent observations that AHR functions as a tumor suppressor in prostate
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carcinogenesis in mice (Fritz et al., 2007). A hypothesis to explain mechanistically these results
is that in the absence of RB, cells with lower levels of AHR will have a greater probability of
survival because they will escape RB/AHR repression of S-phase entry. On the other hand, in
both RB-positive and RB-negative cells, the lower AHR levels will promote and increase in
TGFβ, as we have recently shown (Chang et al. 2007), allowing tumor cells to escape immune
surveillance and promoting angiogenesis. An important limitation of these studies is that they
offer a snapshot of a dynamic process that began 9 months before, hence, the data may represent
events happening at relatively late stage liver tumors, providing no clues about potential events
that may have taken place early in the process and contributed to tumor promotion, as for
example, reversal of Tgfb expression consistent with its dual role in tumorigenesis. Future work
in this area will of necessity include analyses of earlier time points.
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ABBREVIATIONS
ALDH3A1, aldehyde dehydrogenase-3A1
AHR, aryl hydrocarbon receptor
AHRE, aryl hydrocarbon receptor response element
AIP, AHR-interacting protein
ALL, acute lymphoblastic leukemia
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ARA9, Ah receptor associated protein 9
ARNT, aryl hydrocarbon receptor nuclear translocator
bHLH, basic-region helix-loop-helix
CDK, cyclin-dependent kinase
DEN, diethylnitrosamine
DRE, dioxin response element
HCC, hepatocellular carcinoma
Hsp90, heat shock protein 90
MEM-α, minimal essential medium-α
NQO1, NAD(P)H-dependent quinone oxidoreductase
PAI-1, plasminogen activator inhibitor type-1
PAS, Period-Aryl hydrocarbon nuclear translocator-Simple-minded
RB, retinoblastoma
TCDD, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin
TGFβ, transforming growth factor-beta
XAP2, hepatitis virus X-associated protein-2
XRE, xenobiotic response element
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Fig. 1.
(A). A 705-nucleotide segment of the mouse Ahr promoter from −556 to + 148 was identified
as a CpG island using the Methprimer software program. (B). A 395-nucleotide DNA fragment
within this CpG island, from coordinates −245 to +148 and containing 56 CpG dinucleotides
was selected for methylation analysis after bisulfite modification followed by PCR
amplification with specific oligonucleotide primers (underlined), cloning and sequencing of a
minimum of 10 clones from each liver DNA sample.
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Table 1
Primer sequences fo cDNA amplification of selected genes

Gene Primer sequences

Forward: 5′- CATCCGTAAAGACCTCTATGCC -3′
β-Actin Reverse: 5′- ACGCAGCTCAGTAACAGTCC -3′

Forward: 5′- GGCCAAGAGCTTCTTTGATG - 3′
Ahr Reverse: 5′- TGCCAGTCTCTGATTTGTGC - 3′

Forward: 5′- GAACAGGGATGGCAGTTAGG - 3′
Cdkn1a (p21) Reverse: 5′- AGTATGGGGTGGGGGAAAAG - 3′

Forward: 5′- GGGTTCCAGCTTGTTGTGTT - 3′
Cdkn1b (p27) Reverse: 5′- GGCCATTTTCCATCTCTGAA - 3′

Forward: 5′- CCTTCCAAAACTTGAACCCTAC - 3′
Cdkn2b (p15) Reverse: 5′- TCCCTTGCTATTTTACACCAC - 3′

Forward: 5′- TGCGCTGCAGGTTATGAAACTTGG - 3′
Cdkn2c (p18) Reverse: 5′- AACATCAGCCTGGAACTCCAGCAA - 3′

Forward: 5′- GCCTTGCAGGTCATGATGTTTGGA - 3′
Cdkn2d (p19) Reverse: 5′- ATTCAGGAGCTAGGAAGCTGACCA - 3′

Forward: 5′- GTGTCTGGTTACTTTGACAAGTGG-3′
Cyp1a1 Reverse: 5′- ACATGGACATGCAAGGACA -3′

Forward: 5′- CTGACCGCTTCTACTTCCTC -3′
Dnmt1 Reverse: 5′- TCCCTTTCCCCTTCCCTTTC -3′

Forward: 5′- TTCCAACATGACCAACCAGA -3′
Hdac1 Reverse: 5′- GGCAGCATCCTCAAGTTCTC -3′

Forward: 5′- ACCCCACTCTATTTTGCTCC -3′
Nqo1 Reverse: 5′- ACTTACTCCTTTTCCCATCCTC -3′

Forward: 5′- GTCTTTCCGACCAAGAGCAG -3′
Pai1 Reverse: 5′- GACAAAGGCTGTGGAGGAAG -3′

Forward: 5′- CAACGCCATCTATGAGAAAACC-3′
Tgfb1 Reverse: 5′- AAGCCCTGTATTCCGTCTCC-3′

Forward: 5′- CTCAACACACCAAAGTCCTC-3′
Tgfb2 Reverse: 5′- ATCAAAACTCCCTCCCTCC-3′

Forward: 5′- CAGCCTACATAGGTGGCAAGAAT-3′
Tgfb3 Reverse: 5′- ACCCAAGTTGGACTCTCTCCTCAA -3′

Forward: 5′- TGGAAGACTCCAGTGGGAAC - 3′
Trp53 Reverse: 5′- TCTTCTGTACGGCGGTCTCT - 3′
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