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In animal communication, signals are frequently emitted using different channels (e.g. frequencies in a
vocalization) and different modalities (e.g. gestures can accompany vocalizations). We explore two
explanations that have been provided for multimodality: (i) selection for high information transfer
through dedicated channels and (ii) increasing fault tolerance or robustness through multichannel
signals. Robustness relates to an accurate decoding of a signal when parts of a signal are occluded. We
show analytically in simple feed-forward neural networks that while a multichannel signal can solve the
robustness problem, a multimodal signal does so more effectively because it can maximize the
contributionmade by each channelwhileminimizing the effects of exclusion.Multimodality refers to sets
of channels where within each set information is highly correlated.We show that the robustness property
ensures correlations among channels producing complex, associative networks as a by-product. We refer
to this as the principle of robust overdesign. We discuss the biological implications of this for the evolution
of combinatorial signalling systems; in particular, how robustness promotes enough redundancy to allow
for a subsequent specialization of redundant components into novel signals.
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1. MULTIMODAL ETHOLOGY
There are many types of signals in animal communi-
cation. These signals can be classified according to five
features: modality (the number of sensory systems
involved in signal production); channels (the number

of channels involved in each modality); components
(the number of communicative units within modalities
and channels); context (variation in signal meaning due
to social or environmental factors); and combinatori-

ality (whether modalities, channels, components
and/or contextual usage can be rearranged to create
different meaning). In this paper, we focus on
multichannel and multimodal signals, exploring how
the capacity for multimodality could have arisen and

whether it is likely to have been dependent on selection
for increased information flow or on selection for
signalling system robustness. The robustness
hypothesis argues that multiple modalities ensure

message delivery (backup signals; Johnstone 1996)
when one modality is occluded by noise in the
environment (Hauser 1997) or noise in the perceptual
system of the receiver (Rowe 1999).

Some multimodal signals will have non-redundant

features in which each modality elicits a different
response. A compound stimulus can either elicit
responses to (i) both components (OR function),
(ii) only one of the two original components (XOR),

(iii) a modulated version of the response to one of the
two original components, or (iv) the emergence of an
entirely new response (Partan & Marler 1999;
tribution of 15 to a Theme Issue ‘The use of artificial neural
s to study perception in animals’.
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Flack & de Waal in press). For example, male jumping
spiders (Habronattus dossenus) appear to communicate
quality through the coordination of seismic and visual
displays (Elias et al. 2003). In contrast to unimodal,
multichannel signals, multimodal signals, like those
used by the jumping spider, are not typically perceived
as a single stimulus (Hillis et al. 2002). Receiver
discrimination makes sense when the information
content in each modality is not perfectly correlated
(multiple messages; Johnstone 1996). Can multimodal
signals in which modalities are not redundant also be
explained by the robustness hypothesis, or is an
alternative explanation required, for example, whether
certain kinds of messages can only be communicated
using compound stimuli?

We consider a simple model in which a signaller
transmits a message to a receiver. Signaller and receiver
are assumed to have matching interests and there is no
advantage to deception. The signaller transmits the
message through an arbitrary number of channels using,
for example, multiple frequencies (e.g. the fundamental
frequency, second harmonic, etc.) in a vocalization. The
receiver is free to attend to as few or as many channels as
it wishes. The signalling strategy is to generate
correlations among the channels in such a way so as to
allow the receiver to decode the intended meaning.
We ask, how many channels and what correlational
structure among the channels should the signaller use to
allow the receiver to decode a message, assuming
random subsets of channels become occluded?

The robustness of the message depends on two
factors: the causal contribution of signalling channels
to a receiver and the exclusion dependence on a
channel following channel elimination. The causal
contribution refers to the unique information provided
This journal is q 2007 The Royal Society
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Figure 1. (a) The basic perceptron architecture illustrated
with six nodes of a signaller (numbered black squares) and six
corresponding channels used to convey a message generated
by node activity to a receiver (white square numbered 0). (b)
Patterns of correlated activity illustrated through connections
among signaller nodes. Two sets of three nodes show highly
correlated activity: nodes 1–3 are highly correlated and nodes
4–6 are highly correlated. Each correlated cluster is referred
to as a modality. (c) Representation of the receiver integrating
inputs from the six channels constituting two signalling
modalities.
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by each channel. As channels are duplicated, any one
channel necessarily makes a smaller contribution to
message meaning. Exclusion dependence refers to the
consequences for decoding the message of occluding a
single or a set of channels. To understand how this
distinction maps onto communication in the natural
world, consider the following vocalization example:
experimental studies of the combination long calls of
golden lion tamarins (Sanguinus oedipus) indicate that
tamarins treat unmanipulated long calls as perceptually
equivalent to long calls with deleted fundamental
frequencies or second harmonics (Weiss & Hauser
2002). This illustrates the principle of causal contri-
bution in which the absence of a single harmonic does
not affect whether or how well a receiver decodes a call.
However, tamarins do distinguish between unmanipu-
lated calls and synthetic calls in which all of the
harmonics above the fundamental have been deleted,
or in which the second harmonic has been mistuned.
This illustrates the principle of exclusion dependence
in which removing the sets of channels, but not a single
channel, can jeopardize accurate receiver decoding.

We represent the multichannel and multimodal
property of signals through two different types of
connectivity in a modified perceptron network.
Channels connect the receiver to the nodes of a
signaller (figure 1a), whereas clusters of highly
correlated nodes of the signaller define modalities
(figure 1b). In this paper, we show mathematically that
the clusters of correlated activity constituting modal-
ities emerge as robust solutions to a channel occlusion
problem. We also find that our robustness measure acts
as a lower bound on a well-known network complexity
measure arising from maximizing information flow
(Tononi et al. 1994). We end by discussing the potential
implications for the evolution of combinatorial signals.
2. THE PERCEPTRON NETWORK OF RECEIVING
To describe the response of a receiver to the incoming
signals, we consider a simple network structure in
Phil. Trans. R. Soc. B (2007)
terms of a map T, which describes how a node labelled
0 generates an output y based on the information from
an input vector x1,., xN (figure 1a). Let us assume L

for the set {1, ., N } of input units and L0 for the set
Lg{0} of all units. The states of a unit i2L0 are
denoted by Xi. The formal description of the
transformation T is given by aMarkov transition matrix

T : XL!X0/ ½0; 1�; ðx; yÞ1T ð yjxÞ;

where T is the function performed by the network and
the input set is given by XLdX1!/!XN. The value
T( yjx) is the conditional probability of generating the
output y given the input xZ(x1,., xN). This implies
that for every x2XL,X
y2X0

T ð yjxÞZ 1: ð2:1Þ

Example. Nodes have two states ‘0Znot active’ and
‘1Zactive’ corresponding to the presence or absence of
an active input. The system parameters are the edge/
channel weights wi, i2L, which describe the strength of
interaction among the individual input nodes i and the
output node 0, and a threshold value q for the output
node which controls its sensitivity to the input. In
neuroscience, the weight describes the product of the
density of postsynaptic receptors and neurotransmitter,
and the threshold controls the sensitivity. We assume
that given an input vector xZ ðxiÞi2L2f0;1gN in the
first step, the output node assumes a value given by
the function

hðxÞZ
X
i2L

wixiKq;

and then, in the second step, it generates the output 1
with the probability

Tbð1jxÞZ
1

1CeKbhðxÞ
:

The normalization property (2.1) then implies that the
output 0 is generated with probability 1KT(1jx). Here,
the inverse temperature b controls the stochasticity of the
map T b. This is the familiar perceptron neural network
(McCulloch & Pitts 1943).
2.1 Information measures

In this section, we introduce a number of measures of
information that form the basis of a formal definition of
robustness in networks. The argument proceeds by
relating the perceptron architecture, interpreted as a
simple stochastic map, to Shannon information or
Shannon entropy. The connection of entropy to infor-
mation derives from their common roots in deriving an
extensive measure of the degree of ignorance we
possess about the state of a coarse-grained system.
The greater our ignorance, the greater the information
value of a signal. Stated differently, when we obtain
information about a low entropy or highly regular
system, we learn very little new.

Given an arbitrary subset S4L0, we write XS rather
than the more cumbersome notation

Q
i2SX i, and we

consider the projection

XS : XL0
/XS ; x Z ðxiÞi2L1xS Z ðxiÞi2S :
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With an input distribution p onXL and a stochastic map
T from XL to X0, we have the joint probability vector

Pðx; yÞZ pðxÞT ð yjxÞ; x2XL; y2X0: ð2:2Þ

The projection XS becomes a random variable with
respect to P. Now consider the three subsets A, B,
C4L0. The entropy of XC or Shannon information is
then defined as

HP ðXCÞZK
X

z2XC

PfXC Z zglnðPfXC Z zgÞ:

This quantity is a measure of the uncertainty that one
has about the outcome of XC (Cover & Thomas 2001).
Once we know the outcome, this uncertainty is then
reduced to zero. This justifies the interpretation of
HP(XC) as the information gain after knowing the
outcome of XC. Now, having information about
the outcome of the second variable XB reduces the
uncertainty about XC. More precisely, the conditional
entropy of XC given XB is defined as

HP ðXCjXBÞZK
X

y2XB;z2XC

PfXB Z y;XC Z zg

!lnðPfXC Z zjXB Z ygÞ;

and we have HP ðXCÞRHP ðXCjXBÞ. Using these
entropy terms, the mutual information of XC and XB is
then defined as the uncertainty of XC minus the
uncertainty of XC given XB,

IP ðXC : XBÞZHP ðXCÞKHP ðXCjXBÞ:

The conditional mutual information of XC and XB given
XA is defined in a similar way,

IP ðXC : XBjXAÞZHP ðXCjXAÞKHP ðXCjXA;XBÞ:

We simplify the notation by writing these quantities
without explicitly mentioning P.

Thus, we have a measure of the information that is
output by the network as a function of the information
present at the input units.
3. NETWORK COMPLEXITY MEASURES
AND SIGNALLING
Now that we have defined a simple signalling network
and appropriate information measures, we discuss a
measure of network complexity. This measure will
refer to the structure of correlations among the nodes
of the signaller (figure 1b) and lead to a statistical
definition of a signalling modality. In a series of papers,
Tononi et al. (1994; TSE) consider information
theoretic measures of complexity in neural networks.
The primary goal of this research is to determine
which anatomical properties we should expect to
observe in networks, such as a nervous system, where
communication among cells plays a crucial role in
promoting functional states of the system. TSE relate
the functional connectivity of the network to statistical
dependencies among neurons that arise through
patterns of connectivity. The dependencies are
measured using information theoretic expressions
outlined in §2. TSE identify two principles of
functional organization. The first principle derives
from the observation that groups of neurons are
Phil. Trans. R. Soc. B (2007)
functionally segregated from one another; into
modules, areas or columns. The second principle
maintains that to achieve global coherence, segregated
components need to become integrated. Segregation
and integration combine to produce systems capable of
both discrimination and generalization. In an animal
signalling context, segregation can be related to
clusters of cells dedicated to generating different
messages, in other words, different modalities of
expression. Integration binds these signals into a
compound meaning or function. According to TSE,
integration is a measure of the difference between the
entropy expected on the basis of network connectivity
and the observed entropy,

IðXAÞZ
X
v2A

HðXvÞKHðXAÞ:

The TSE complexity is then defined as

CðXLÞd
XN
kZ1

k

N
IðXLÞK

1

N

k

� � X
A4L

jAjZk

IðXAÞ

2
6664

3
7775: ð3:1Þ

It has been shown that this complexity measure is low
for systems whose components are characterized either
by total independence or total dependence. It is high
for systems whose components show simultaneous
evidence of independence in small subsets and
increasing dependence in subsets of increasing size.
The TSE complexity can be written in terms of mutual
informations,

CðXLÞ :Z
X
A4L

jAj

N N

jAj

� � IðXA : XLnAÞ:

Now that we have defined TSE complexity in closed
form in terms of information measures, we can relate
this back to information flows through the perceptron
architecture.
4. ROBUSTNESS AS A GENERATOR
OF COMPLEXITY
(a) A definition of robustness

In this section, we relate the TSE complexity to a
robustness measure. In order to capture the main ideas
behind this approach, we consider two random input
variables X and Y with distribution p(x, y), where x2X

and y2Y, and one output variable Z which is generated
by a stochastic map

T : ðX!Y Þ!Z/ ½0;1�; ðx; y; zÞ1T ðzjx; yÞ:

Now we assume that Y is knocked out, and we want to
have a measure for the robustness of T against this
knockout. First, robustness should include some
notion of invariance with respect to this knockout
perturbation. When the invariance property is satisfied,
we say that the exclusion dependence is low. On the other
hand, trivially vanishing exclusion dependence can be
achieved if T does not at all depend on Y. In order to
have a robustness measure that captures non-trivial
invariance properties, we have to take the contribution of
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Figure 2. The robustness value as a function of channel
number. At low levels of duplication, individual channels
increase the robustness by lowering the exclusion depen-
dence. At high levels of duplication, individual channels make
very low contribution to function and thereby lower the
robustness value. The figure illustrates that systems of large
non-integrated elements should not be deemed robust as
channel removal does not influence behaviour. For increasing
numbers of channels to increase robustness, we need more
than duplication, we require the emergence of correlated
modules or statistical modalities. Parameter aZ10K3.
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Y to the function T into account, which can be done by
applying Pearl’s formalism of causality (Pearl 2000).
Our robustness measure is then defined as follows.

Informal definition of robustness. We define the
robustness of T against knockout of Yas the contribution of
Y to the function T minus the exclusion dependence of Twith
respect to the knockout of Y.

We consider the case where channels are occluded
rather than simply noisy as limiting case that maps
more naturally onto the biological problem that we are
considering; namely, under conditions where channels
are not available for inspection, how might alternative
channels be used to extract the required information?

We (Ay & Krakauer in press) have formalized this
probabilistic notion of robustness in terms of infor-
mation geometry (Amari 1985) and derive the
following formula:

RðY ; p;T Þ

d
X

x

X
z

X
y

pðx; yÞT ðzjx; yÞln

P
y0pðx; y0ÞT ðzjx; y0Þ

pðxÞ
P

y0pð y0ÞT ðzjx; y0Þ
;

where we sum over all values of x, y and z. This
measures the amount of statistical dependence between
X and Y that is used for computing Z in order to
compensate the exclusion of y. The robustness vanishes
if for all x and z,X

y

pðx; yÞT ðzjx; yÞZ pðxÞ
X

y

pð yÞT ðzjx; yÞ;

or equivalentlyX
y

T ðzjx; yÞð pðx; yÞKpðxÞpð yÞÞZ 0: ð4:1Þ

There are two extreme cases where this equality holds.
The first case is when there is no statistical dependence
between x and y that can be used for compensation.
Then, p(x,y)Zp(x)p( y) and the equality (4.1) holds.
The other extreme case is when there is statistical
dependence, but this dependence is not used by T. In
this case, T ðzjx; yÞZT ðzjx; y0Þ for all y and y 0.

The ability of the perceptron to make use of
redundant information by integrating over input
channels is similar to von Neumann’s theory for
probabilistic logics (von Neumann 1956).
(b) An example: duplication and robustness

In this section, let T: X!Y/[0, 1] be a stochastic map
and p be a probability distribution on X. In this
example, we seek to measure robustness as we
duplicate T. In order to have several copies of this
map, we consider the N-fold Cartesian product X

N,
and we define the input probability distribution

~pd
X
x2X

pðxÞdðx;.; xÞ:

We define the extension of the map T to the set of N
identical inputs by choosing one input node with
probability 1/N and then applying the map T to that
Phil. Trans. R. Soc. B (2007)
node. This leads to

~T ð yjx1;.;xN Þd
1

N
ðT ð yjx1ÞCT ð yjx2ÞC/CT ð yjxN ÞÞ:

With the probability 1Ka for the exclusion of an input
node v2{1, ., N }, we define the probability for a
subset A4{1,., N } to remain as input node set after
knockout as

rðAÞdajAjð1KaÞNKjAj:

We find the mean robustness of ~T with respect to this
knockout distribution

Rðr;p; ~T Þd
X

A4f1;.;Ng

rðAÞ

robustnessof ~T against

knockout of the

complementof A

2
664

3
775:

Now, we want to show the robustness properties with
respect to the number N of channels and the probability
a by specifying T as the identity map on the set {G1}
with uniform distribution p(K1)Zp(C1)Z1/2. The
output node just copies the input: x1x. Following our
concept of robustness, we can show that the robustness
is given by

K
XN
kZ0

N

k

 !
akð1KaÞNKkln

NCk

2N

� �
Kð1KaÞN lnð2Þ

Figure 2 shows that channel duplication first leads to an
increase of robustness but then declines as the number
N increases.Note that the duplication of identical inputs
is not optimal for robustness as each input transmits
identical information and thereby lessens its contri-
bution to the signal. Robustness would increase if each
input overlapped but included some uncorrelated
information.
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(c) Extension to networks

In order to formally connect robustness with complex-
ity, we extend the robustness measure to the network
setting. The set of network nodes is denoted by V and
the set of edges is denoted by E4V!V. Given a unit
v2V, paðvÞdfu2V : ðu; vÞ2Eg is the set of units that
provide direct information to v. With the state sets Xv,
v2V, we consider a family of stochastic maps denoted
as

Tv : XpaðvÞ!Xv/ ½0;1�; ðx; yÞ1Tvð yjxÞ:

The global dynamics T : XV !XV / ½0; 1� is then
defined by

T ðð yvÞv2V jðxvÞv2V Þd
Y
v2V

Tvð yvjxvÞ:

Now, we consider exclusions of subsets of the set V and
associate a robustness measure for the network with
regard to these exclusions. After knockout, we have a
remaining set A, and for a node v2A we consider the
part of pa(v) that is contained in A and the part pa(v)\A
that has been knocked out. Then, we have the following
robustness of Tv against this exclusion:

Robustness of Tv against exclusion of paðvÞnA

Z
X

x2XpaðvÞhA; y2XpaðvÞnA;z2Xv

pðx; yÞTvðzjx; yÞ

!ln

P
y02XpaðvÞnA

pðx; y0ÞTvðzjx; y0Þ

pðxÞ
P

y02XpaðvÞnA
pðy0ÞTvðzjx; yÞ

 !
:

With a probability distribution r, we define the
following total robustness of the network:

Rðr; p; T ÞZ
X
A4V

rðAÞ
1

jAj

X
v2A

Robustness of v

against exclusion

of paðvÞnA

2
64

3
75

8><
>:

9>=
>;:

In this formula, we assume that p is a stationary
distribution of T. Note that our robustness measure is a
temporal quantity. It is surprising that one can relate
this quantity to a purely spatial quantity, which
depends only on the stationary distribution p. More
precisely, we have the following upper bound for the
robustness:

Rðr; p; T Þ%
X
A4V

rðAÞIðXA : XVnAÞ: ð4:2Þ

Let us compare this upper bound with the TSE
complexity (3.1). For appropriate coefficients

rðAÞZ
2jAj

NðN C1Þ
N

jAj

� � ; ð4:3Þ

we have the following connection:X
A4L

rðAÞIðXA : XLnAÞZ
2

N C1
CðXÞ:

Here, the coefficients are normalized, i.e.P
A4LrðAÞZ1. With (4.2), this directly implies

Rðr; p; T Þ%
2

N C1
CðXÞ: ð4:4Þ
Phil. Trans. R. Soc. B (2007)
We see that for the special distribution (4.3), systems
with high robustness display a high value of TSE
complexity. To make the more general statement, we
generalize TSE complexity to cases where we can
arbitrarily select r. We assume

Cðr;XÞd
X
A4V

rðAÞ IðXÞK
N

jAj
IðXAÞ

� �

Z
X
A4V

rðAÞIðXA : XVnAÞ:

In order to see how the above equation extends the
definition (3.1), we consider distributions r with r(A)Z
r(B) whenever jAjZjBj. Such a distribution is uniquely
defined by a map r:{0,1, ., N }/[0, 1] withPN

kZ0
N

k

� �
rðkÞZ1. This implies

Cðr; XÞZ
XN
kZ0

rðkÞN

k
N

k

� � k

N
IðXLÞK

1

N

k

� � X
A4L

jAjZk

IðXAÞ

2
6664

3
7775:

We find that this is closely related to the complexity
definition (3.1). The only difference is that in
the generalized definition the sum is weighted appro-
priately. In any case, we have an extension of the
inequality (4.4),

Rðr; p; T Þ%Cðr;XÞ: ð4:5Þ

This equation makes explicit that network robust-
ness is a lower bound on network complexity. Hence,
pressure towards an increase in robustness, through for
example multimodality, will always lead to an increase
in the complexity of the message by promoting
structured correlations in the channels. TSE have
found through extensive numerical simulation that the
complexity measure C(X ) is maximized by network
structures in which cells form densely connected
clusters which are themselves sparsely connected, in
other words, partially overlapping functional modules.
In the context of signalling networks, segregated
modules can be interpreted as different signalling
modalities, where each modality emphasizes a different
feature of the system. Of interest to us in this paper is
the way in which signal complexity arises naturally out
of pressures favouring robust signal detection.
5. MULTIMODAL ROBUSTNESS AND
COMBINATORIAL COMPLEXITY
We have derived a measure to quantify the impact of
signalling channel perturbations on the ability of a
receiver to process a signal. The measure quantifies a
functional distance between a ‘perfect information’
condition between signaller and receiver and a
reconfigured condition in which a subset of input
channels have been occluded. Using multiple channels
through which correlated activity can be transmitted by
a signaller allows a receiver to choose from a different
channel once one has been lost. However, if all
channels are identical, then it makes little sense to
refer to a signalling system as robust following removal.
This is because as channels become more numerous,
each channel makes a diminishing causal contribution
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Figure 3. (a) Correlation matrix indicating by the size of black squares the magnitude of correlation or mutual information
between pairs of nodes of the signaller. Here, all nodes are perfectly correlated in their activity. (a(i)) The perceptron
connectivity corresponding to the correlation matrix (a). (b) Signaller nodes are only weakly correlated with each other and
constitute approximately independent channels (b(i)) for the receiver to integrate. (c) Channels form correlated clusters of
activity, with weak correlations among clusters. This corresponds to a two-modality signalling system (sets of channels M1 and
M2). The two-modality case is both more robust and more complex. Robustness derives from insensitivity to channel occlusion
through channel redundancy coupled to high information flow through weak modality decoupling.
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to the message (Pearl 2000). In the large channel

limit, each channel becomes effectively independent of

the message (figure 3a) as its unitary contribution is

just 1/N . From the selection perspective, irrelevant

channels are expected to be lost (Krakauer & Nowak

1999). By reducing correlations among channels, we

increase their individual causal contribution to the

message. However, if they become completely de-

correlated (figure 3b), the removal of any one has a

significant impact on the receiver’s ability to decode

the message. The optimal solution is to generate

clusters within which channel activity is highly

correlated and between which activity is weakly

correlated (figure 3c). Hence, an optimal signaller

distributes a message among weakly correlated

modalities within which multichannel redundancy

remains high, each cluster we might think of as a

primordial modality promoting specialized interpretive

means by the receiver.

Somewhat surprisingly, the modular structure of a

robust signal is what makes for an effective information

processing neural network (Tononi et al. 1994).

Selection for high information flow and thereby

reduced sensitivity to channel occlusion leads naturally

to signalling networks with high levels of integration
Phil. Trans. R. Soc. B (2007)
and segregation (clustering). High levels of segregation

and integration in turn promote the development of an

effective computational system (in the signaller) which

trades off specificity with generalization. This property

has been referred to as network complexity (Tononi

et al. 1994).
In terms of real communication systems, our results

suggest that multimodality might arise in the following

way: senders emit multichannel signals (like the

tamarin combination long call or chimpanzee pant

grunts, each of which is characterized by the presence

of multiple frequencies). Over time, selection for

robustness generates correlations among channels

and, consequently, channel clustering. From the signal

production/encoding perspective, this means that

neural and behavioural substrates underlying

production are becoming modularized, setting the

stage for the evolution of alternative sensory mod-

alities. Pant grunts, a chimpanzee subordination signal,

are no longer produced alone, but are emitted in

conjunction with gestural or behavioural displays, like

bobbing and bowing (de Waal 1982). From the

decoding perspective, this means that the cognitive

cost of being able to perceive and process multiple

redundant channels is minimized in so far as the
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overlap between modalities (clusters of channels) is just
great enough that each mode contributes to signal
meaning and yet is sufficient to decode signal meaning
if the other mode is knocked out.

It is worth saying a few more words about the
relationship between complexity and robustness. In the
complexity measure, random bi-partitions of a network
(figure 1b) are used to assess the extent of communi-
cation among network regions of a signaller; whereas in
the robustness measure, bi-partitions reflect removals
of large sets of communicating channels. In both cases,
information flow is required. In the complexity case,
information flow is assumed to reflect increased
associative power among modules; whereas in the
robustness case, information flow is required in order
that non-occluded channels can be used as alternative
information sources. It is not obvious why selection
should favour information flow among channels of a
signaller, but it is obvious that this information flow can
be used by the receiver in case of occlusion. If we were
considering a signal internal to the sender, the situation
would be different as in this case information flow could
come under selection for more effective integration for
cognitive function.

The net result we found is that signallers seeking to
transmit complex messages benefit from a multimodal
strategy as it both increases the diversity of information
flowing to a receiver and increases the robustness of the
signal. That robustness leads to complexity through a
shared requirement for increased information flow
has been termed the principle of robust overdesign
(Krakauer & Plotkin 2004).

A secondary advantage of selection for increased
information flow is that it provides the basis for
combinatorial signalling. Signals can be built up
combinatorially out of segregated functional units, with
each unit producing a different signal component.
Integration ensures that at first these components have
overlapping meanings (through correlated activity) and
are thereby likely to be understood or learnable. This
applies to multicomponent signals (different commu-
nicative features in the same modality) as well as to
multimodal ones. The learnability problem (Flack & de
Waal in press), which is particularly problematic when
receivers are confronted with new signals that are
spatially or temporally divorced from their objects and
thereby hard to associate, can be mitigated by ‘pointing’
to a new signal object using a ‘compound stimulus’. A
compound stimulus signal is one comprising two ormore
modes or components, each of which has an established
meaning. Emitting these together allows the receiver to
infer from overlap a new meaning. The capacity for
combinatoriality is additionally advantageous because
many meanings can be created from a small set of
components, reducing the need for cognitively burden-
some and error-prone storage of many one-to-one
mappings—for example, it is easier to generalize
unknown word meaning from contextual usage (Grice
1969) than it is to store every word (and their associated
meanings) one is likely to encounter (Nowak&Krakauer
1999). Thus, with the evolution of signal robustness,
there is the possibility of piggybacking a complex,
integrated signalling system with the potential for
combinatoriality and increased message encoding.
Phil. Trans. R. Soc. B (2007)
Selection for perfect combinatoriality (independent
channels or modalities) would presumably favour
decreasing overlap in meaning among signal com-
ponents, thereby decreasing robustness in the long run.
An interesting open question is what level of component
divergence is optimal, given selection for combinatori-
ality in the context of robustness constraints.
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