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Abstract
We report evidence that computer-based high-dimensional pattern classification of MRI detects
patterns of brain structure characterizing mild cognitive impairment (MCI), often a prodromal phase
of Alzheimer's Disease (AD). 90% diagnostic accuracy was achieved, using cross-validation, for 30
participants in the Baltimore Longitudinal Study of Aging. Retrospective evaluation of serial scans
obtained during prior years revealed gradual increases in structural abnormality for the MCI group,
often before clinical symptoms, but slower increase for individuals remaining cognitively normal.
Detecting complex patterns of brain abnormality in very early stages of cognitive impairment has
pivotal importance for the detection and management of AD.
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1. Introduction
Prevalence of AD doubles every 5 years of life after age 60, with more than 4 million individuals
affected in the US alone. AD is the most common dementing illness and a major public health
issue of increasing importance as life expectancy increases. Although noninvasive approaches
for antemortem diagnosis of AD are under development, definitive diagnosis of AD requires
neuropathologic confirmation of the characteristic amyloid plaques and neurofibrillary tangles
[4]. New drugs under development will target different stages of disease pathophysiology, and
efficacious AD treatments likely will require early initiation before irreversible brain tissue
damage. Thus, a great deal of attention has been paid recently to the prodromal stage of AD,
referred to as mild cognitive impairment (MCI), which includes individuals with memory
problems who do not meet criteria for dementia. Although MCI definitions vary across studies
[42], MCI individuals convert to AD with rates of 6−15% annually [42]. Therefore, MCI
individuals are a high risk group likely to benefit from effective treatments.
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Structural MRI promises to aid diagnosis and treatment monitoring of MCI and AD, offering
the potential for easily obtainable surrogate markers of diagnostic status and disease
progression. Unlike relatively more advanced stages of MCI and AD, quantifying patterns of
structural change during early stages of AD or during clinically normal stages is a major
challenge. Brain atrophy in the early stages of AD may be relatively subtle and spatially
distributed over many brain regions [6,7,15,28,30], including the entorhinal cortex, the
hippocampus, lateral and inferior temporal structures, anterior and posterior cingulate, and
possibly other regions that have only recently been investigated [38]. Furthermore, spatially
heterogeneous patterns of atrophy have been found within the hippocampus, with regions
known to correspond to the CA1 field presenting relatively more pronounced atrophy[19,48].
Patterns of atrophy associated with pathology are confounded by complex patterns of atrophy
associated with normal aging [43]. Moreover, the error associated with structural
measurements can vary throughout the brain, since some structures are more difficult to
delineate, especially via computer algorithms, thereby rendering the measurement of certain
brain regions more informative than others merely for methodological reasons [3]. Therefore,
powerful and sensitive statistical image analysis methods must be used to capture
morphological characteristics that are different between normal aging and MCI, and to
determine which are most informative, from a diagnostic perspective.

Most MRI studies in MCI and AD have relied on measurement of volumes of specific brain
regions[5,41], especially the hippocampus and the entorhinal cortex, which show
histopathogical changes at early stages of AD [4]. Computational neuroanatomy has also been
used to evaluate voxel-by-voxel brain changes in healthy aging, MCI and AD [1]. These studies
have confirmed patterns of atrophy involving medial temporal lobe structures in MCI and AD.
They have reinforced the value of MRI as a potential surrogate marker of disease at the group-
analysis level, i.e. for examining overall differences between individuals with and without
pathology. However, their diagnostic value is limited, especially at early stages of brain
pathology, since their sensitivity and specificity are not sufficient for prediction of the status
of a given individual.

Herein we report results from a longitudinal study that provide strong evidence that there is a
subtle and spatially-distributed pattern of brain structure that is characteristic of MCI, and
which often begins developing prior to the recognition of cognitive deficits. Moreover, this
pattern can be detected with high sensitivity and specificity using a high-dimensional image
analysis and pattern classification method that examines spatial patterns of brain atrophy in
their entirety, instead of applying separate region-by-region evaluations. Therefore, detection
of this structural pattern can lead to very early diagnosis of prodromal AD. This study adds to
mounting evidence in the literature for the importance of pattern classification methods in
detecting subtle and complex structural and functional patterns [10,11,21,37].

2. Materials and Methods
2.1. Subjects

MRI scans from 30 elderly individuals were obtained annually as part of the Baltimore
Longitudinal Study of Aging neuroimaging substudy [43]. At initial enrollment, all individuals
were free of dementia and other central nervous system disorders, severe cardiovascular
disease, and metastatic cancer (detailed in [43]). Screening of mental status by the Blessed-
Information-Memory-Concentration (BIMC) test was performed at each annual visit in
conjunction with a comprehensive neuropsychological assessment. Subject and informant
based assessments with the Clinical Dementia Rating (CDR) [40] scale were administered by
certified examiners to participants in the BLSA autopsy study annually (about 50% of
participants) and to remaining participants scoring 3 or more BIMC errors. After as many as
9 annual neuroimaging and cognitive assessments, 20 participants with MCI were identified
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from a sample of 155 neuroimaging study participants who completed MRI studies. These 20
participants were characterized as MCI, based on CDR scores of 0.5 and/or consensus diagnosis
indicating memory impairment that does not meet criteria for dementia. Of these individuals,
15 were eligible for inclusion in the current study. Five participants who developed cognitive
impairment over the course of the study were excluded from these analyses due to
documentation of other pathological processes (e.g., clinical stroke (1), brain trauma (1), heavy
alcohol use (1), post-surgical confusion (1), absence of Alzheimer's pathology at autopsy (1)).
A control sample of 15 individuals who remained unimpaired (CDR = 0), matched for age,
sex, and follow-up interval, was identified from the remaining 135 participants. Subject
characteristics are shown in Table 1. It is important to emphasize that the MCI participants in
this study are identified within the context of prospective longitudinal follow-ups and typically
represent relatively mild cases of cognitive impairment in contrast to those followed in other
studies who typically present with memory complaints (e.g. [23]). None had CDR total scores
greater than 0.5 for any of the visits used in these analyses, and the mean (SD) of the sum of
the individual CDR box scores was 1.2 (0.9) for the most recent visit included in the analyses.
Therefore, in this group AD pathology is likely to be at a relatively early stage. To date, 10 of
the 15 MCI individuals have been assigned diagnoses of Alzheimer disease at subsequent
follow-up visits., verifying that we are including individuals who are progressing as well as
those who may be more stable.

2.2. Imaging protocol
MR acquisition procedures are detailed in [43]. MR scanning was performed on a GE Signa
1.5 Tesla scanner. The current results are based on a high-resolution volumetric “spoiled
grass” (SPGR) series (axial acquisition, TR = 35, TE = 5, flip angle = 45, FOV = 24, matrix =
256 × 256, NEX = 1, voxel dimensions of .94 × .94 × 1.5 mm slice thickness).

2.3. Image Analysis
Images were pre-processed using the methods described in [20], which resulted in
segmentations into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). To
compare structural patterns across individuals, we spatially transformed each segmented image
into a common coordinate system, often called stereotaxic space. A mass-preserving
framework was adopted [45] to ensure that the volumes of brain tissue were preserved during
the transformation and to provide tissue density maps of GM, WM and CSF for each individual
that reflected the spatial distribution of these tissue volumes. For example, relatively lower
GM tissue density in the hippocampus would be indicative of hippocampal atrophy.

2.4. Pattern analysis and classification
Patterns of the spatial distribution of GM, WM and CSF volumes were then examined via a
pattern classification technique [17], and patterns specific to MCI were determined. In
particular, regions in which the tissue density correlated well with the clinical variable (MCI
= 1, normal = −1) were first identified, via a voxel-by-voxel calculation of the Pearson
correlation coefficient. In order to render this calculation robust to outliers, a leave-one-out
procedure was applied, i.e. given n training samples, the correlation coefficients were
calculated n times, each time leaving one of the scans out. The minimum value was then
retained, representing the worst case scenario. This approach allowed us to subsequently
construct spatial patterns from brain regions that were not only good discriminators between
normal and MCI groups, but also were robust. Additional robustness was achieved by
examining the spatial consistency between a voxel and its spatial neighborhood, and retaining
only the brain regions that displayed both robust correlation with clinical status and high spatial
consistency. A watershed-based clustering method was then used to determine brain regions
whose volumes had good discriminant features. Finally, a reverse feature elimination procedure
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was used to find a minimal set of features to be fed to the classifier. Because the predictive
power varies somewhat as a function of the number of brain regions (features), we estimated
predictive power by averaging the abnormality scores (see below) obtained from all classifiers
built for cluster numbers ranging from 12 to 45 (where the predictive power reaches a plateau).
Additional details of the feature construction and selection procedures can be found in [17].

This analysis was cross-sectional, in that it was based solely on the tissue density maps obtained
for the most recent MRI assessment for each individual. For participants who developed
dementia over the course of the study, the most recent MRI prior to the diagnosis was used,
with a mean (SD) interval of 1.9 (1.9) years between most recent scan and diagnosis.
Volumetric measurements from these brain regions were then used to build a classifier [35,
47], which produced an abnormality score: positive values indicate a structural pattern
resembling MCI, whereas negative values indicate brain structure in unimpaired individuals.
A value of 0 would indicate a structural profile that is in-between normal and abnormal. Leave-
one-out cross-validation was used to test the predictive power of this analysis on new datasets
(datasets not involved in the selection of optimal brain clusters and training of the classifier)
and construct Receiver Operating Characteristic (ROC) curves that summarize predictive
value. In this analysis, the scan of one participant was put aside, and the classifier was
constructed from the most recent scans of all other individuals. Thus, the individual being
classified was not included in the training data set for development of the classifier. This
classifier was then applied to all available scans of the left-out individual. In this way, the
temporal evolution of these spatial patterns of brain abnormality was measured during earlier
years for each individual.

2.5. MCI-specific spatial pattern of brain structure
In order to form an image of the brain regions that constitute a pattern of brain tissue distribution
that is characteristic of MCI, we followed our earlier work [35], and formed a spatial map of
brain regions whose volumes change as one follows the path of fastest change in the
abnormality score from positive to negative. These regions jointly form a pattern that optimally
characterizes the differences between MCI and healthy controls, from the perspective of
classification. Moreover, a value from 0 to 1 is determined for each region, reflecting its relative
importance in classification.

The path of fastest change was constructed by taking each support vector, i.e. each sample that
was close to the interface between MCI and controls, and following the gradient of the SVM's
decision function. This gradient is known to provide the direction of fastest change. In the
context of our approach, when following the gradient direction, one moves from an MCI sample
to the opposite side, i.e. to the realm of features corresponding to normal controls, thereby
generating a spatial map of the regions whose volumes change when one “makes an MCI brain
look like healthy”. This procedure was repeated for each support vector, and an average spatial
map was generated for display purposes.

3. Results
3.1. Spatial pattern of MCI-specific abnormalities

The spatial map of brain regions that was formed as described in Methods is shown in Fig. 1a.
This set of regions forms a structural network which, according to our classification approach,
carries the most distinctive characteristics of MCI relative to unimpaired individuals. This map
highlights several regions including the lateral and inferior aspects of both hippocampi, which
is where the CA1 field of the hippocampus is located, bilateral superior, middle and inferior
temporal gyri (GM), bilateral orbitofrontal GM, left fusiform gyrus (GM), right collateral
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sulcus, and cingulate, especially posteriorly. We also found clusters of reduced WM volumes
in the inferior temporal gyri as well as middle and superior frontal gyri (see Fig. 1b).

3.2. Predictive Accuracy
Based on the pattern of spatial distribution of brain tissue in the regions of Fig. 1, individuals
with MCI were distinguished initially with 100% accuracy from those without cognitive
impairment, thereby demonstrating full separation between MCI and cognitively normal
individuals, using this nonlinear classifier. Next, predictive power was determined via the
leave-one-out cross-validation (Methods) to be 90%; this is an estimate of classification
accuracy of a new individual's scan and therefore of direct diagnostic relevance. Fig. 2 shows
the ROC curve of the leave-one-out analysis, indicating very good predictive power and
sensitivity/specificity trade-off.

3.3. Retrospective evaluation of abnormality
As described earlier, the classifier was determined from the latest scans of all participants and
did not include prior longitudinal images. Next, the classifier derived from the leave-one-out
analysis of the most recent scans was retrospectively applied to all available earlier scans for
each participant, yielding an abnormality score for each individual scan for each participant.
The longitudinal evolutions of the abnormality scores for all available scans of each participant
are shown in Fig. 3a. As described above, the values for each individual were based on cross-
validation, i.e. all scans of a given individual were omitted during the construction of the
classifier for that individual based on the most recent scans of all other participants. Fig. 3a
shows increases over time in the structural abnormality scores from normal levels (negative)
to MCI-like levels (positive). Mixed effects regression models were used to compare
longitudinal changes in abnormality scores for MCI and cognitively normal groups. Age at
assessment and diagnostic status were independent variables and abnormality scores were
dependent measures. The MCI group showed a highly significant increase in abnormality score
over time (p < 0.0001), whereas the cognitively normal group showed a weaker increase over
time, p=0.022 (Fig. 3a); the two slopes were significantly different (p=0.045, all one sided
tests).

Examination of the individual longitudinal trajectories revealed that one of the clinically
normal participants was the main contributor to the longitudinal increase of the abnormality
scores of the normal group. We omitted this participant and repeated the mixed effects
regression analysis, obtaining the plot of Fig. 3b. Excluding this outlier, there was no significant
longitudinal increase of abnormality scores in the normal sample (p=0.38). This participant is
now deceased, and autopsy findings indicated moderate plaques and a Braak score of 4,
consistent with a pathological diagnosis of possible AD by CERAD criteria [39]. This finding
is in agreement with his highly abnormal MRI-based classification scores.

Examination of the classification scores on the year of conversion from normal to MCI in the
subset of 8 subjects who converted over the course of the study showed that structural brain
changes were already quite considerable at that stage. Specifically, the average score of the
MCI participants on the year of conversion from normal to MCI was 0.15, whereas the average
score of the same participants during their most recent scan during which did not have a
diagnosis of dementia was 0.26; the latter scores reflect a more advanced disease stage. The
average score of all MCI participants at the latest year of available scans prior to dementia was
also 0.26, and the average classification score of all scans of normal controls was −0.3. These
numbers indicate that on the year of conversion, the group that progressed to MCI was already
well into the range of abnormal brain structure. However, one of the limitations of this study
was that we were not able to investigate a variety of specific intervals prior to conversion to
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MCI due to the modest sample size and the fact that 7 of the MCI individuals were labeled
MCI at their first imaging assessment by retrospective ascertainment of date of onset.

3.4. Region of Interest (ROI) and voxel-based analysis
We compared the discrimination power of our pattern analysis approach with that of volume
measurements of the left and right hippocampus and entorhinal cortex, after normalization by
total intracranial volume (ICV) that accounted for total head size. Fig. 4 shows the scatterplot
of ICV-normalized volumes, which indicate modest group separation and diagnostic accuracy
in these relatively mildly impaired subjects, even though a statistically significant difference
between the two groups was measured (p=0.036 for the hippocampus and p=0.02 for the
entorhinal cortex, after omission of one outlier; not excluding the outlier yielded respective p-
values of 0.08 and 0.14, all one-sided t-tests). In fact, the best classification rate we were able
to achieve using the hippocampus and ERC volumes jointly was 76.6%, via a nonlinear support
vector machine. The respective ROC is shown in Fig. 5, reflecting a relatively limited
diagnostic accuracy.

Comparison of our results with the widely used voxel-based morphometry method, which
applied voxel-by-voxel t-tests on the smoothed tissue density maps [1], revealed that no single
brain region carried adequate predictive power. In particular, the classification accuracy of the
most discriminatory cluster, examined via cross-validation, was 63.3%, reflecting relatively
poor predictive power of single-region measurements, and further supporting the importance
of the network-type of analysis performed herein.

In our final experiment, we investigated the possibility of using a smaller number of brain
regions without sacrificing predictive accuracy. Fig. 6 shows the predictive accuracy as a
function of the number of clusters, revealing that at least 20 brain regions must be considered
jointly, in order to capture the MCI-specific structural pattern.

4. Discussion
To our knowledge, our study is the first to demonstrate that complex and subtle structural
patterns that characterize the trajectory of increasing brain abnormalities in individuals with
mild MCI can be identified from cross-sectional MR scans via high-dimensional image analysis
and pattern classification methods. Importantly, these patterns of structural change can be
measured even before cognitive decline brings the individuals to clinical attention. The spatial
pattern of distribution of brain tissue that allowed us to accurately detect individuals with the
MCI structural phenotype involved several structures that are known to be implicated in AD,
including a number of temporal lobe structures, the cingulate, and parts of the orbitofrontal
cortex that have dense connections with anterior temporal lobe structures and show pathology
early in AD [3]. Notable is the fact that it was mainly the lateral and anterior part of the
hippocampus that contributed to the classification, which might imply that CA1 is relatively
more affected in these individuals, and might explain, in part, the relatively limited diagnostic
value of total hippocampal volume measurements in the subjects of our study (Fig. 4). A
relatively higher CA1 atrophy would also agree with histopathological studies [49], albeit the
resolution of current 1.5T MR images does not allow us to specifically define hippocampal
subfields. Some recent studies using high-dimensional warping of the hippocampus have also
observed spatially heterogeneous patterns of hippocampal atrophy in AD [19,48]. These results
further bolster our confidence that sophisticated methods for feature selection and pattern
classification are necessary to capture the complex patterns of brain atrophy that are most
informative for diagnosis, whereas conventional ROI volumetric analysis is limited in that it
combines regions that are relatively more affected by disease with regions that are relatively
less affected, thereby potentially reducing the predictive power of these measurements. Our
analysis also identified white matter regions both in the temporal lobe and in the superior and
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middle frontal gyri that were very important for accurate classification of MCI and have not
been previously reported in the literature. These structures merit further investigation using
imaging methods that are more suitable for analysis of white matter structure, especially
diffusion tensor imaging. Finally, our results indicated bilateral hippocampal atrophy, in
contrast to recent reports of lateralized atrophy, with both greater right hippocampal atrophy
[48] and greater left hippocampal atrophy [27] reported.

Most importantly, our results provide the first evidence that integration of these regional
measurements via nonlinear pattern classification provides very high diagnostic accuracy on
an individual basis. Although several studies examining cross-sectional and longitudinal
effects in volumes of brain regions have shown significant group differences between MCI
patients that convert to AD and MCI patients that don't convert, or between healthy controls
and AD or MCI patients [2,8,9,12-16,18,22,25,26,29,31-34,36,44,46,50], the ability to detect
structural patterns that enable accurate prediction for specific individuals is ultimately what
determines the clinical value of MRI and measurements obtained from it. Our results further
confirmed that evaluation of all these brain regions jointly is necessary to obtain high predictive
accuracy. Measurements restricted to volumes of the hippocampus and ERC, two structures
that are known to be affected early in AD[24] and show group differences in neuroimaging
studies of AD and MCI [2,8,12,14-16,18,26,29,32,36,44,50], provided considerably lower
predictive accuracy. Lower accuracy was observed even when these measures were evaluated
jointly, due to the high overlap of the volume distributions of these two structures between
MCI and healthy individuals (Fig. 4).

Analysis of predictive accuracy as a function of the number of brain regions contributing to
the classification confirmed that one needs 20−25 clusters to be able to accurately capture all
subtleties of the structural abnormality in these mild MCI cases and achieve sufficient
predictive accuracy (Fig. 6). Further increase of the number of brain regions reduces predictive
accuracy, a fact that is well-known in machine learning and is due to two factors: 1) increase
of noise by including regions that are not relevant to classification; 2) insufficient training, as
the number of variables exceeds the number of training samples (30).

Clinically important was also the finding that the pattern of spatial distribution of brain tissues
characteristic of MCI was typically apparent prior to the recognition of clinical symptoms. In
particular, abnormality scores progressed steadily in people that were later diagnosed with
MCI, and at the time of conversion to MCI, their scores were well into the abnormal realm. In
contrast, individuals who did not develop cognitive impairment showed much slower increase
of brain abnormalities during earlier years. Therefore, our findings suggest that there may be
a continuum of structural brain changes that eventually reaches some threshold associated with
clinically detected cognitive impairment. Furthermore, we have demonstrated that these brain
changes can be captured by pattern analysis and summarized by a score reflecting the level of
structural abnormality at an individual level. Our results reveal the potential of this approach
for early detection of MCI during the prodromal phase of AD, which will be critical in making
treatment decisions with the anticipated availability of different treatment options in the future.

Further evaluation of the abnormality scores in the normal group revealed that only one
clinically normal participant displayed considerable increase in abnormality score. Autopsy
results in this individual demonstrated findings consistent with a pathological diagnosis of AD.
Although a single case, this finding bolsters our confidence that our MRI-based classifier is
able to detect structural patterns that indicate pathology, even in individuals who are cognitively
normal.

The fact that the majority of our MCI participants were only very mildly impaired is both a
strength and a possible weakness of our study. Our ability to robustly classify individuals with
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very mild impairment provides encouragement for future development of this approach as a
diagnostic tool for prodromal AD. The majority of our participants showed only mild
impairment in memory based on informant ratings. As they were identified within the context
of prospective longitudinal follow-ups, they were likely at early stages of impairment and most
would not yet have come to clinical attention. On the other hand, we do not know how many
of the remaining MCI individuals will ultimately develop AD or when they will do so, and we
do not know whether our method will distinguish MCI individuals who remain stable versus
those who convert to AD. We also cannot determine at present which cognitively normal
individuals with increasing structural abnormality scores will ultimately convert to MCI (Fig.
3) and how quickly they will do so. We continue to follow these participants with cognitive
and MRI assessments and have initiated PET amyloid imaging studies in this sample, in order
to fully characterize the process of progression from healthy brain structure and cognition to
AD.

It is important to emphasize that our sensitivity/specificity estimates were obtained using leave-
one-out cross-validation to obtain robust estimates of generalization and predictive power. This
ensured that our predictive power was being evaluated on MRI scans not previously
encountered by the classifier and the feature selector. This type of cross-validation guards
against findings that can potentially be introduced purely by chance, a persistent problem in
high-dimensionality analyses especially in relatively small samples. This type of potentially
misleading result is illustrated by our observation of 100% separation between MCI and healthy
controls in our initial analysis without cross-validation. However, when cross-validated, our
analysis showed 90% predictive power, which is an estimate of the diagnostic value of these
volumetric measurements on new individuals. While our study demonstrates that individuals
with MCI can be distinguished from cognitively healthy controls with high accuracy,
sensitivity and specificity, we did not test the potential utility of this approach in differential
diagnosis among different types of dementia. A test of the validity of this approach for
differential diagnosis of dementia subtypes would require training of the classifier on all types
of dementia jointly and merits future investigation.

Our classification results and the estimates of predictive power were derived from a single
structural MRI of each individual, rather than from longitudinal measurements of brain atrophy.
The ability to accurately classify even mildly impaired individuals from a single cross-sectional
MRI contrasts with prevailing thinking that effective prediction of early stages of AD will
require measurement of longitudinal brain changes. This is very important from a clinical and
financial perspective, since consistent and frequent follow-up of healthy individuals that might
or might not be at risk for AD is extremely difficult, especially in a typical clinical setting. We
believe that the high-dimensional multivariate nature of our analysis compensated for not using
longitudinal measurements for classification. However, if necessary, our classification
approach could readily incorporate both cross-sectional and longitudinal measurements, as
well as physiological measurements, in order to construct more sensitive and specific early
diagnostic tools for AD. It will also be important to continue longitudinal studies to determine
how early in the prodromal period these changes are detected.

If our findings are replicated in other samples and imaging centers and, most importantly, if
accuracy of classification can be improved by training on more extensive samples compared
to the relatively modest number of scans used in this study, our results and the methodology
adopted herein can play a significant role in detection of brain abnormalities associated with
cognitive impairment prior to recognition of clinical deficits. Moreover, application of our
classification methodology to longitudinal imaging data will enrich our understanding of the
progression of the underlying brain abnormalities and will be critical in monitoring treatment
and guiding therapeutic interventions for one of the most devastating diseases of the elderly.
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Fig.1.
Representative cross-sections highlighting the brain regions that collectively form a spatial
pattern of brain atrophy that is highly indicative of MCI. The color-coding shows relative
importance of a structure. The regions in (a) were located in areas known to be implicated in
AD. The superior and middle frontal WM clusters in (b) were unexpected and must be further
investigated via methods particularly suitable for WM structures, such as diffusion tensor
imaging.
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Fig.2.
ROC plots showing the trade-off between specificity and sensitivity in MRI-based detection
of MCI. For each point on the ROC, the overall accuracy is shown in blue numbers (0.90 =
90%).
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Fig.3.
Longitudinal change in the degree of structural abnormality measured by applying the pattern
classification technique retrospectively to scans prior to the year in which the scans of healthy
individuals and MCI patients were analyzed. Solid lines show estimates of the mean
longitudinal changes for the two groups, derived from a mixed effects regression model. The
faster increase of the abnormality score in the individuals who develop MCI reflects an
important finding of this study: structural changes occur at very early stages, and they can be
detected via the pattern classification technique applied in this study. (a) All participants; (b)
After excluding one clinically normal participant who showed an unusually steep increase in
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abnormality score over time and subsequently was found to have pathology consistent with
Alzheimer's disease despite normal clinical status.
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Fig.4.
Scatterplots of the volumes of the hippocampus (horizontal) and entorhinal cortex (vertical),
after dividing each measurement by the respective total intra-cranial volume. Although these
two structures are known to be significantly affected by Alzheimer's Disease, their volumes
are of relatively modest diagnostic value, due to the overlap of the two distributions.
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Fig. 5.
ROC curve of the classification sensitivity and specificity obtained by using the volumes of
the hippocampus and the entorhinal cortex jointly, in conjunction with a nonlinear support
vector machine classifier. The resultant diagnostic accuracy is very limited, compared to that
of Fig. 2.
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Fig. 6.
Predictive accuracy as a function of the number of brain regions/clusters included in the
classification process. Small number of regions is insufficient, whereas more than 30 regions
result in insufficient training of the classifier, as we had 30 samples; this is the well-known
“curse of dimensionality” in machine learning, and indicates that more extensive image
databases might ultimately improve classification accuracy.
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Table 1
Characteristics of the participants in this MCI study.

Group MCI NORMAL

No. of subjects 15 15

Sex 10 10
No. of males    

No of left-handed 0 1

Years of education 15.80 (3.73) 16.73 (3.22)
Mean (SD)    

Baseline Age 76.92 (7.28) 75.21 (6.85)
Mean (SD)    

Age at Last Visit 82.40 (6.59) 81.76 (6.57)
Mean (SD)    

Follow-up interval 5.49 (2.42) 6.55 (2.51)
Mean (SD)    

MMSE at Last Visit 25.80 (2.96) 29.00 (1.41)
Mean (SD)
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