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Abstract
The functions for neurosteroids during development and in response to nervous system injury are
beginning to be identified. We focused on a mouse model in which we believed neurosteroid
production would be altered, and which had a neurodegenerative phenotype. Niemann Pick Type-C
(NP-C) is an autosomal recessive neurodegenerative disease caused by mutations in NPC1 (95%) or
NPC2 (5%), resulting in lysosomal accumulation of unesterified cholesterol and glycolipids. The
NIH mouse model of NP-C has a mutation in the NPC1 gene, and exhibits several pathological
features of the most severe NP-C patients. How lysosomal storage and trafficking defects lead to
neurodegeneration is unknown. We found that these mice had normal neurosteroidogenic enzyme
activity during development, but lost this activity in the early neonatal period, prior to onset of
neurological symptoms. Neurons that expressed P450scc, 3ß HSD, as well as those that expressed
3α HSD and 5α reductase were lost in adult NP-C brains, resulting in diminished concentrations of
allopregnanolone. We treated NP-C mice with allopregnanolone and found that a single dose in the
neonatal period resulted in a doubling of lifespan, substantial delay in onset of neurological
symptoms, survival of cerebellar Purkinje and granule cell neurons, and reduction in cholesterol and
ganglioside accumulation. The mechanism by which allopregnanolone elicited these effects is
unknown. Our in vitro studies showed that Purkinje cell survival promoted by allopregnanolone was
lost by treatment with bicuculline, suggesting GABAA receptors may play a role. We treated NP-C
mice with a synthetic GABAA neurosteroid, ganaxolone (3α-hydroxy-3β-methyl-5α -pregnan-20-
one). Ganaxolone treatment of NP-C mice produced beneficial neurological effects, but these effects
were not as robust as those obtained using allopregnanolone. Thus, allopregnanolone may elicit its
effects through GABAA receptors and through other mechanisms. Additional studies also suggest
that allopregnanolone may elicit its effects through pregnane-X receptors (PXR). Our data suggest
that mouse models of neurodegeneration may be beneficial in establishing both physiologic and
pharmacologic actions of neurosteroids. These animal models further establish the wide range of
functions of these compounds, which may ultimately be useful for treatment of human diseases.
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1. Introduction
Steroid hormones are essential for life. Glucocorticoids (cortisol, corticosterone) are necessary
for carbohydrate metabolism and are synthesized and released in response to stress;
mineralocorticoids (aldosterone) instruct the kidney to retain sodium; sex steroids
(progesterone, testosterone, estradiol) are essential for reproduction. Neurosteroids are steroids
synthesized de novo in the brain, or converted into neuroactive steroids in the brain from
steroids derived from the circulation. In the 1980's, Etienne Baulieu coined the term
“neurosteroid” to distinguish this class of steroids from glucocorticoids, mineralocorticoids,
and sex steroids (Baulieu, et al., 1999,Compagnone and Mellon, 2000). This designation was
ascribed to steroids that were synthesized de novo in the brain, as these steroids were identified
in the rodent brain weeks after gonadectomy and adrenalectomy. At the same time, functions
for neurosteroids, distinct from their function at nuclear receptors was being elucidated by
several groups (Harrison and Simmonds, 1984,Majewska, et al., 1986). Over the past decade,
the identification of the steroids found in the brains of many species has demonstrated a
remarkable similarity. Functions associated with these neuroactive compounds has also been
identified (reviewed in (Backstrom, et al., 2003,Barbaccia, 2004,Belelli, et al., 2006,Belelli
and Lambert, 2005,Bernardi, et al., 2004,Brinton and Wang, 2006,Compagnone and Mellon,
2000,Finn, et al., 2004,Guarneri, et al., 2003,Lambert, et al., 2003,Mensah-Nyagan, et al.,
2001,Morrow, et al., 2001,Reddy, 2002,Reddy, 2004,Rogawski and Reddy, 2002,Rupprecht
and Holsboer, 1999,Schumacher, et al., 2004,Schumacher, et al., 2003,Stoffel-Wagner,
2003,Tsutsui and Mellon, 2006,Tsutsui, et al., 2004,Uzunova, et al., 2005,Vallee, et al.,
2001). However, it is still unknown if these compounds are essential for life.

All steroids and neurosteroids are synthesized from cholesterol through the participation and
concerted action of a series of steroidogenic enzymes (Miller and Tyrell, 1994,Miller, 1988).
The presence or absence of particular steroidogenic enzymes dictates that pathway of
steroidogenesis that will be taken by a particular steroidogenic organ or cell type.

In conjunction with the proposed effect of the neurosteroid allopregnanolone on GABAA
receptors (Belelli and Lambert, 2005), there are several proposed roles for neurosteroids. Given
exogenously, they are anxyiolytic, anticonvulsant compounds. The neurosteroid pregnenolone
has been shown to enhance memory when given intrathecally (Flood, et al., 1992,Flood, et al.,
1995,Mathis, et al., 1994,Mayo, et al., 1993,Robel, et al., 1995). In rodent models of alcohol
intoxication, one mechanism through which alcohol elicits its effects is through increased
synthesis of allopregnanolone in the brain (Brot, et al., 1997,Caldeira, et al., 2004,Finn, et al.,
2004,Finn, et al., 2003,Follesa, et al., 2004,Grobin, et al., 2005,Janis, et al., 1998,VanDoren,
et al., 2000). Finally, the neurosteroid allopregnanolone has been implicated in a severe form
of premenstrual disorder, called premenstrual dysphoric disorder (Backstrom, et al.,
2003,Bernardi, et al., 2004,Bicikova, et al., 1998,Bixo, et al., 1997,Epperson, et al.,
2002,Friedman, et al., 1993,Girdler, et al., 2001,Monteleone, et al., 2000,Rapkin, et al.,
1997,Schmidt, et al., 1994,Smith, et al., 1998). Most recently, changes in GABAA receptor
subunit expression and sensitivity to the neurosteroid allopregnanolone has been implicated in
changes in behavioral responses seen at puberty (Shen, et al., 2007).

In addition to behavioral effects of neurosteroids, neurosteroids have also been implicated in
affecting neuronal function and differentiation (Brinton and Wang, 2006). These include
neuroprotection against ischemia and stroke (Cutler, et al., 2005,Djebaili, et al., 2005,Hoffman,
et al., 2003,Lapchak, 2004,Meffre, et al., 2007,Shear, et al., 2002,VanLandingham, et al.,
2006), recovery of motor function after spinal cord injury (di Michele, et al., 2000,Fiore, et al.,
2004,Labombarda, et al., 2006,Patte-Mensah, et al., 2004,Pomata, et al., 2000), regulation of
myelination (Chavez-Delgado, et al., 2005,Gago, et al., 2001,Ghoumari, et al., 2005,Ghoumari,
et al., 2003,Le Goascogne, et al., 2000,Schumacher, et al., 2000,Schumacher, et al.,
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2004,Schumacher, et al., 2003), proliferation of neuronal stem cells (Suzuki, et al., 2004,Wang,
et al., 2005) , neurogenesis in the hippocampus (Keller, et al., 2004,Suzuki, et al., 2004,Wang,
et al., 2005), and induction of analgesia (Pathirathna, et al., 2005,Todorovic, et al., 2004). Many
of these actions of neurosteroids are discussed in detail in other papers in this issue.

We and others have taken several different approaches to understanding the role of
neurosteroids in vivo. Mice in which several of the genes encoding several of the
neurosteroidogenic enzymes have been ablated have been created. These include ablation of
the P450scc (Hu, et al., 2002), P450c17 (Bair and Mellon, 2004), 5alpha reductase type I and
5alpha reductase type II (Mahendroo, et al., 2004,Mahendroo, et al., 2001,Mahendroo, et al.,
1997). Among these knock out mice, only the P450c17 knock out mice are embryonic lethal
at embryonic day 7. P450scc mice lack glucocorticoid production and need replacement at
birth. Female mice lacking 5 alpha reductase type I and type II exhibited parturition and
fecundity defects similar to those of animals without 5 alpha-reductase type 1 ; male mice are
phenotypically relatively normal, and the data from the knockout mice indicate T appears to
be the only androgen required for differentiation of the male urogenital tract in mice and the
synthesis of DHT serves largely as a signal amplification mechanism. Thus, global ablation of
these genes does not provide insight into the roles of the neurosteroids they are involved in
synthesizing, in the nervous system. Alternatively, these results may suggest that the
neurosteroids do not play obligate and unique roles in the nervous system.

To identify regions and cells of the nervous system that express the neurosteroidogenic
enzymes, promoter-reporter constructs can be prepared, using the promoters for the genes
encoding steroidogenic enzymes. Recent studies using a P450scc-cre reporter (Wu, et al.,
2007) have shown that the P450scc promoter is expressed in the cortex, hippocampus,
thalamus, hypothalamus (dorsomedial ventromedial hypothalamus and arcuate nucleus). We
prepared P450c17-GFP transgenic mice, using a 1.5 kb promoter region of the rat P450c17
gene. In the brain, we found GFP expression in axonal tracts projecting rostrally from the
midbrain and consolidating in the sub-cortical plate of the embryonic cortex and observed
neuronal projections traversing along the dorsal ventral axis connecting the spinal cord and the
brainstem extending basally towards the medulla and in condensed ganglia of the dorsal root.
Hence these results are promising and may define neurosteroidogenic neurons and glia
throughout development, and under different types of regulation.

Another strategy for understanding neurosteroid function in vivo is to identify existing mouse
lines that may have altered neurosteroid production. We have used this approach, and have
identified a mouse line for a childhood neurodegenerative disease, Niemann Pick Type C. We
have used this mouse as a model for altered neurosteroidogenesis (Griffin, et al., 2004).

2. Niemann Pick Type C Disease
Niemann-Pick type C disease is a fatal autosomal recessive, childhood-onset,
neurodegenerative disorder. This lysosomal lipid storage disorder is characterized by a defect
in intracellular cholesterol trafficking, resulting in lysosomal accumulation of unesterified
cholesterol (reviewed in Patterson, et al., 2001). The accumulation of cholesterol causes
hepatomegaly with foamy macrophage infiltration, and chronic neurologic deterioration
associated with accumulation of sphingomyelin and other glycolipids in neuronal tissues,
leading to seizures, supranuclear ophthalmoplegia and progressive loss of motor and
intellectual function in the second decade of life (Fink, et al., 1989,Norman, et al., 1967). NP-
C has been linked to two genetic loci, NPC1 (major locus) and NPC2 (Millat, et al.,
2001,Naureckiene, et al., 2000,Patterson, et al., 2001,Pentchev, et al., 1995,Vanier, et al.,
1996). The human NPC1 gene encodes a protein of 1,278 amino acids (Carstea, et al., 1997)
that shares homology with other proteins that regulate cholesterol homeostasis, including 3-
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hydroxy-3-methylglutaryl-CoA (HMG CoA) reductase, sterol regulatory element binding
protein cleavage-activating protein (SCAP), with Patched, the receptor for sonic hedgehog
(Loftus, et al., 1997), and the RND family of prokaryotic permeases, suggesting NPC1 may
function as a transmembrane efflux pump (Davies, et al., 2000). More than 95% cases of NP-
C are caused by mutations in NPC1 (Bauer, et al., 2002,Carstea, et al., 1997). NPC2, first
identified as human epididymal protein 1 (HE1), is a widely expressed 151-amino acid
lysosomal glycoprotein that binds cholesterol. About 5% of NP-C is caused by mutations in
NPC2. NP-C patients from both complementation groups have similar clinical and biochemical
phenotypes, suggesting that NPC1 and NPC2 may interact or function sequentially in a
common metabolic pathway.

There are few data concerning the epidemiology of NP-C. The disease is pan-ethnic, and two
genetic isolates have been described in French Arcadians in Nova Scotia, previously called
NP-D (Crocker, 1961) and Spanish-Americans in southern Colorado (Wenger, et al., 1977).
The prevalence of NP-C in the general population has been estimated at 1/150,000 live births
(Patterson, et al., 2001). This estimate may be low, as about 50% of NP-C cases may present
with neonatal liver disease (Kelly, et al., 1993,Vanier, et al., 1988). Thus, the true prevalence
of NP-C is likely to be greater than 1/150.000.

Much of the work on NPC1 protein, neuronal histology, and cholesterol utilization has come
from the mouse model of NP-C (Morris, et al., 1982), a strain of BALB/c mice with a retroposon
insertion in NPC1 (Loftus, et al., 1997,Morris, et al., 1982). These mice have defects in
cholesterol metabolism morphologically and biochemically similar to human NP-C, and show
most of the same neurological phenotypes as human beings with NP-C, although the
neurological demise is much more rapid in the mouse than in human beings. Nevertheless, both
the murine model and patients with NP-C show similar widespread histopathological
abnormalities in the central and peripheral nervous systems, including cerebellar degeneration
(Gilbert, et al., 1981,Morris, et al., 1982) Purkinje cell degeneration, irregular dendritic trees,
decreased numbers of dendritic spines (Higashi, et al., 1993) and progressive dysmyelination
of the CNS (Higashi, et al., 1995,Weintraub, et al., 1987,Weintraub, et al., 1985,Xie, et al.,
2000), suggesting progressively defective utilization of cholesterol. The mechanisms of
neuronal dysfunction and degeneration are not fully understood. Cholesterol content does not
appear to be elevated in cortical neurons, even though these cells exhibit neuronal storage
abnormalities (Spence and Callahan, 1989,Vanier, et al., 1991), and the rate of sterol synthesis
and loss is lower in NP-C mice (Xie, et al., 2000). Human NP-C brains have cortical neurons
with distended cytoplasm, ballooned neurons (Anzil, et al., 1973,Braak, et al., 1983,Norman,
et al., 1967), and neurofibrillary tangles (Suzuki, et al., 1995). Cholesterol and sphingomyelin
are decreased in white matter due to demyelination (Braak, et al., 1983,Xie, et al., 2000). In
addition to accumulating cholesterol, cells from NP-C mice also accumulate gangliosides and
glycosphingolipids (Zervas, et al., 2001).

3. Neurosteroids and NP-C
In addition to abnormal cholesterol trafficking in NP-C neurons, NP-C mice also show
abnormalities in testicular steroidogenesis (Roff, et al., 1993) and ovarian steroidogenesis
(Gevry, et al., 2004). Since we believe that neurosteroids are necessary for neuronal and glial
function, we hypothesized that alterations in sequestration of intracellular cholesterol would
result in altered neurosteroidogenesis, which we hypothesize would subsequently alter
neuronal and glial function.

As a first step in determining if altered neurosteroidogenesis could contribute to the
neuropathology seen in NP-C, we analyzed brains of adult NP-C mice for the endogenous
concentrations of some neurosteroids. We determined that the concentration of pregnenolone,

Mellon et al. Page 4

Brain Res Rev. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



DHEA and allopregnanolone were all significantly less in brains of NP-C mice than they were
in brains of age-matched wild type mice (Griffin, et al., 2004). The concentrations of other
neuroactive compounds such as tetrahydrodeoxycorticosterone or androstenediol were not
assessed. Thus, NP-C mice have diminished neurosteroid concentrations, which could result
from several different mechanisms.

We determined whether neurons and glia that express the steroidogenic enzymes required for
allopregnanolone production are also diminished in brains of NP-C mice. Using
immunohistochemistry, we found that adult NP-C brains had significantly diminished
expression of P450scc, 3ßHSD, 5α reductase and 3α HSD. This reduction in expression of
these neurosteroidogenic enzymes was seen in the cortex and in the cerebellum. In the
cerebellum, Purkinje neurons that express these enzymes are lost in the adult NP-C mouse. In
the cortex, it is unknown which particular neurons or glia express these enzymes. Thus it is
unknown if those cells are also lost in NP-C mouse brains, or if there is a reduction in expression
of neurosteriodogenic enzymes.

Analysis of neurosteroidogenic enzyme activity throughout the life of the NP-C mouse showed
that neurosteroidogenesis (allopregnanolone production) is normal at least at the end of
gestation. However, at birth, we found that NP-C mouse brains had a significant reduction in
3α HSD activity, and hence could not convert dihydroprogesterone to allopregnanolone. While
not explicitly tested as substrates in these studies, it is also likely that NP-C mouse brains cannot
convert corticosterone to tetrahydrodeoxycorticosterone, or testosterone to androstenediol,
other neuroactive compounds. These conversion use the same enzymes as those used to convert
progesterone to allopregnanolone (i.e. 5α reductase and 3α hydroxysteroid dehydrogenase).

The diminution in enzyme activity was seen in the cortex, midbrain and hindbrain, indicating
that there was not region-specific reduction in enzymatic activity. Several weeks later, we also
demonstrated a significant reduction in 5α reductase activity (conversion of progesterone to
dihydroprogesterone) in all brain regions. This reduction in 5α reductase and 3α HSD activities
preceded, by several weeks, onset of behavioral symptoms of ataxia, tremor, and weight loss.

4, Treatment of NP-C mice with allopregnanolone
If the loss of allopregnanolone production contributed to the neuropathology of NP-C, we
reasoned that appropriately timed treatment of NP-C mice with allopregnanolone should reduce
the symptoms and pathology seen in untreated NP-C mice. We tried several approaches to
treatment with allopregnanolone – providing the neurosteroid in drinking water, as a timed-
release pellet, and as an injection, and each treatment had some efficacy (Griffin, et al.,
2004). Efficacy was assessed by survival of mice, by time of onset of neurological symptoms,
as well as by weekly assessment of locomotor function and coordination. All these markers of
effective treatment changed in parallel with effective treatment, i.e. effective treatment delayed
weight loss and onset of ataxia and tremor, prolonged locomotor function, and increased
survival.

We reasoned that since there was a reduction in neurosteriodogenic enzyme activity in the early
neonatal period, that lack of allopregnanolone at that time might be crucial for appropriate
brain development. Hence, we treated mice during the first two weeks of life (Griffin, et al.,
2004). Our results indicated that a single injection of allopregnanolone beginning at weaning
(postnatal day 23) or earlier (to postnatal day 7) was effective, and that efficacy depended upon
the day at which treatment was given. Hence, treatment at postnatal day 7 was the most effective
time to treat NP-C mice, and resulted in a doubling of lifespan, a 5-week delay in loss of
locomotor function, and a 3-4 week delay in onset of symptoms.

Mellon et al. Page 5

Brain Res Rev. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Additional studies treating mice at postnatal day 0 or day 3 indicated that treatment at these
times was less effective than treatment at day 7 (unpublished results), again suggesting a time-
dependency to treatment.

Our studies have now been repeated by other laboratories, which have demonstrated similar
effects of allopregnanolone treatment on their colonies of NP-C mice (Ahmad, et al.,
2005,Langmade, et al., 2006).

5. Assessment of biochemical markers of NP-C disease
Allopregnanolone treatment significantly increased survival and locomotor function in NP-C
mice. We assessed whether there were changes in neuronal survival in the mice. As discussed
previously, untreated NP-C mice have substantial loss of cerebellar Purkinje neurons at the
end of life (∼60 days). Analysis of brains of NP-C mice treated with allopregnanolone at
postnatal day 7 indicated that those mice had substantial survival of cerebellar Purkinje
neurons, which was seen in all lobes of the cerebellum (Griffin, et al., 2004,Langmade, et al.,
2006). Concomitant with increased Purkinje neuronal survival, we also found that
allopregnanolone-treated NP-C mice had significant reduction in both cortical and cerebellar
ganglioside concentrations, and reduction in accumulation of cholesterol in the brain. Thus,
many hallmarks of NP-C disease progression are ameliorated by a single injection of
allopregnanolone at postnatal day 7.

6. Mechanism of allopregnanolone action: GABAA receptor
Studies by other laboratories have demonstrated that one mechanism by which
allopregnanolone functions is by augmentation of GABAA receptor channel opening, through
alteration of the kinetics of entry to and exit from desensitized states of the receptor (Zhu and
Vicini, 1997,Zhu, et al., 1996). We used another GABA-ergic neurosteroid, ganaxolone, as a
treatment in NP-C mice. Ganaxolone is a C3-β–methyl derivative of allopregnanolone, and
was developed as an orally effective neurosteroid, presumably because of the inhibition of C3-
hydroxyl oxidation due to the presence of the methyl group (Beekman, et al., 1998,Carter, et
al., 1997,Gasior, et al., 2000,Gee, 1996). Pharmacokinetic and in vivo studies have shown that
ganaxolone has greater efficacy than allopregnanolone at GABAA receptors (Beekman, et al.,
1998,Carter, et al., 1997,Gasior, et al., 2000,Gee, 1996,Kerrigan, et al., 2000,Laxer, et al.,
2000,Monaghan, et al., 1997,Reddy and Rogawski, 2000,Reddy and Rogawski,
2000,Robichaud and Debonnel, 2005,Ungard, et al., 2000). We treated mice at postnatal day
7, using the same dose of ganaxolone as we used for allopregnanolone (25 mg/kg). We assessed
onset of symptoms, locomotor function and coordination, and survival of mice. These data are
shown in figure 1. Ganaxolone-treated mice resulted in a significant increase in longevity
(average of 93 days vs. 68 days in untreated NP-C mice). However, this increased longevity
was not as great as that seen with allopregnanolone treatment (allopregnanolone, 124 days vs.
ganaxolone 93 days, figure 1). In addition to increasing longevity, ganaxolone treatment
resulted in a significant delay in tremor, ataxia and weight loss in treated NP-C mice (figure 2
A). When we compared these beneficial effects of ganaxolone with the results obtained from
allopregnanolone treatment, ganaxolone treatment was not as effective.

We also assessed locomotor function and coordination in ganaxolone-treated NP-C mice.
Ganaxolone treatment resulted in a significant delay in loss of locomotor function; furthermore,
the loss of locomotor function was much more gradual in ganaxolone-treated mice than it was
in untreated mice (Figure 2 B and C). When compared with allopregnanolone-treated mice,
ganaxolone-treated mice had an earlier loss of locomotor function. Delays in loss of
coordination were similar between allopregnanolone- and ganaxolone-treated mice. Both
groups of treated mice had normal coordination for more than 4 weeks after untreated NP-C
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mice showed loss of coordination. The loss of coordination was also more gradual in both
ganaxolone- and allopregnanolone-treated mice than it was in untreated NP-C mice. Taken
together, these results indicate that ganaxolone, a synthetic neurosteroid that is being developed
clinically for treatment of pediatric seizure disorders, is an effective treatment in NP-C mice.
However, the differences we found in the effects of ganaxolone and allopregnanolone treatment
suggest that the mechanism(s) by which allopregnanolone elicits its effects is not completely
identical to that of ganaxolone. Since ganaxolone is thought to elicit its effects solely through
GABAA-mediated mechanisms, our data suggest that in addition to affecting GABAA
receptors, allopregnanolone likely has other mechanisms of action in vivo that are not mimicked
in entirety by ganaxolone. Treatment of NP-C mice with other ligands of the GABAA receptor,
such as benzodiazepines, has not been tested.

Another reason that ganaxolone may not be as effective as allopregnanolone maybe due to
ganaxolone's inability to be metabolized to other neuroactive compounds, as allopregnanolone
can. Allopregnanolone can be converted to dihydroprogesterone (5α-pregnan-3, 20-dione) by
the enzyme 3 alpha hydroxysteroid dehydrogenase. This is a reversible enzymatic reaction,
although the reduction (production of allopregnanolone) is favored enzymatically.
Dihydroprogesterone, unlike allopregnanolone, is active at nuclear progesterone receptors.
Because of the 3ß-methyl group on ganaxolone, it cannot be converted to a similar compound.
Hence, some of the additional benefits of allopregnanolone may be due to its metabolism to
other neuroactive compounds.

The data also suggest that the neurodegeneration that occurs in NP-C mice is a result of multiple
different pathologies that result from lysosomal accumulation of cholesterol and other
compounds, like gangliosides, that traffic via the same intracellular pathway. Hence, targeting
several of these pathways would likely be more beneficial than targeting a single pathway. For
example, NP-C mice fail to use lipoprotein-derived cholesterol for synthesis of 25- and 27-
hydroxycholesterol (Frolov, et al., 2003,Zhang, et al., 2004). These compounds are ligands for
the liver X receptor (LXR) that promote cellular cholesterol efflux and catabolism. Treatment
of NP-C mice with both allopregnanolone and a synthetic LXR ligand resulted in even better
neurological outcome than treatment with either compound alone (Langmade, et al., 2006).
These data indicate that directing treatments toward multiple different mechanisms, pathways,
and targets provides synergistic benefits. The data also indicate that these different ligands
work through different mechanisms, since the result of their combined treatments are
synergistic. These data may suggest that treatment of NP-C mice with allopregnanolone plus
ganaxolone may result in a different, perhaps more beneficial outcome, than treatment with
either compound alone.

7. Allopregnanolone is a ligand for the nuclear pregnane-X receptor (PXR)
How can a single injection of a neurosteroid in the early postnatal period, result in long-term
effects on neuronal survival and intracellular cholesterol and ganglioside accumulation more
than 10 weeks later? Furthermore, how can a GABAA receptor-mediated action elicit these
results? The concentration of allopregnanolone used in our studies (25 mg/ml) (Griffin, et al.,
2004) was a maximally effective dose (Figure 3, onset of symptoms). At this dose of treatment,
we determined that the maximum concentration of allopregnanolone achieved in the brain is
∼25 μM (∼8 μg/g tissue). Allopregnanolone has a very short half life in the plasma of wild
type and NP-C mice (t1/2 ∼ 30 minutes) as well as in human beings (t1/2 ∼ 45 minutes) (Timby,
et al., 2006). In addition, allopregnanolone has a short half-life in the brain, its concentrations
are maximal within 10 minutes, and has a mean retention time of less than one hour. These
data suggest that while allopregnanolone may preferentially accumulate in the brain, it is
unlikely that allopregnanolone given at postnatal day 7, remains in high enough concentration,
to continue to elicit GABAA-mediated effects weeks later. Studies in human beings indicate
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that short-term doses of allopregnanolone elicit neurological effects within minutes. Thus, the
question about additional mechanisms of allopregnanolone action persist.

Studies by the Ory laboratory provide evidence of these additional mechanisms (Langmade,
et al., 2006). The Ory laboratory used a synthetic enantiomer of allopregnanolone to shed light
on additional mechanisms of action. They treated NP-C mice at postnatal day 7 with either
allopregnanolone or the enantiomer of allopregnanolone, called ent-allopregnanolone (Covey,
et al., 2000). Remarkably, they showed that treatment of NP-C mice with each of these
compounds yielded indistinguishable results! Animals treated with either allopregnanolone or
ent-allopregnanolone had identical survival profiles and locomotor profiles. Since ent-
allopregnanolone has ∼ 1/300th the action of the naturally occurring compound at GABAA
receptors (Alakoskela, et al., 2007,Covey, et al., 2000) the results suggest that the beneficial
effects of allopregnanolone in NP-C mice are not mediated by GABAA receptors.

In addition to working through GABAA receptors, allopregnanolone is a ligand for the
promiscuous pregnane-X-receptor (Kliewer, et al., 2002,Lamba, et al., 2004,Moore, et al.,
2000,Watkins, et al., 2001). This receptor is found mainly in the liver; however, we have found
that PXR is also expressed in the mouse brain (Figure 4), albeit at much lower concentrations
than in the liver. Both allopregnanolone and ent-allopregnanolone cause increased expression
of cyp3A13 mRNA, a PXR target gene. However, this increased gene expression requires
10-50 μM concentrations of the steroids, in contrast to the 10-100 nM concentration of
allopregnanolone needed to augment GABAA-ergic function. In mice treated with either
allopregnanolone or ent-allopregnanolone, there is increased brain expression of cyp3A13
within 24 hours of treatment, which persists 28 days later. Thus, induction of PXR may be an
additional mechanism through which allopregnanolone elicits its effects, and results in
beneficial treatment of NP-C. It is unknown if other PXR ligands would thus be equally (or
even more) effective in treatment of NP-C. Similarly, if PXR is the mechanism through which
both allopregnanolone and ent-allopregnanolone mediate their effects in vivo in NP-C mice,
ablation of brain expression of PXR in NP-C mice should result in ineffective treatment of NP-
C mice. Studies studying additional PXR and GABAA receptor ligands are currently ongoing.

8. Conclusions
The results from these studies have demonstrated that a lack of allopregnanolone synthesis in
the early neonatal period may contribute to the neuropathology seen in NP-C mice. The
treatment studies suggest that allopregnanolone may function in the early postnatal period in
the brain of mice, and that allopregnanolone's actions in NP-C mice may be time-specific.
These actions may be related to specific cellular development, proliferation, and migration.
The action of allopregnanolone on reducing cellular accumulation of gangliosides and
cholesterol may likewise contribute to the beneficial effects of allopregnanolone treatment.
The mechanism(s) through which allopregnanolone functions in NP-C is unknown. Our studies
using the synthetic GABAA receptor ligand ganaxolone, suggests that this receptor may indeed
play a role in the beneficial actions of allopregnanolone. Indeed, we have shown that
allopregnanolone can mediate beneficial actions in cultured Purkinje neurons which are
mediated through GABAA-receptors. However, the compelling studies using a GABAA-
inactive ent-allopregnanolone suggest that GABAA-receptors may not be the only receptor
involved in the beneficial in vivo mechanisms. These results also suggest that the pregnane-X-
receptor may mediate some of the effects of allopregnanolone. Hence, studies using additional
known GABAA agonists, such as benzodiazepines, or of other neurosteroids, such as
tetrahydrodeoxycorticosterone and corticosterone-derived neuroactive steroids, in addition to
studies using known ligands of the pregnane-X or the progesterone receptors may provide
insight into the role of these receptors, and roles of neurosteroids, in successful treatment of
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neurodegeneration in NP-C. Additional in vivo and in vitro studies are needed to clarify the
exact mechanism of action of allopregnanolone.

Our studies have demonstrated that NP-C represents a prototype of disordered
neurosteroidogenesis. Other neurodegenerative diseases may also involved similar reductions
in neurosteroid synthesis, either as primary effects, or due to specific loss of neurons that
express neurosteroidogenic enzymes. Since many neurodegenerative diseases share common
neuropathology, it may be likely that these diseases, like NP-C, may benefit from
allopregnanolone treatment. Ultimately, understanding the mechanism of allopregnanolone
action will clarify our understanding of the cellular processes that result in neurodegeneration.
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Figure 1.
Effect of a single dose of allopregnanolone or ganaxolone on survival of NP-C mice.
Allopregnanolone (Allo) or ganaxolone (25 mg/kg in 20% §-cyclodextrin) or nothing
(untreated, 20% §-cyclodextrin only) was administered subcutaneously in a single injection at
postnatal day 7. A. Survival curves for treatments. B. Average survival time. Data are means
± S.D. N=12 for untreated and allopregnanolone-treated mice; n=8 for ganaxolone-treated
mice.
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Figure 2.
Effect of a single dose of allopregnanolone (allo) or ganaxolone on onset of symptoms of NP-
C mice. A. Onset of symptoms: Animals were assessed weekly for weight, tremor, ataxia, and
week of onset was noted. B. Motor coordination and C. Locomotor function: mice were
assessed weekly for locomotor function and coordination. These assays used locomotor tests
established for assessing spinal cord injuries and recovery (Basso, et al., 1995). The rater was
blinded to treatment. Data are means ± S.D. N=12 for untreated and allopregnanolone-treated
mice; n=8 for ganaxolone-treated mice.
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Figure 3.
Dose-responsiveness of allopregnanolone treatment. NP-C mice were treated with a single
dose of allopregnanolone (0 – 50 mg/kg) at postnatal day 7. Onset of symptoms (tremor, ataxia
and weight loss) was assessed weekly. Data are means ± S.D. N=12 mice for each dose.
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Figure 4.
RT-PCR analysis of pregnane X receptor mRNA expression in the brain. Brains from postnatal
day 7 mice were treated with nothing (−ALLO) or with 25 mg/kg allopregnanolone,
subcutaneously (+ALLO), and brains were removed 24 hours later. Brains were separated into
various regions, RNA was isolated and cDNA was prepared and amplified with primers specific
for mPXR . Amplification was for 35 cycles, and PCR products of 418 bp were separated on
2% agarose gels. Ctx, cortex; Cb, cerebellum; Hypo, hypothalamus; Thal, thalamus; Lv, liver.
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