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ABSTRACT

I present a new approach for calculating probabilities of identity by descent for pairs of haplotypes. The
approach is based on a joint hidden Markov model for haplotype frequencies and identity by descent
(IBD). This model allows for linkage disequilibrium, and the method can be applied to very dense marker
data. The method has high power for detecting IBD tracts of genetic length of 1 cM, with the use of
sufficiently dense markers. This enables detection of pairwise IBD between haplotypes from individuals
whose most recent common ancestor lived up to 50 generations ago.

TWO haplotypes are identical by descent (IBD) if
both copies were inherited from a shared common

ancestor. In studies of related individuals, the ancestors
are members of the known pedigree. However, in a
population sample, genealogical information is not usu-
ally known, yet all individuals are related to each other,
if only distantly. Tracts of IBD between individuals from
a population sample will tend to be shorter than tracts
of IBD in closely related individuals.

Except for the possibility of recurrent mutation, all
identical alleles are technically IBD. This article, how-
ever, focuses only on tracts of IBD due to relatively
recent shared ancestry (such as ,100 generations).
Chapman and Thompson (2003) show that even after
100 generations of random mating in a growing
population, IBD tracts will have an average length of
0.6 cM. Thus, for the remainder of the article, IBD
implies extended tracts, covering multiple markers, of
shared material inherited from a common ancestor.

Recent technological advances have now made it cost
effective to genotype high-density markers on a large
scale. This provides the potential of detecting IBD tracts
that are much shorter than those that could be detected
previously. To maximize ability to detect such tracts, it is
important to use appropriate statistical tools.

Some existing methods are based on the observed
extent of tracts of allele sharing (Houwen et al. 1994; Te

Meerman et al. 1995; Nelson et al. 2006; Miyazawa et al.
2007). This is somewhat inefficient, as information on
haplotype frequencies is being ignored. Studies of
extended homozygosity demonstrate the existence of
extended common haplotypes (Curtis et al. 2008).
Thus, unless haplotype frequency is taken into account,

the rate of false-positive detection of IBD will be unnec-
essarily high.

Existing probabilistic methods (Leutenegger et al.
2003; Purcell et al. 2007) are based on hidden Markov
models (HMMs) that incorporate dependence in IBD
between neighboring locations but that assume inde-
pendence between genotypes across markers (i.e., link-
age equilibrium). This approach is very suitable for
low-density genetic markers, but cannot properly utilize
the information in dense marker data. Such methods
will tend to overestimate IBD sharing if applied directly
to dense data with high levels of linkage disequilibrium
(LD). One strategy for circumventing this problem is
to prune markers to reduce LD (Purcell et al. 2007);
however, this also reduces the amount of information
in the data and thus decreases power to detect tracts
of IBD.

In this article, I present an approach for IBD detection
that is probabilistic and accounts for LD in arbitrarily
dense markers. The proposed HMM incorporates both
dependence in IBD status through a Markov model for
the IBD process and dependence in genotypes (i.e., LD)
through modeling of haplotype frequencies. This ap-
proach enables detection of IBD tracts of length #1 cM.
The current implementation of the method is restricted
to known haplotypes, but I discuss future extension to
unphased genotype data.

The central application of this work is to IBD
mapping, in which an excess of IBD sharing between
case individuals indicates the presence of disease suscep-
tibility variants (Houwen et al. 1994; Te Meerman et al.
1995). IBD mapping has potential for mapping genes
or genomic regions containing multiple rare disease-
susceptibility variants (Purcell et al. 2007; Interna-

tional HapMap Consortium 2007). IBD mapping is
also powerful for detecting founder effects in isolated
populations (Te Meerman et al. 1995; Nelson et al.
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2006). Traditional association testing relies on LD
between a single marker or a haplotype block and the
causal variant(s). However, for recent or rare disease
variants the IBD tracts will extend over many markers
in a dense marker panel, so that testing only a single
marker or haplotype block will miss much of the avail-
able information.

There are several approaches to using estimated IBD
tracts in IBD mapping of disease-associated genes. So-
called population-based linkage analysis (Purcell et al.
2007) tests for correlation between IBD sharing and
phenotypic sharing. One straightforward approach is to
look for unusually long tracts of IBD between pairs or
groups of case individuals (Houwen et al. 1994; Te

Meerman et al. 1995; Nelson et al. 2006). Haplotype
sharing and similarity-based methods (Van Der Meulen

and Te Meerman 1997; McPeek and Strahs 1999; Tzeng

et al. 2003; Beckmann et al. 2005; Wessel and Schork

2006) are additional approaches to IBD mapping.

METHODS

To decide whether two identical haplotypes are likely
to be IBD, or are merely identical by state, it is necessary
to assign a population frequency to the observed
haplotype. Shared haplotypes with high frequency are
probably not IBD (in the sense of having common
ancestry within 500–1000 generations), while those with
very low frequency are most likely IBD. To avoid false-
positive results, a very low threshold for the frequency of
the shared haplotype is required to be sure of IBD. It is
not feasible to estimate such frequencies directly from
a population sample, as the sample will not be large
enough to give an accurate estimate of a very small
frequency. Instead, one needs to use a model for
haplotype frequencies, and the model must incorporate
LD. An appropriate model is the localized haplotype
cluster model that has been used for haplotype phase
inference (S. R. Browning and B. L. Browning 2007),
which can be fit quickly using a heuristic algorithm.
The hidden Markov model underlying the localized
haplotype cluster method may be extended to include
IBD status, and it is then possible to obtain posterior
probabilities of IBD.

IBD prior probabilities: The proposed method re-
quires the specification of a prior IBD model. To make
the computations tractable, only a two-state Markov
model is considered. The two states are IBD and non-
IBD. It is assumed that IBD and non-IBD tracts have
lengths drawn from exponential distributions. Thus,
the model has two parameters: the expected length of
an IBD tract, and the expected length of a non-IBD
tract. While this model may appear to be overly sim-
plistic, such models have proved to be reasonable
approximations for the purpose of relationship infer-
ence (McPeek and Sun 2000) and for estimating
homozygosity by descent (Abney et al. 2002) and

inbreeding coefficients (Leutenegger et al. 2003) and
should also prove adequate in this context.

In this work, I fix the values of the parameters
(expected lengths of IBD and non-IBD tracts) in
advance. It would be possible to estimate these param-
eters, perhaps by using an iterative approach in which
an initial guess of the parameter values is used to obtain
estimates of IBD, which are in turn used to reestimate
the parameters, but I do not attempt that here.

The choice of parameter values affects the sensitivity
and specificity of the method. However, in the context
of IBD mapping, one can make use of a control sample
for calibration. Assuming that one does not expect to
see appreciable IBD in controls, one can estimate IBD
probabilities in the controls and choose a threshold on
these probabilities that will give the desired rate of false-
positive IBD detection. This calibration approach re-
duces the impact of the choice of prior.

Another approach is to choose parameter values that
are reasonable in the context of a given founder pop-
ulation. In a rapidly growing population, most of the
founding haplotypes will be retained, so the probability
that two randomly chosen haplotypes are IBD now is
�1/N, where N is the number of founding haplotypes.
The ratio of expected IBD length to the sum of expected
IBD length plus expected non-IBD length should equal
1/N in this case.

The Markov model is most suitable when an IBD tract
is generated entirely by one path of descent. Consider,
for example, IBD in half-cousins with one common
grandparent but all other grandparents unrelated to
each other: there is only one possible path of descent.
IBD tracts generated by a single path of descent com-
prising m meioses have length distributed exponentially
with a mean of 1/m morgans, assuming Haldane’s
model (Haldane 1919) (results are unlikely to be very
different when considering interference, but calcula-
tions are more difficult). Thus, g generations after
founding, single-path IBD tracts would have approxi-
mately exponential length distributions with a mean
of 1/(2g) morgans.

However, for complex pedigrees with loops, it is
possible to have an IBD tract made up of two or more
sub-tracts with differing paths of descent, even though
the IBD tract is entirely inherited from the same
ancestral chromosome. Such multiple-path IBD tracts
are on average longer than single-path IBD tracts and do
not have exponential length distribution. Provided that
the goal is to detect IBD rather than to obtain precise
estimates of IBD probabilities, this is not a problem. If
attention is focused on detection of single-path IBD
tracts, multiple-path IBD tracts also will be detected
because they are longer and thus more easily detected.
From a detection point of view, the exponential length
distribution assumption in the IBD model is not
particularly important. For distantly related individuals,
there typically will be at most one IBD tract per
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chromosome, and the process governing the length of
that tract is essentially irrelevant, except that, if the
length is too small, it will not be detected.

As an example, based on single-path IBD, consider the
Maori population of New Zealand. The main Maori migra-
tion to New Zealand occurred �800 years ago (Sutton

1994). There were �190 founding woman ancestors
(Whyte et al. 2005). The population reached a level of
�115,000 before the arrival of Europeans (Kirch 1984).
Suppose that there were 1000 founding ancestral haplo-
types (500 individuals). The probability now of finding
that two randomly chosen haplotypes are IBD would be
�1/1000. Suppose further that there have been �30
generations (750 years at 25 years/generation) since the
founding event. The mean length of a single-path IBD
tract would be 1/60 ¼ 1.7 cM. To obtain a per-locus IBD
probability of 1/1000, it is necessary that A/(A 1 B)¼ 1/
1000, where A ¼ 1.7 cM is the expected length of IBD
tracts, and B is the expected length of non-IBD tracts.
Solving, one obtains B¼ 1698.3. Thus, for the Maori, one
might model IBD tracts having an expected length of
1.7 cM and non-IBD tracts having an expected length of
1700 cM.

As a final consideration, note that for a collection of
case individuals, greater-than-average IBD sharing is
expected over the whole genome when the disease has
some genetic basis (Voight and Pritchard 2005). The
parameters could be adjusted accordingly if one knew
the extent of this effect.

In summary, the arguments described above for
single-path IBD tracts can be used to obtain values for
the parameters of the prior Markov model for IBD
probabilities. These approximate values are likely to be
adequate for the purposes of IBD detection, particularly
if a control sample is available for calibration of false-
positive detection. On the other hand, if accurate esti-
mate of actual IBD probabilities is desired, one could
use the data to estimate these parameters. However, the
simulations presented in the results show that the
estimated IBD probabilities are somewhat biased, even
when the correct prior model is used.

Localized haplotype cluster model: Earlier work
describes the algorithm for fitting the localized haplotype
cluster model (Browning 2006; B. L. Browning and
S. R. Browning 2007). The algorithm is not reproduced
here, but the important properties of the model are
described. Figure 1 shows a small example of a localized
haplotype cluster model fit to fictional haplotype data
with four single nucleotide polymorphism (SNP) markers.
Figure 2 shows an alternative representation of the model
from Figure 1, consistent with that given in earlier work.
In Figure 2 haplotype clusters are represented by edges
rather than by nodes. Figures 1 and 2 are essentially dual
graphs, with edges converted to nodes and vice versa. The
following descriptions refer to the representation in
Figure 1, which is the more natural representation in
the context of IBD probability estimation.

Each node of the graph corresponds to a haplotype
cluster. Each haplotype cluster has an associated
localization to a specific marker. Nodes in the same
column in Figure 1 correspond to localization to the
same marker. For example, nodes A and B correspond
to marker 1, and nodes C, D, and E correspond to
marker 2. Each node also has an associated allele. Also,
each node transitions to one or more nodes with
localization at the next marker. A node cannot transi-
tion to more than one node with the same associated
allele. For example, node B could not transition to
both nodes C and E, because both C and E are
associated with allele 1. I refer to a node as a ‘‘localized
haplotype cluster.’’

Every haplotype that is present in the data used to fit
the model has a path through the graph representing
the model. For example, the haplotype 1122 has path
ACGK in Figure 1. The path through the graph
corresponding to a given haplotype is unique, because
of the restriction that a node cannot transition to more
than one node with the same allele label. I refer to a
path through the graph as a ‘‘haplotype cluster path’’; it
is a sequence of localized haplotype clusters.

A crucial aspect of the model is that of merging. A
merge occurs when two or more edges transition into a
single node. For example, edges from nodes C and E

Figure 1.—Example of a localized haplotype cluster
model. Nodes of the graph represent haplotype clusters (la-
beled A–L). Solid boundaries around nodes represent allele
1 while dashed boundaries represent allele 2. The initial state
is shaded gray. Transition probabilities are given on the edges.

Figure 2.—An alternative representation of the localized
haplotype cluster model in Figure 1. This representation is
given solely for comparison with previous work (for example,
Browning 2006). Edges of the graph represent the haplotype
clusters. Solid edges represent allele 1 while dashed edges
represent allele 2.
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merge into node F at marker 3 in Figure 1. Genetically,
merges represent historical recombination, which
breaks down LD. From a mathematical point of view,
merges represent a Markov property: given that the
haplotype traverses through node x localized to marker
i, the alleles at markers i 1 1, i 1 2, . . . are independent
of the alleles at markers 1, 2, 3, . . . , i � 1 (and of nodes
localizing to those markers). From a computational
point of view, merging ensures that the graph remains
parsimonious.

The localized haplotype cluster model gives a hidden
Markov model (S. R. Browning and B. L. Browning

2007). In Figure 1, each edge has a transition probability
indicated. The localized haplotype cluster (node of the
graph) is the hidden state. (For phase-known data, the
localized haplotype cluster is not actually ‘‘hidden.’’
However, I retain this terminology to facilitate future
extension to unphased data.) The observed data are the
alleles at each marker. Emission probabilities are always
0 or 1; the cluster always emits the associated allele.
(Allowing for intermediate emission probabilities could
be useful in some situations, but would greatly increase
the computational burden.) Thus, the model gives
haplotype probabilities, which are obtained by multi-
plying the relevant transition probabilities. In Figure 1
an artificial initial state has been added. This initial state
has a probability of 1, so no initial probabilities are
needed. The probability of haplotype 1122 (equivalently
haplotype cluster path ACGK) is (0.52)(0.63)(0.51)
(1) ¼ 0.167 (obtained by multiplying appropriate tran-
sition frequencies from Figure 1). For low-frequency
haplotypes extending over large numbers of markers, it
is not possible to obtain reasonable estimates of haplo-
type frequency simply by using observed (sample)
frequencies; however, one can obtain useful estimates
from the localized haplotype cluster model.

The localized haplotype cluster model accounts
for the LD correlation structure along the haplotype
in a parsimonious manner. Fitting of the model to
data is computationally fast with the Beagle software
package (http://www.stat.auckland.ac.nz/�browning/
beagle/beagle.html). When fitting the localized haplo-
type cluster model to a set of data, I assume that the
haplotypes are independent. As IBD haplotypes are
identical, I downweight the two haplotypes that are
being investigated for IBD. Each of these two haplo-
types is given weight 1/2, so that together they are equiv-
alent to one haplotype. Failure to make this adjustment
leads to IBD haplotypes appearing to have a higher
population frequency than is actually the case, with a
consequent decrease in power to detect IBD.

Hidden Markov model: The overall model is com-
posed of the two components described above. The first
is the IBD model, which is a continuous 0/1 Markov
process. The second is the model for haplotype proba-
bilities, which is a localized haplotype cluster model.
Combining the IBD model with two copies of the

haplotype model gives a joint hidden Markov model
for IBD status and a pair of haplotypes.

The state of the joint model, at a given marker
position, comprises 0/1 IBD status for the pair of
haplotypes and a pair of localized haplotype clusters.
The form of the transition probabilities for the joint
model differs depending on the IBD status of the
destination state.

Let si denote the IBD status (0 for non-IBD and 1 for
IBD) at position i. Let ci

(1) ½respectively, ci
(2)� denote the

localized haplotype cluster (state of the localized
haplotype cluster model) at position i, for the first
(respectively, second) of the haplotypes that are being
compared.

If the destination state has IBD status 0 (non-IBD),
the haplotype transitions are conditionally indepen-
dent, so the overall transition probability is the ap-
propriate IBD model transition probability multiplied
by each of the appropriate transition probabilities for
the haplotypes. For example, to transition from state
(s1; c

ð1Þ
1 ; cð2Þ1 ), with IBD status s1 and localized haplotype

clusters cð1Þ1 and cð2Þ1 , to state (s2 ¼ 0; cð1Þ2 ; cð2Þ2 ), the tran-
sition probability is Pðs1/0ÞPðcð1Þ1 /cð1Þ2 ÞPðc

ð2Þ
1 /cð2Þ2 Þ.

If the destination state has IBD status 1 (IBD), the two
alleles at this marker must be equal. Any position at
which the two alleles differ has zero probability of IBD
(although I expect to relax this constraint in future work
to allow for genotype error). A property of the haplo-
type model is that knowledge of the allele at the next
marker determines the transition from the current
state. Thus, when the IBD status is 1, knowing one
haplotype transition (and thus the associated allele)
completely determines the other transition. This com-
plete dependence implies that only one haplotype
transition probability will go into the joint model
transition probability. However, the two haplotypes
may have different paths through the model, due to
divergence in regions of nonidentity, and may remain
divergent even in regions of identity. In this case, the
transition probabilities of the two haplotypes may differ,
and it is not clear which transition probability to use. To
solve this problem I average the two candidate proba-
bilities. (Other options are possible. For example, one
could take the minimum, or one could weight the
average by the counts on the corresponding edges.
However, I have not investigated these alternatives.)
Thus, the overall transition probability for the joint
model is the appropriate IBD model transition proba-
bility multiplied by the average of the appropriate tran-
sition probabilities for the localized haplotype clusters.
For example, to transition from state (s1; c

ð1Þ
1 ; cð2Þ1 ) to state

(s2 ¼ 1; c ð1Þ2 ; cð2Þ2 ), the transition probability is Pðs1/1Þ
½Pðcð1Þ1 /cð1Þ2 Þ1 Pðcð2Þ1 /cð2Þ2 Þ�=2.

Worked example: Consider four closely spaced
markers with haplotype distribution following the
localized haplotype cluster model in Figure 1. For the
prior IBD model, let the rate of change from IBD to
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non-IBD be 1/3 per cM (thus IBD tracts have an
expected length of 3 cM) and the rate of change from
non-IBD to IBD be 1/3000 per cM (thus non-IBD tracts
have an expected length of 3000 cM). Suppose the four
markers have approximate genetic positions (relative to
the first of the four markers) of 0, 0.003, 0.009, and
0.012 cM. Thus, the probability of transition to non-IBD
at marker 2 from IBD at marker 1 is �10�3, while the
probability of transition to IBD at marker 2 from non-
IBD at marker 1 is �10�6. The transition probabilities
between markers 2 and 3 are approximately twice those
between markers 1 and 2, while the transition probabil-
ities between markers 3 and 4 are the same as those
between markers 1 and 2. The initial probability of IBD at
the first marker is 3/3003¼ 10�3. Write s for (s1, s2, s3, s4),
the IBD status at each marker, cð1Þ for ðcð1Þ1 ; cð1Þ2 ; cð1Þ3 ; cð1Þ4 Þ,
the haplotype cluster path corresponding to the first
haplotype, and similarly c(2) for the haplotype cluster
path corresponding to the second haplotype.

Consider the IBD status of haplotypes 1111 and 2111.
These haplotypes are clearly not IBD at the first
position, but could be IBD at any of positions 2–4
(although a change in IBD status in a region this small
has very low probability). The haplotype cluster paths
corresponding to these two haplotypes are c(1) ¼ ACFI
and c(2) ¼ BEFI, respectively. Recall that the haplotype
cluster path always determines the haplotype, and vice
versa.

As a first example, the joint probability of the haplo-
type pair and that these haplotypes are entirely non-IBD
(s ¼ 0000) is calculated. The two haplotypes are
conditionally independent, given that they are com-
pletely non-IBD. Thus, P(s ¼ 0000, c(1) ¼ ACFI, c(2) ¼
BEFI) ¼ P(s ¼ 0000)P(c(1) ¼ ACFI)P(c(2) ¼ BEFI). Now
P(s ¼ 0000) ¼ (1 � 10�3)(1 � 10�6)(1 � 2 3 10�6)
(1 � 10�6) ¼ 0.9990, P(c(1) ¼ ACFI) ¼ (0.52)(0.63)
(0.49)(0.19) ¼ 0.0305, and P(c(2) ¼ BEFI) ¼ (0.48)(1)
(0.49)(0.19)¼ 0.0447. Thus, P(s¼ 0000, c(1)¼ ACFI, c(2)¼
BEFI) ¼ 0.0014.

Second, the probability of the haplotypes with the
IBD pattern s ¼ 0111 (non-IBD at marker 1, IBD at
markers 2–4) is calculated. To do so, the problem is
separated into initial and transition probabilities:

Initial probability: Pðs1¼ 0;cð1Þ1 ¼A;cð2Þ1 ¼BÞ¼ ð1�10�3Þ
ð0:52Þð0:48Þ¼ 0:249.

First transition: Pðs2¼1;cð1Þ2 ¼C ;cð2Þ2 ¼E js1¼0;cð1Þ1 ¼A;
cð2Þ1 ¼BÞ¼Pðs2¼1js1¼0Þ½Pðcð1Þ2 ¼C jcð1Þ1 ¼AÞ1Pðcð2Þ2 ¼
E jcð2Þ1 ¼BÞ�=2¼ð10�6Þ½0:6311�=2¼8:153 10�7.

Second transition: Pðs3¼1;cð1Þ3 ¼F ;cð2Þ3 ¼F js2¼1;cð1Þ2 ¼C ;
cð2Þ2 ¼EÞ¼Pðs3¼1js2¼1Þ½Pðcð1Þ3 ¼F jcð1Þ2 ¼CÞ1 Pðcð2Þ3 ¼
F jcð2Þ2 ¼EÞ�=2¼ð1�2310�3Þ ½0:4910:49�=2¼0:489.

Third transition: Pðs4 ¼ 1; cð1Þ4 ¼ I ; cð2Þ4 ¼ I j s3 ¼ 1; cð1Þ3 ¼
F ; cð2Þ3 ¼ F Þ ¼ Pðs4 ¼ 1 j s3 ¼ 1Þ ½Pðcð1Þ4 ¼ I j cð1Þ3 ¼ F Þ1
P ðcð2Þ4 ¼ I j cð2Þ3 ¼ F Þ�=2 ¼ ð1� 10�3Þ ½0:19 1 0:19�=2 ¼
0:190.

Thus the full probability is P(s ¼ 0111, c(1) ¼ ACFI,
c(2) ¼ BDFI) ¼ (0.249)(8.15 3 10�7)(0.489)(0.190) ¼
1.89 3 10�8.

As a final example, consider the IBD pattern s¼ 1100.
Because the alleles of the two haplotypes at the first
marker differ, the haplotypes cannot be IBD at the first
position. Thus, P(s ¼ 1100, c(1) ¼ ACFI, c(2) ¼ BDFI) ¼ 0.

Calculation of IBD probabilities: Given the HMM
described above, the probabilities of joint IBD and
haplotype cluster paths, P(s, c(1), c(2)), can be calculated
from the posterior distribution in a computationally
efficient manner using forward–backward calculation
(Baum 1972; Rabiner 1989). Then, for each marker
location, one can sum over states with IBD status 1 (i.e.,
IBD) at that location to obtain the posterior probability
of IBD, P(si ¼ 1 j c(1), c(2)). Alternatively, one can sample
multiple realizations from the posterior distribution
(Thompson 2000; S. R. Browning and B. L. Browning

2007). At each marker, the sample proportion of IBD
realizations gives the estimated posterior probability of
IBD at that position. One advantage of the sampling
approach is that it enables estimation of multilocus IBD
probabilities (Hill and Hernandez-Sanchez 2007).
However, the sampling approach is more computation-
ally intensive and less accurate. I used direct calculation
in the results presented here.

Simulation study: The methodology described above
applies only to known haplotypes, although I plan to
extend it to unphased data in future work. The basis
for the simulation study is phase-known haplotypes
simulated using Cosi (Schaffner et al. 2005) and
phased haplotypes from the control data from the
Wellcome Trust Case Control Consortium (WTCCC)
study (Wellcome Trust Case Control Consortium

2007). IBD was artificially constructed in pairs of haplo-
types, and then probability of IBD was estimated using
the proposed methodology.

Although the natural unit of distance for IBD is genetic
distance (in centimorgans), the lengths of the simulated
regions were determined using physical distance (mega-
bases) for computational convenience. Approximate
genetic distances are given with the results.

Cosi version 1.1 was used with default settings to
generate sets of 2000 haplotypes from a ‘‘European’’
population. Regions of length 1.2 Mb were generated,
and, for each region, 400 markers were selected at
random from those markers with minor allele frequency
(MAF) of at least 5% to obtain data with an average 3-kb
spacing. In addition, regions of length 3 Mb were
generated, and, for each region, 100 markers were
selected at random from those markers with MAF of
at least 5% to obtain data with an average 30-kb spac-
ing. On average, 1 cM corresponds to �1 Mb in the
simulated data; however, the Cosi program simulates
recombination hotspots, so the actual genetic distances
vary. For the IBD analyses, I assumed that 1 Mb ¼ 1 cM
throughout.
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In addition to the simulated data, 6004 phased
haplotypes from the WTCCC control collection were
used. The individuals were genotyped using the
Affymetrix GeneChip Human Mapping 500K Array Set
(Wellcome Trust Case Control Consortium 2007).
Phasing of these haplotypes is described elsewhere
(S. R. Browning and B. L. Browning 2007). For the
purposes of this study, the estimated phase was treated
as the true phase. Subsets of 300 consecutive markers
were extracted from chromosome 1 and from chromo-
some 21, with random starting positions. The chromo-
some 1 data have an average marker spacing of 6 kb. The
chromosome 21 data have an average marker spacing of
5 kb. The average correspondence between 1 Mb and 1
cM does not exactly hold for these chromosomes, and,
in any case, the ratio varies from one region to another.
However, for the IBD analysis performed here, I as-
sumed that the 1 cM/Mb ratio holds.

For each data set, IBD was artificially created in one
pair of haplotypes, and the probability of IBD was
estimated at every marker for that pair of haplotypes.
As a control, the analysis was also run using data in which
no IBD had been created. To create IBD, the alleles in
part of one haplotype were overwritten using the alleles
in the corresponding part the other haplotype. The
alleles outside the created IBD tracts were left un-
changed. For the simulated data with 3-kb average
spacing, IBD was created in the central 167 (of 400)
markers or in the central 333 (of 400) markers,
corresponding to an IBD length of �0.5 cM or �1 cM,
respectively. For the simulated data with 30-kb average
spacing, IBD was created in the central 33 (of 100)
markers or in the central 67 markers, corresponding to
an IBD length of �1 or �2 cM, respectively. For the
WTCCC chromosome 1 data, IBD was created in the
central 83 (of 300) markers or in the central 167
markers, corresponding to an IBD length of �0.5 or
�1.0 cM, respectively. For the WTCCC chromosome
21 data, IBD was created in the central 100 (of 300)
markers or in the central 200 (of 300) markers, cor-
responding to an IBD length of �0.5 or �1 cM, res-
pectively. Twenty data sets were used for each type of
data and IBD length, while 100 data sets of each type
were used with no IBD for calibration of type I error.

The IBD prior model used in these analyses is based
on a population somewhat older than the Maori
population described above, but of approximately the
same founding size. The average proportion of IBD
sharing is one-thousandth, while the average IBD length
is 1 cM. This model was chosen to facilitate investigation
of whether IBD tracts of length #1 cM can be detected.
Rather than make use of the genetic distances between
the markers, the same transition probabilities were used
between each adjacent pair of markers. Doing so may
reduce the accuracy of the analysis slightly, but it suf-
fices for this proof-of-principle study. For the simulated
data with 3 kb (3 3 10�3 cM) spacing, the transition

probabilities used for IBD status were P(si11¼ 1 j si¼ 0)¼
3 3 10�6 and P(si11 ¼ 0 j si ¼ 1) ¼ 3 3 10�3. For the
simulated data with 30 kb (3 3 10�2 cM) spacing, the
transition probabilities were P(si11 ¼ 1 j si ¼ 0) ¼ 3 3

10�5 and P(si11 ¼ 0 j si ¼ 1) ¼ 3 3 10�2. For the WTCCC
chromosome 1 data, the transition probabilities were
P(si11¼ 1 j si¼ 0)¼ 6 3 10�6 and P(si11¼ 0 j si¼ 1)¼ 6 3

10�3 (on the basis of an average marker spacing of 6 3

10�3 cM in these data). For the WTCCC chromosome 21
data, the transition probabilities were P(si11¼ 1 j si¼ 0)¼
5 3 10�6 and P(si11¼ 0 j si¼ 1)¼ 5 3 10�3 (on the basis of
an average marker spacing of 5 3 10�3 cM).

In addition, data sets were created in which IBD
lengths were randomly distributed according to the
same prior IBD model used in the analysis. In theory,
estimated IBD probabilities should be approximately
correct in this situation. Ten simulated data sets with 400
markers having a 3-kb average spacing were used (as
described above), and 200 replicates of the random IBD
length generation were applied to each data set for a
total of 2000 replicates. For each replicate, a pair of
haplotypes was selected at random, position and length
of IBD were simulated from the prior IBD model, and
the appropriate IBD was created in the chosen pair of
haplotypes. Thus, in some iterations no IBD would be
created, while in others the entire region might be IBD,
or part of the region might be IBD. To generate a high
proportion of regions containing some IBD, a prior IBD
model with a high average proportion of IBD was used.
Between each pair of adjacent markers the IBD model
has the transition probability P(si11¼ 1 j si¼ 0)¼ 0.0006
and P(si11 ¼ 0 j si ¼ 1) ¼ 0.006. Thus, one-eleventh of
the genome is IBD on average, and an IBD tract has an
average length of 167 markers or �0.5 cM. For each
replicate, estimated IBD was recorded at every 10th
marker position.

RESULTS

Non-IBD regions: Table 1 and the top row of Figure 3
show estimated IBD probabilities for regions that are
entirely non-IBD. For each of the four data types, 100
simulated non-IBD regions were used, and IBD proba-
bilities were estimated at every marker position. Table 1
shows the distribution of IBD probabilities, as well as the
distribution of the maximum IBD probability from each
simulated region. On the basis of these results, it is
appropriate to declare pairs of haplotypes with IBD
probabilities .0.5 to be IBD. For the lengths of regions
and marker densities considered here, this decision rule
results in a false-positive rate of at most 4%.

IBD tracts: Table 2 and the middle and bottom rows
of Figure 3 show estimated IBD probabilities from the
IBD tracts. Results from both estimated probabilities at
each marker position and maximums over the IBD
tracts are shown. Except for IBD of length 0.5 cM in data
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from chromosome 1, the probability of detecting IBD
when using the 0.5 posterior IBD probability threshold
is at least 55% for the IBD lengths considered. Ninety
percent of IBD tracts of length 2 cM are detectable in 30-

kb data, while 85% of IBD tracts of length 1 cM are de-
tectable in 3-kb data. For genomic regions with 1 cM/
Mb, �80–90% of IBD tracts of length 1 cM are detect-
able using data at an average spacing of 6 kb (as on the

Figure 3.—Estimated IBD probabilities. Histograms of maximum estimated IBD probabilities from each region. (Top) Results from
pairs of haplotypes with no IBD. (Middle) Results from pairs of haplotypes with short tracts of IBD. (Bottom) Results from pairs of
haplotypes with long tracts of IBD. The genetic lengths given are approximate.

TABLE 1

Null distribution of IBD probabilities: proportions of estimated IBD probabilities less than specified values for
non-IBD regions

Probabilities at individual locations Probabilities maximized over regions

,0.01 ,0.1 ,0.5 ,0.01 ,0.1 ,0.5

30 kb 0.938 0.983 0.991 0.25 0.88 0.96
3 kb 0.976 0.994 0.996 0.67 0.94 0.95
Chromosome 1 0.991 0.996 0.997 0.97 0.99 0.99
Chromosome 21 0.998 1.000 1.000 0.95 1.00 1.00

IBD probabilities were estimated for pairs of non-IBD haplotypes. In addition to considering probabilities
estimated at individual locations, the maximum estimated IBD probability in each region was noted. The pro-
portions of estimated IBD probabilities taking values ,0.01, 0.1, and 0.5 at individual locations (‘‘Probabilities
at individual locations’’) and maximized over the region (‘‘Probabilities maximized over regions’’) are shown.
Rows correspond to different marker densities: 30-kb average spacing (100 markers per region), 3-kb average
spacing (400 markers), and subsets of 300 consecutive markers taken from chromosomes 1 and 21 of the Affy-
metrix 500K panel.
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Affymetrix 500K SNP panel). Thus, there is good ability
to detect IBD tracts of length 1 cM in data with 5- to 6-kb
marker spacing, while in less dense data (30-kb spacing)
tracts of length 2 cM are easily detected.

Accuracy of estimated IBD probabilities: Figure 4
shows the distribution of estimated IBD probabilities for
the data at 3-kb spacing with randomly distributed IBD
lengths (mean IBD length 0.5 cM and one-eleventh of
the genome IBD). Estimation of IBD probabilities was
performed using the same prior as was used to generate
the IBD data. Note that estimated probabilities are
shown for all positions, including non-IBD positions
that are near the boundary of IBD tracts (these are
included in the non-IBD histogram). Some of the IBD
tracts may be quite short; thus it is not surprising to see
low estimated IBD probabilities for many IBD positions.

As the same prior was used to generate the data as to
estimate the posterior IBD probabilities, the accuracy of
these estimated probabilities can be tested. Figure 5
shows that the estimated probabilities tend to be too

low. For example, of those positions with estimated IBD
probability 0.2, �45% are actually IBD. From an IBD
detection standpoint, the estimated probabilities are
conservative: the true posterior probability of IBD is
larger than that reported. This may occur because the
IBD haplotypes are used in building the haplotype
probability model. Because the IBD haplotype is seen
in the data, it does not appear to be very rare. As the
estimated frequency of the haplotype is overly high, the
posterior probability of IBD is underestimated. With
the current procedure, it is not possible to build the

TABLE 2

Power to detect IBD: proportions of estimated probabilities of IBD greater than specified values for IBD tracts

Individual probabilities Maximum probabilities

IBD length (cM) .0.1 .0.5 .0.9 .0.1 .0.5 .0.9

30 kb 1.0 0.75 0.52 0.28 0.80 0.55 0.35
2.0 0.92 0.81 0.53 0.95 0.90 0.65

3 kb 0.5 0.80 0.70 0.49 0.85 0.75 0.65
1.0 0.95 0.79 0.59 0.95 0.85 0.80

Chromosome 1 0.5 0.35 0.24 0.18 0.35 0.25 0.25
1.0 0.94 0.86 0.56 0.95 0.90 0.75

Chromosome 21 0.5 0.59 0.44 0.23 0.60 0.55 0.30
1.0 0.89 0.74 0.47 0.90 0.80 0.60

IBD probabilities were estimated for pairs of haplotypes containing IBD tracts. In addition to considering
probabilities estimated at individual locations within the IBD tracts, the maximum estimated IBD probability
in each region was noted. The proportions of estimated IBD probabilities taking values .0.1, 0.5, and 0.9 at
individual locations (‘‘Individual probabilities’’) and maximized over the region (‘‘Maximum probabilities’’)
are shown. The approximate genetic lengths of the IBD regions are given.

Figure 4.—Estimated IBD probabilities for random IBD
data. IBD tracts were inserted in pairs of simulated haplotypes
at random according to the prior distribution. IBD probabil-
ities were estimated at both IBD and non-IBD positions, and
these probabilities are shown in the two histograms.

Figure 5.—Accuracy of estimated IBD probabilities. IBD
tracts were inserted in pairs of simulated haplotypes at ran-
dom according to the prior distribution. IBD probabilities
were estimated at both IBD and non-IBD positions. Within
each bin shown on the x-axis, the locations having an esti-
mated IBD probability falling within the bin are considered.
Of those locations falling into the bin, the proportion of lo-
cations that are actually part of an IBD tract is shown by the
height of the bar for that bin. As the distribution of IBD fol-
lows the same distribution as the prior used in the IBD estima-
tion, actual proportions should ideally match the estimated
probabilities and thus fall close to the diagonal line.
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model without the haplotypes being considered for
IBD, as they may then be assigned zero probability. This
is an area for future work.

DISCUSSION

This work has shown that quite small tracts of IBD
between pairs of haplotypes can be accurately detected
with sufficiently dense genotype data. For example, the
proposed method has high power to detect IBD tracts of
length 1 cM when marker density is at least one SNP/6
kb. The examples used simulated and real data in which
markers are not tag selected, and it is likely that use of
tag-selected markers would enable this level of detection
with slightly lower density of markers. Also, most of the
results given here are based on a prior IBD distribution
that has low IBD proportion. With higher prior IBD
probability or a less stringent posterior IBD probability
threshold, ability to detect IBD tracts will increase
(however, the frequency of false-positive results will also
increase). The results presented here contrast with
methods that do not account for LD and haplotype
probabilities and which cannot detect tracts of IBD
,3 cM in length (Miyazawa et al. 2007).

With marker density continuing to increase, the data
will soon approach the situation in which one can
essentially determine IBD status continuously along the
genome, which earlier work has anticipated (Feingold

1993; Browning 1998; Cheung and Nelson 1998;
Grant et al. 1999; Browning 2000; Siegmund and Yakir

2003). Nonetheless, because of LD, it will still be necessary
to infer IBD status probabilistically for short IBD tracts.

Extension to unphased data and allowance for
genotyping error: For practical purposes, it is not
adequate to have an IBD detection method based on
the use of phased haplotypes only, as phased haplotypes
cannot be determined without error, and errors will
significantly disrupt the ability to detect IBD. This
problem cannot be alleviated by simply considering
multiple possible haplotype phasings. For the lengths of
regions considered (at least a hundred markers spread
over 1 cM, for example), the number of possible
haplotype phasings for one individual is enormous.
For each combination of phasings considered for the
two individuals, IBD probabilities need to be estimated.
Even ignoring those haplotype phasings that have
particularly low posterior probability, the number of
reasonable possibilities is still too great. Thus, a method
that simultaneously determines haplotype phase and
IBD status is needed. This will allow estimated IBD status
to inform the haplotype phasing.

The localized haplotype cluster model for haplotype
probabilities is already used very successfully in haplo-
type inference (S. R. Browning and B. L. Browning

2007), and I plan to extend the method proposed here
to simultaneously determine haplotypes and IBD status.
The Beagle implementation of the localized haplotype

cluster model is fast and flexible. It can deal with
multiallelic markers as well as SNPs, and it is fast enough
to be used with whole-genome association data com-
prising hundreds of thousands of markers and thou-
sands of individuals (Browning and Browning 2008).
The existing haplotype-phasing routine is significantly
faster than other existing programs for haplotype phase
inference (S. R. Browning and B. L. Browning 2007).
One challenge will be the large number of pairwise
comparisons that are required when detecting IBD
between all pairs of individuals in a large set. It may be
necessary to use quick ad hoc methods to identify regions
that are suggestive of IBD to reduce the number of full
IBD probability calculations required.

To allow for possible genotype errors, I plan to relax
the requirement that only identical alleles can be IBD. I
will allow a small positive probability of IBD at positions
with nonidentical alleles. An IBD tract will have to be a
little larger or consist of rarer haplotypes to enable
detection of the IBD when the tract contains some
observed nonidentity.

IBD mapping using IBD probabilities: Once esti-
mated IBD probabilities are available, one can use them
in IBD mapping. This will be a powerful complement to
existing approaches, being somewhat intermediate
between LD association mapping and linkage mapping.
One could either use estimated IBD probabilities di-
rectly or apply a threshold to assign IBD/non-IBD status
to pairs of haplotypes. The estimated probabilities or
inferred IBD status from pairs of individuals can be
combined in a variety of different statistics. Options
include the IBD-based statistics used in linkage map-
ping (Feingold 1993), haplotype-sharing-type statistics
that contrast IBD-sharing levels between cases and
controls, or other approaches developed specifically
for case-only IBD data (Grant et al. 1999; Siegmund

and Yakir 2003).

The author thanks Brian Browning and Elizabeth Thompson for
valuable discussions, the anonymous reviewers for their helpful com-
ments, and the WTCCC for making their whole-genome data available.
This work was supported by a grant from the University of Auckland
Research Committee, by National Institutes of Health grant
3R01GM075091-02S1, and by Marsden Fund award 07-UOA-175 from
the Royal Society of New Zealand. This study makes use of data
generated by the Wellcome Trust Case Control Consortium. A full list
of the investigators who contributed to the generation of the data is
available at http://www.wtccc.org.uk. Funding for the Wellcome Trust
Case Control Consortium project was provided by the Wellcome Trust
under award 076113.

LITERATURE CITED

Abney, M., C. Ober and M. S. McPeek, 2002 Quantitative-trait
homozygosity and association mapping and empirical genome-
wide significance in large, complex pedigrees: fasting serum-
insulin level in the Hutterites. Am. J. Hum. Genet. 70: 920–934.

Baum, L. E., 1972 An inequality and associated maximization
technique in statistical estimation for probabilistic functions
on Markov processes, pp. 1–8 in Inequalities. III. Proceedings of
the Third Symposium on Inequalities. Academic Press, New York.

Identity-by-Descent Estimation 2131



Beckmann, L., D. C. Thomas, C. Fischer and J. Chang-Claude,
2005 Haplotype sharing analysis using Mantel statistics. Hum.
Hered. 59: 67–78.

Browning, B. L., and S. R. Browning, 2007 Efficient multilocus as-
sociation mapping for whole genome association studies using
localized haplotype clustering. Genet. Epidemiol. 31: 365–375.

Browning, B. L., and S. R. Browning, 2008 Haplotypic analysis
of Wellcome Trust Case Control Consortium data. Hum. Genet.
123: 273–280.

Browning, S., 1998 Relationship information contained in gamete
identity by descent data. J. Comput. Biol. 5: 323–334.

Browning, S., 2000 A Monte Carlo approach to calculating proba-
bilities for continuous identity by descent data. J. Appl. Probab.
37: 850–864.

Browning, S. R., 2006 Multilocus association mapping using vari-
able-length Markov chains. Am. J. Hum. Genet. 78: 903–913.

Browning, S. R., and B. L. Browning, 2007 Rapid and accurate
haplotype phasing and missing data inference for whole genome
association studies by use of localized haplotype clustering. Am. J.
Hum. Genet. 81: 1084–1097.

Chapman, N. H., and E. A. Thompson, 2003 A model for the length
of tracts of identity by descent in finite random mating popula-
tions. Theor. Popul. Biol. 64: 141–150.

Cheung, V. G., and S. F. Nelson, 1998 Genomic mismatch scanning
identifies human genomic DNA shared identical by descent.
Genomics 47: 1–6.

Curtis, D., A. E. Vine and J. Knight, 2008 Study of regions of ex-
tended homozygosity provides a powerful method to explore
haplotype structure of human populations. Ann. Hum. Genet.
72: 261–278.

Feingold, E., 1993 Markov processes for modeling and analyzing a
new genetic-mapping method. J. Appl. Probab. 30: 766–779.

Grant, G. R., E. Manduchi, V. G. Cheung and W. J. Ewens,
1999 Significance testing for direct identity-by-descent map-
ping. Ann. Hum. Genet. 63: 441–454.

Haldane, J. B. S., 1919 The combination of linkage values, and
the calculation of distances between the loci of linked factors.
J. Genet. 8: 299–309.

Hill, W. G., and J. Hernandez-Sanchez, 2007 Prediction of multi-
locus identity-by-descent. Genetics 176: 2307–2315.

Houwen, R. H., S. Baharloo, K. Blankenship, P. Raeymaekers,
J. Juyn et al., 1994 Genome screening by searching for shared
segments: mapping a gene for benign recurrent intrahepatic
cholestasis. Nat. Genet. 8: 380–386.

International HapMap Consortium, 2007 A second generation
human haplotype map of over 3.1 million SNPs. Nature 449:
851–862.

Kirch, P. V., 1984 The Evolution of the Polynesian Chiefdoms. Cam-
bridge University Press, Cambridge, UK.

Leutenegger, A. L., B. Prum, E. Genin, C. Verny, A. Lemainque

et al., 2003 Estimation of the inbreeding coefficient through
use of genomic data. Am. J. Hum. Genet. 73: 516–523.

McPeek, M. S., and A. Strahs, 1999 Assessment of linkage disequi-
librium by the decay of haplotype sharing, with application to
fine-scale genetic mapping. Am. J. Hum. Genet. 65: 858–875.

McPeek, M. S., and L. Sun, 2000 Statistical tests for detection of mis-
specified relationships by use of genome-screen data. Am. J.
Hum. Genet. 66: 1076–1094.

Miyazawa, H., M. Kato, T. Awata, M. Kohda, H. Iwasa et al.,
2007 Homozygosity haplotype allows a genomewide search
for the autosomal segments shared among patients. Am. J.
Hum. Genet. 80: 1090–1102.

Nelson, S., B. Merriman, Z. Chen, M. Ogdie, J. Stone et al.,
2006 Applications of pedigree-free identity-by-descent map-
ping to localizing disease genes. Abstract 1530, Annual Meeting
of The American Society of Human Genetics, October 11, 2006,
New Orleans. http://www.ashg.org/genetics/ashg06s/.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira

et al., 2007 PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81: 559–
575.

Rabiner, L. R., 1989 A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proc. IEEE 77: 257–
286.

Schaffner, S. F., C. Foo, S. Gabriel, D. Reich, M. J. Daly et al.,
2005 Calibrating a coalescent simulation of human genome
sequence variation. Genome Res. 15: 1576–1583.

Siegmund, D., and B. Yakir, 2003 Statistical analysis of direct iden-
tity-by-descent mapping. Ann. Hum. Genet. 67: 464–470.

Sutton, D. G. (Editor), 1994 The Origins of the First New Zealanders.
Auckland University Press, Auckland, New Zealand.

Te Meerman, G. J., M. A. Van der Meulen and L. A. Sandkuijl,
1995 Perspectives of identity by descent (IBD) mapping in
founder populations. Clin. Exp. Allergy 25(Suppl. 2): 97–102.

Thompson, E., 2000 Statistical Inference From Genetic Data on Pedigrees.
The Institute of Mathematical Statistics and the American Statis-
tical Association, Beachwood, OH.

Tzeng, J. Y., B. Devlin, L. Wasserman and K. Roeder, 2003 On the
identification of disease mutations by the analysis of haplotype
similarity and goodness of fit. Am. J. Hum. Genet. 72: 891–902.

Van der Meulen, M. A., and G. J. Te Meerman, 1997 Association
and haplotype sharing due to identity by descent, with an appli-
cation to genetic mapping, pp. 115–136 in Genetic Mapping of
Disease Genes, edited by I.-H. Pawlowitzki, J. H. Edwards and
E. A. Thompson. Academic Press, San Diego.

Voight, B. F., and J. K. Pritchard, 2005 Confounding from cryptic
relatedness in case-control association studies. PLoS Genet. 1:
302–311.

Wellcome Trust Case Control Consortium, 2007 Genome-wide
association study of 14,000 cases of seven common diseases and
3,000 shared controls. Nature 447: 661–678.

Wessel, J., and N. J. Schork, 2006 Generalized genomic distance-
based regression methodology for multilocus association analy-
sis. Am. J. Hum. Genet. 79: 792–806.

Whyte, A. L. H., S. J. Marshall and G. K. Chambers, 2005 Human
evolution in Polynesia. Hum. Biol 77: 157–177.

Communicating editor: M. S. McPeek

2132 S. R. Browning


