
Copyright � 2008 by the Genetics Society of America
DOI: 10.1534/genetics.107.085332

Note

Exploring Population Genetic Models With Recombination
Using Efficient Forward-Time Simulations

Badri Padhukasahasram,*,1 Paul Marjoram,† Jeffrey D. Wall,‡

Carlos D. Bustamante* and Magnus Nordborg§

*Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14850, †Biostatistics Division,
Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles,
California 90089, ‡Institute of Human Genetics, University of California, San Francisco, California 94143

and §Molecular and Computational Biology, University of Southern California,
Los Angeles, California 90089

Manuscript received December 2, 2007
Accepted for publication January 26, 2008

ABSTRACT

We present an exact forward-in-time algorithm that can efficiently simulate the evolution of a finite
population under the Wright–Fisher model. We used simulations based on this algorithm to verify the
accuracy of the ancestral recombination graph approximation by comparing it to the exact Wright–Fisher
scenario. We find that the recombination graph is generally a very good approximation for models with
complete outcrossing, whereas, for models with self-fertilization, the approximation becomes slightly
inexact for some combinations of selfing and recombination parameters.

COALESCENT theory provides a continuous-time
approximation for the history of small samples in

large populations and coalescent simulation is a widely
used tool in population genetics. Under this framework,
the genealogy of a sample of DNA sequences is modeled
backward in time and neutral mutations are superposed
on this genealogy to generate sequence polymorphism
data (Kingman 1982; Hudson 1983; Rosenberg and
Nordborg 2002). Forward simulations, in contrast,
model the evolution of all the sequences in a population
exactly, forward in time and generation by generation.
Becausecoalescent simulationsconsideronly thosechro-
mosomes that carry material ancestral to the sample,
and, by making a continuous-time approximation skip
uninteresting generations whose events do not affect the
sample, they are computationally much more efficient
than forward simulation programs. However, despite
their inefficiency, forward simulations are necessary if
we wish to simulate data sets under complex and realistic
biological scenarios (e.g., natural selection at multiple
linked loci) that are difficult to model accurately using
the coalescent. Given the dramatic growth in the power
of computing, forward-time simulations are currently
feasible for large genomic regions (e.g., megabase scale)
and many simulation packages have been developed

recently (e.g., Balloux 2001; Hey 2004; Hoggart et al.
2005; Peng and Kimmel 2005; Dudek et al. 2006;
Guillaume and Rougemont 2006; Sanford et al.
2007) and have also found important applications (e.g.,
Balloux and Goudet 2002; Pineda-Krch and Redfield

2005; Peng and Kimmel 2007). Here, we present an exact
forward-in-time algorithm that can efficiently simulate
the evolution of a finite population undergoing muta-
tions, recombination, and natural selection at multiple
linked loci. Incontrast toexistingforward-timesimulators
that consider the population genealogy generation by
generation, our forward algorithm uses the genealogical
information for multiple generations at a time, and on
thebasisof this information, simulatesonly thosechromo-
somes in the next generation that can potentially con-
tribute to the future population. We show that such a
forward–backward scheme combined with other optimi-
zations can lead to substantial improvements in run-time
efficiency. We use our simulation program to evaluate
coalescent models with recombination by comparing
them to the exact Wright–Fisher model.

SIMULATION ALGORITHM

Our algorithm is implemented in the C11 program-
ming language andwe simulate data sets under the Wright–
Fisher model assumptions. Individuals in a population
are assumed to be diploid, the population size is assumed

1Corresponding author: Biological Statistics and Computational Biology,
Room 169, Biotechnology Building, Cornell University, Ithaca, NY 14850.
E-mail: bp85@cornell.edu

Genetics 178: 2417–2427 (April 2008)

constant (this assumption can readily be relaxed), and
generations are always nonoverlapping. Chromosomes
within the population are represented by sorted arrays of
integers that correspond to the locations of their muta-
tions in base pairs. In this representation, a location is
considered polymorphic if it occurs in some but not all of
the chromosomes. Over time, the chromosome arrays
undergo changes due to recombination (i.e., are partially
replaced by parts of other arrays) and mutation (i.e., new
integer locations get inserted). They also increase or
decrease in the number of copies due to genetic drift. At
any given time, we keep track of chromosomes belong-
ing only to the current and previous generations and
keep reusing these arrays. We use a pseudo infinite-sites
model for mutations (i.e., where the number of sites
is finite but new mutations can appear only at non-
polymorphic locations) and a finite-sites model for re-
combination and remove locations that are no longer
polymorphic, at regular intervals. The total number of
new mutations added to a chromosome in any particular
generation is modeled as a Poisson random variable with
mean equal to the per-generation per-sequence muta-
tion rate u. Meiotic recombination is modeled as a single
crossing-over event and the probability that a recombi-
nation event occurs in any particular generation is equal
to 1 � e�r, where r denotes the per-generation per-
sequence rate of recombination.Our forward algori-
thm proceeds by simulating the population in the next
generation as a function of (i) the population in the
previous generation and (ii) the simulated genealogy
for the next k generations. We use the simulated ge-
nealogy to tell us which of the chromosomes in the next
generation can contribute material to the future pop-
ulation that exists after k generations from now. Only

those chromosomes are explicitly simulated in the next
generation since all the other chromosomes are des-
tined to disappear. We outline all the steps in our
simulation program below:

1. Let gen(0) represent the current generation, gen(1)
represent the generation being simulated, and gen(2),
gen(3), gen(4), . . . , etc., represent subsequent gen-
erations. Before creating the individuals of gen(1), we
generate the future genealogical information of the
population for k generations ½i.e., information re-
quired for creating gen(2) to gen(k 1 1)�. This involves
simulating the ancestry of the chromosomes in the
next k generations and determining whether or not
they will undergo recombination in any particular gen-
eration. Using this information, we can see that two key
events are possible:

a. All the descendants of a chromosome belong-
ing to gen(1) may be lost by gen(k 1 1) with-
out any of their homologs having undergone
recombination.

b. A chromosome or its homolog may recombine
in gen(2), but both of them can lose all their
descendants by gen(k 1 1) without any of their
homologs having undergone any subsequent
recombination ½i.e., from gen(3) to gen(k 1 1)�.
Chromosomes that belong to categories a or b,
cannot potentially leave any trace in the future
population that exists at gen(k 1 1). Therefore,
it is not necessary to explicitly simulate such
chromosomes in gen(1).

2. Chromosomes of gen(1) are created by randomly
sampling chromosomes from gen(0) and determin-
ing whether or not they undergo recombination.
When a chromosome of gen(0) gets chosen the first
time and does not recombine, we simply exchange
the pointers to the arrays between gen(1) and gen(0)
to create a new chromosome of gen(1). If it gets
picked again or if it undergoes recombination, we
create a new chromosome by copying parts of the
relevant arrays into the arrays of gen(1) using the
memcpy() function. The only exception to this
occurs when a recombination is the last event in-
volving a particular individual. In this case, we first
exchange the pointers to the arrays for one of the
homologs (provided it has not been picked already)
and explicitly copy only part of the other array using
memcpy(). After creating all the chromosomes of
gen(1), we generate new mutation locations for each
chromosome and insert them into the sorted arrays
using a binary search and the memove() function.

3. Using the future genealogical information, create
only those chromosomes in gen(1) that can poten-
tially contribute to the population that exists at gen
(k 1 1). Assume that the other arrays are empty. ½Note
that the main idea in step 2, when creating a new
generation, was to reuse the arrays from the previous

TABLE 1

The fraction of chromosomes in class a as a
function of k and r

ka r b

Fraction in
class ac 2Nd

2 0.000000 0.531224 1000
2 0.105361 0.464082 1000
2 0.287682 0.381282 1000
4 0.000000 0.687642 1000
4 0.105361 0.565018 1000
4 0.287682 0.435589 1000
8 0.000000 0.810645 1000
8 0.105361 0.609490 1000
8 0.287682 0.447974 1000

a Number of generations of look-ahead under the standard
neutral model.

b Per-generation per-sequence recombination rate.
c Average fraction of chromosomes in class a as determined

from 10 million simulations. Chromosomes in class a cannot
potentially leave any trace in the future population that exists
after k generations.

d Total number of chromosomes in the diploid population.

2418 B. Padhukasahasram et al.

generation as much as possible and avoid copying. If
we eliminate some of the nonancestral chromosomes
from any generation (see appendix a), the fraction
of chromosomes for which explicit array copying is
necessary decreases substantially.�

4. Update the future genealogy by one more genera-
tion. Repeat step 3. Remove nonpolymorphic loca-
tions from the population at regular intervals.

5. Simulate the whole population during the last k 1 2
generations of the simulation (i.e., if the simulation
is run for l generations, we explicitly simulate all the
chromosomes from generations l� k� 1 to l) as well as
during the last k 1 2 generations up to the generation
during which nonpolymorphic locations get removed
from the population (i.e., if fixed mutations get
removed every n generations, then we explicitly
simulate all the chromosomes from generations n �
k� 1 to n, 2n� k� 1 to 2n, 3n� k� 1 to 3n, . . . , etc.).
½Note that this last step is essential because at the end
of the simulation as well as during the generation at
which nonpolymorphic locations get removed, we

require all the chromosomes present in the popula-
tion (for example, to determine which chromosomal
locations are nonpolymorphic) and not just the ones
that can contribute to the future population.�

The parameter k has to be chosen optimally for this
algorithm to work most effectively. There is a trade-off
between the computational effort spent to look forward
for k generations and the effort saved by the elimination
of nonancestral chromosomes from the next genera-
tion. In terms of run-time complexity, creating a new
generation mainly involves array copy operations that
take linear ½i.e., O(N)� time in terms of the number of
mutations ½binary search takes O(ln(N)) time while
exchanging the pointers takes constant time� accumu-
lated in the array. In contrast, looking forward for a few
generations takes only constant time and is indepen-
dent of the number of mutations carried.

The expected proportion of individuals in categories a
or b first increases as the depth of the look-ahead (i.e., k)
increases but eventually becomes nearly constant. So,

TABLE 2

Approximate run times for forward simulation programs and average value of summary statistics
for forward and coalescent simulation programs

Timee

2Na Generations ub rc FORWSIMd FREGENEf FPGg msh Len (Mb)

a. Approximate run times for forward simulation programs
100 1,000 0.01 0.01 0.03 0.06 1.61 0.006 0.05
100 1,000 0.10 0.10 0.04 0.08 2.09 0.006 0.05
100 1,000 0.25 0.25 0.05 0.11 2.89 0.0075 0.05
1,000 10,000 0.01 0.01 1.74 4.71 265.06 0.006 0.05
1,000 10,000 0.10 0.10 2.85 18.50 450.90 0.035 1.00
1,000 10,000 0.25 0.25 6.51 43.79 1136.29 0.367 1.00
10,000 100,000 0.01 0.01 281.42 2241.59 45868.58 0.023 1.00
10,000 100,000 0.10 0.10 1153.41 13620.02 — 8.701 10.00
10,000 100,000 0.25 0.25 4470.48 34825.89 — 40.663 50.00

FORWSIM FREGENE FPG msh

2N Generations u r E[S]i E[H]j E[S] E[H] E[S] E[H] E[S] E[H]

b. Average value of summary statistics for forward and coalescent simulation programs
1,000 10,000 0.01 0.01 71.250 16.066 69.637 16.242 71.551 16.078 71.016 15.916
1,000 10,000 0.10 0.10 708.614 19.612 704.071 19.635 708.089 19.656 706.603 19.538

a Total number of chromosomes under the standard neutral Wright–Fisher model with constant population size and with uni-
form mutation and recombination rates.

b Per-generation per-sequence mutation rate.
c Per-generation per-sequence recombination rate.
d FORWSIM is our C11 program freely available at http://people.cornell.edu/pages/bp85.
e Time taken in seconds for a single run on a 2.2 Ghz 64-bit AMD processor machine with 8 GB of RAM.
f FREGENE is a C11 program freely available at http://www.ebi.ac.uk/projects/BARGEN/download/FREGEN/fregeneweb.html.
g FPGisaCprogramfreelyavailableathttp://lifesci.rutgers.edu/�heylab/ProgramsandData/Programs/FPG/FPG_Documentation.

htm#FilesinthisPackage. For FPG, the number of chromosome segments was always fixed at 500.
h ms is a C program that simulates data sets under the coalescent framework and is freely available at http://home.uchicago.edu/

�rhudson1/source.html. ms was run with population crossing-over rate r ¼ 4Nr and population mutation rate u ¼ 4Nu and sample
size of 20. (For details about ms, see Hudson 2002.)

i Total number of SNPs for a sample size of 20 chromosomes. Average values are based on 1000 simulations.
j Number of distinct haplotypes. Average values are based on a sample of 20 chromosomes and 1000 simulations.

Note 2419

increasing k beyond a certain range will not be desirable.
The expected proportion decreases as the per-generation
per-sequence recombination rate increases, and there-
fore this strategy becomes less effective for high values
of r. Table 1 shows the expectation of the fraction of
chromosomes in category a as a function of k and r for a
population with 500 diploid individuals and evolving
under the standard neutral model (also see appendix a).
In all the simulations presented here, we use a fixed
value of k ¼ 8 and remove nonpolymorphic locations
after every N generations, where N denotes the size of
the population (appendix b shows some run-time com-
parisons for different values of the look-ahead parameter).

For models with natural selection, we simulate the
evolution of selected and neutral sites separately. We
first generate the future genealogical information by
simulating the ancestry of all the chromosomes in the
population considering only the selected sites. If the
number of sites under selection remains small, this in-
formation can be generated quickly. Then, using this
information, we simulate the evolution of the remaining
(neutral) sites according to the algorithm described
earlier. Note that as the proportion of sites under selec-
tion increases, the look-ahead strategy becomes relatively
less effective.

Random number generation: Random numbers
are generated using the Mersenne Twister algorithm

(Matsumoto and Nishimura 1998). The external files
mtrand.cpp and mtrand.h are used along with our pro-
gram to enable random number generation. mtrand.cpp
is a fast and high-quality random number generator
whose period length is a large prime number that is one
less than a power of 2.

Comparison with other forward simulation pro-
grams: We first compare the approximate running time
of our simulation program (FORWSIM) with two other
currently available forward-time simulation programs for
the standard neutral model. These comparisons demon-
strate that our look-ahead strategy combined with other
standard optimizations can result in large gains in run-
time efficiency (Table 2a, appendix c shows some run-
time comparisons for models with natural selection at
multiple sites). The comparisons also confirmed that, for
all the programs tested, the means and distributions of
some simple summary statistics are in agreement with
coalescent simulations (Table 2b, Figure 1).

IS THE ANCESTRAL RECOMBINATION
GRAPH A GOOD APPROXIMATION

TO THE EXACT SCENARIO?

Under the coalescent framework, the genealogy of a
sample of sequences with recombination can be approx-
imated by a graph called the ancestral recombination

Figure 1.—(a) The distribution of the number
of distinct haplotypes H for coalescent simula-
tions with r ¼ 200.0 and u ¼ 200.0 and forward
simulations with r ¼ 0.100, u ¼ 0.100, and
2N ¼ 1000, using FORWSIM, FREGENE, and
FPG. (b) The distribution of the number of dis-
tinct haplotypes H for coalescent simulations
with r ¼ 20.0 and u ¼ 20.0, and forward simula-
tions with r ¼ 0.010, u ¼ 0.010, and 2N ¼ 1000,
using FORWSIM, FREGENE, and FPG. H values
are for samples of 20 chromosomes and forward
simulation programs were run for 20N genera-
tions.

2420 B. Padhukasahasram et al.

graph (ARG) (e.g., see Hudson 1983; Griffiths and
Marjoram 1996). If s denotes the probability of self-
fertilization and F¼ s/(2� s), the genealogy of a sample
for partial selfing (i.e., 0 , s , 1) can be approximated by
an outcrossing version of the ARG with a rate of coa-
lescence that is 1 1 F times faster and a rate of recom-
bination that is 1� s times slower (see Nordborg 2000).
The recombination graph makes two main assumptions:

1. It assumes that the lineages we follow backward in
time recombine only with nonancestral lineages.
This follows because we are tracing the ancestry of
small samples in large populations and therefore the
number of lineages ancestral to the sample remains
small compared to the total population size.

2. It also assumes that in a large population all the re-
combination events are independent of one another.
We use forward simulations of the exact Wright–
Fisher model with and without self-fertilization and
compare the expected decay of pairwise linkage
disequilibrium (LD) to values generated with equiv-
alent coalescent simulations and verify the accuracy
of these approximations.

When the recombination rate is high, the number of
ancestral lineages in the recombination graph can be-
come very large and so it is not obvious whether the first
approximation will be accurate in finite populations.
When there is partial selfing, going backward in time, a

pair of lineages resulting from a single recombination
event can spend a significant amount of time together
within the same ancestors before they find different
parents or coalesce. Thus, it can be shown that there is a
significant probability that such lineages may recom-
bine again (i.e., overlapping recombinations) before
they find different ancestors (see appendix d, Figure
2a). This clearly violates the assumption that all recom-
bination events happen independently of one another.
For models without selfing, the probability of such over-
lapping recombination events is expected to be much
smaller as long as the population size is reasonably large
(see appendix d, Figure 2b).

Figure 3 shows the expected decay of the absolute value
of pairwise D9 (the normalized measure of LD that takes
values between �1 and 1) for forward-time simulations
with selfing, forward-time simulations without selfing,
and coalescent simulations with equivalent parameters.
When simulating using the coalescent, we assume that
recombination happens only with nonancestral chromo-
somes, which ignores the chance of recombination events
between ancestral lineages. When r is high, the expected
value of D9 is slightly higher in forward simulations
without selfing than in comparable coalescent simula-
tions presumably because the number of ancestral line-
ages is large and recombinations with ancestral lineages
are not rare. Because recombination events with ancestral
lineages will be associated with some coalescence, we

Figure 2.—(a) The probability of overlapping
recombination events as a function of the re-
combination rate (r) and the probability of self-
fertilization (s) for a population with N ¼ 1000
diploid individuals. (b) The probability of over-
lapping recombination events as a function of
recombination rate (r) and population size (N)
for models without self-fertilization (i.e., s ¼ 0).

Note 2421

reach the most recent common ancestor slightly sooner in
the exact case than in the ARG. Nevertheless, for models
with only outcrossing, we see from results in Figures 1, 3,
and from Table 2, that the expectations and distributions
under the coalescent with recombination are close to the
expectations under the exact scenario even for higher
values of r. We also compared the frequencies of some
triplet based LD patterns (Padhukasahasram et al. 2004,

2006) at different distances and reached similar conclu-
sions (results not shown here). For models with selfing,
the ARG remains a close approximation to reality as long
as either r or s remains small (Figures 3 and 4, Table 3).
When r and s are both very high, the ARG approximation
breaks down due to overlapping recombination events
and expected value of D9 is significantly higher in forward
simulations compared to the equivalent coalescent model.

Figure 3.—(a) The expected decay of pairwise
D9 for coalescent simulations with r ¼ 2.0 and u ¼
51.0 (shaded curve), forward simulations with r ¼
0.001, u ¼ 0.0255, and 2N ¼ 1000 (solid dashed
curve), and forward simulations with selfing for
r ¼ 0.05, u ¼ 0.05, 2N ¼ 1000, and s ¼ 0.98 (solid
curve). (b) The expected decay of pairwise D9 for
coalescent simulations with r ¼ 20.0 and u ¼ 51.0
(shaded curve), forward simulations with r¼ 0.01,
u ¼ 0.0255, and 2N ¼ 1000 (solid dashed curve),
forward simulations with r ¼ 0.5, u ¼ 0.05, 2N ¼
1000, and s ¼ 0.98 (solid curve), and forward sim-
ulations with r¼ 0.05, u¼ 0.005, 2N¼ 10,000, and
s ¼ 0.98 (shaded dashed curve). (c) The expected
decay of pairwise D9 for coalescent simulations
with r ¼ 1000.0 and u ¼ 51.0 (shaded curve),
and forward simulations with r ¼ 0.50, u ¼
0.0255, and 2N ¼ 1000 (solid curve). D9 values
shown are based on a sample size of 20 chromo-
somes collected from the final populations and
are averaged over 10,000 runs. Forward simula-
tions were run for 40N generations.

2422 B. Padhukasahasram et al.

SUMMARY

We have presented an exact forward-in-time algo-
rithm that can efficiently simulate the evolution of a

finite population under the Wright–Fisher model of
evolution. Comparisons with other currently available
forward-in-time simulators show that our C11 program
is able to simulate data sets quickly and all the tested

Figure 4.—(a) The distribution of the number
of distinct haplotypes H for coalescent simula-
tions with r ¼ 20.0 and u ¼ 20.0, forward simula-
tions with r ¼ 0.100, u ¼ 0.0181818, s ¼ 0.90, and
2N ¼ 1000 and forward simulations with r ¼ 0.50,
u¼ 0.01960784, s¼ 0.98, and 2N¼ 1000. (b) The
distribution of the number of distinct haplotypes
H for coalescent simulations with r ¼ 200.0 and
u¼ 200.0, forward simulations with r¼ 0.200, u¼
0.1333333, s ¼ 0.50, and 2N ¼ 1000 and forward
simulations with r ¼ 0.10, u ¼ 0.10, and 2N ¼
1000. H values are for samples of 20 chromo-
somes drawn from the final population and for-
ward simulation programs were run for 40N
generations for models with selfing and 20N gen-
erations for models without selfing.

TABLE 3

Average value of summary statistics for forward simulations with and without selfing

FORWSIMe msf

2Na Generations ub rc sd E[S]g E[H]h E[S] E[H]

1,000 10,000 0.0100 0.0100 0.00 71.250 16.066 71.016 15.916
1,000 20,000 0.0182 0.1000 0.90 70.687 15.968 71.016 15.916
1,000 20,000 0.0196 0.5000 0.98 70.804 15.586 71.016 15.916
1,000 10,000 0.1000 0.1000 0.00 708.614 19.612 706.603 19.538
1,000 20,000 0.1333 0.2000 0.50 711.662 19.563 706.603 19.538

a Total number of chromosomes under the standard neutral Wright–Fisher model with constant population
size and uniform mutation and recombination rates.

b Per-generation per-sequence mutation rate.
c Per-generation per-sequence recombination rate.
d Probability of selfing.
e FORWSIM is our forward simulation program written in C11 and is freely available at http://people.

cornell.edu/pages/bp85.
f ms is a C program that simulates data sets under the coalescent framework and is freely available at http://

home.uchicago.edu/�rhudson1/source.html. ms was run with the population crossing-over rate r ¼ 4Nr and
population mutation rate u ¼ 4Nu.

g Total number of SNPs for a sample size of 20 chromosomes. Average values are based on 1000 simulations.
h Number of distinct haplotypes. Average values are based on a sample of 20 chromosomes and 1000

simulations.

Note 2423

programs appear to function correctly. Further refine-
ments to our algorithm are possible to improve its ef-
ficiency. For example, instead of using a constant depth
of look-ahead, we may change the depth during the
run. Note that toward the later stages of a simulation,
when the amount of polymorphism in the population
becomes high, a deeper look-ahead might prove to be
more advantageous. Also, it may be possible to de-
termine other categories of chromosomes (apart from
those in classes a or b) that cannot potentially leave any
trace in the future population that exists after k gen-
erations. Alternately, instead of using the look-ahead
strategy described before, we may explicitly construct
chromosomes for a small number of generations in
terms of the chromosomes of gen(1) by generating the
recombination breakpoints of the future (this may be
useful when r is very high). Doing this will allow us to
eliminate all the chromosomes that are nonancestral to
the population that exists at gen(k 1 1) but will require
greater computational effort than the former look-
ahead strategy. Finally, we anticipate that a parallel im-
plementation of this algorithm that can simultaneously
utilize a large number of computer processors (which
can all access the same memory), can make forward-time
simulations practical for very large populations.

We checked the accuracy of the ancestral recombina-
tion graph approximation by comparing the expected
decay of pairwise linkage disequilibrium in forward and
coalescent simulations. Our results indicate that the
standard coalescent with recombination will be a close
approximation to the exact scenario for completely out-
crossing populations with 2N ¼ 1000 chromosomes or
more, even for higher values of r. The ARG is also a good
approximation for models with selfing as long as either
the selfing rate (s) or recombination rate (r) remains
small. When s and r are both very high, the scaled ARG for
partial self-fertilization becomes slightly inexact due to
substantial probability of overlapping recombination
events. Therefore, for such parameter ranges, it is best to
simulate data sets using exact Wright–Fisher simulations
(or alternately modify existing coalescent simulation pro-
grams to allow for overlapping recombination events).

We thank Andrew G. Clark and members of the Bustamante lab for
providing comments on this project. This work was supported by
National Science Foundation grant DBI-0606461 to Susan McCouch
and Carlos D. Bustamante as well as by National Institutes of Health
(NIH), Center for Excellence in Genomic Sciences grants HG-002790
and GM-069890 to Paul Marjoram and Magnus Nordborg. This work

was also supported in part by NIH grant R01-HG004049-02 to Jeffrey D.
Wall, Paul Marjoram, and Magnus Nordborg.

LITERATURE CITED

Balloux, F., 2001 EASYPOP (Version 1.7): a computer program for
population genetics simulation. J. Hered. 92: 301–302.

Balloux, F., and J. Goudet, 2002 Statistical properties of popula-
tion differentiation estimators under stepwise mutation in a fi-
nite island model. Mol. Ecol. 11: 771–783.

Dudek, S. M., A. A. Motsinger, D. R. Velez, S. M. Williams and
M. D. Ritchie, 2006 Data simulation software for whole-genome
association and other studies in human genetics. Pac. Sym. Bio-
comput. 11: 499–510

Griffiths, R. C., and P. Marjoram, 1996 Ancestral inference from
samples of DNA sequences with recombination. J. Comput. Biol.
3: 479–502.

Guillaume, F., and J. Rougemont, 2006 Nemo: an evolutionary
and population genetics programming framework. Bioinfor-
matics 22: 2556–2557.

Hey, J., 2004 FPG: A computer program for forward population ge-
netic simulation. http://lifesci.rutgers.edu/�heylab/HeylabSoftware.
htm#FPG.

Hoggart, C., T. G. Clark, R. Lampariello, M. De Iorio, J.
Whittaker et al., 2005 FREGENE: software for simulating large
genomic regions. Technical Report. Department of Epidemiology
and Public Health, Imperial College, London.

Hudson, R. R., 1983 Properties of a neutral allele model with intra-
genic recombination. Theor. Popul. Biol. 23: 183–201.

Hudson, R. R., 2002 Generating samples under a Wright–Fisher
neutral model of genetic variation. Bioinformatics 18: 337–338.

Kingman, J. F. C., 1982 The coalescent. Stochast. Proc. Appl. 13:
235–248.

Matsumoto, M., and T. Nishimura, 1998 Mersenne Twister: a 623
dimensionally equidistributed uniform pseudorandom number
generator. ACM Trans. Model. Comput. Simul. 8: 3–30.

Nordborg, M., 2000 Linkage disequilibrium, gene trees, and self-
ing: an ancestral recombination graph with partial self-fertiliza-
tion. Genetics 154: 923–929.

Padhukasahasram, B., P. Marjoram and M. Nordborg,
2004 Estimating the rate of gene-conversion on human chro-
mosome 21. Am. J. Hum. Genet. 75: 386–397.

Padhukasahasram, B., J. D. Wall, P. Marjoram and M. Nordborg,
2006 Estimating recombination rates from single-nucleotide
polymorphisms using summary statistics. Genetics 174: 1517–1528.

Peng, B., and M. Kimmel, 2005 simuPOP: a forward-time population
genetics simulation environment. Bioinformatics 21: 3686–3687.

Peng,B.,andM.Kimmel,2007 Simulationsprovidesupport forthecom-
mon disease–common variant hypothesis. Genetics 175: 763–776.

Pineda-Krch, M., and R. J. Redfield, 2005 Persistence and loss of
meiotic recombination hotspots. Genetics 169: 2319–2333.

Rosenberg, N. A., and M. Nordborg, 2002 Genealogical trees, co-
alescent theory and the analysis of genetic polymorphisms. Nat.
Rev. Genet. 3: 380–390.

Sanford, J., J. Baumgardner, W. Brewer, P. Gibson and W. ReMine,
2007 Mendel’s accountant: a biologically realistic forward-time
population genetics program. Scalable Computing: Practice and
Experience. 8: 147–165

Communicating editor: M. K. Uyenoyama

2424 B. Padhukasahasram et al.

APPENDIX A: CALCULATIONS

Let gen(0) represent the current generation, gen(1) represent the generation being simulated and gen(2), gen(3),
gen(4), . . ., etc., represent subsequent generations. Let 2N denote the total number of chromosomes in the
population and k denote the number of generations of look-ahead. Assuming random mating as follows: v(m), the
probability that m chromosomes do not get chosen for the next generation is (1�m/2N)2N; q(m), the probability that a
chromosome is chosen exactly m times is 2NCm(1/2N)m(1 � 1/2N)2N�m.

Assuming n copies of a chromosome in the current generation, the probability that exactly m copies get chosen in
the next generation is s(n, m) ¼ 2NCm(n/2N)m(1 � n/2N)2N�m.

The chance that a chromosome does not recombine in any given generation is approximately e�r.
Assuming n copies of a chromosome in the current generation, the chance that none of the copies of the

chromosome that get picked in the next generation, recombine, can be approximated as

pl ðn; rÞ ¼ sðn; 0Þ1 sðn; 1Þe�r 1 sðn; 2Þe�2r . . . sðn; lÞe�lr ; ðA1Þ

where l denotes the maximum number of copies that can be picked in the next generation.
For k ¼ 1 and r . 0, a chromosome can be lost if it does not get picked in gen(2). Therefore, the chance that a

chromosome is lost without its homolog having undergone recombination is

qð0Þp2N ð1; r Þ:

For k ¼ 2 and r . 0, a chromosome can be lost if it does not get picked in gen(2) or gets picked 1 to 2N � 1 times in
gen(2) but none of those copies get picked in gen(3). Therefore, the probability that all the copies of a chromosome
are lost without any of their homologs having undergone any recombination is nearly

qð0Þp2N ð1; r Þ1 ½qð1Þvð1Þp2N�1ð1; r Þp2N ð1; r Þ1 . . . qð2N � 1Þvð2N � 1Þp1ð1; rÞp2N ð2N � 1; rÞ�: ðA2Þ

Note that if a chromosome gets picked m times in the next generation, then its homolog can get picked at most 2N�m
times and therefore we have to choose l appropriately in the terms in Equation A2. We assume that if there are x copies
of a chromosome in any given generation, then there are also x homologs, when calculating the probability that

Figure A1.—The fraction of chromosomes in
category a as a function of recombination rate
(r) and number of generations of look-ahead (k).

Figure A2.—The fraction of chromosomes in
category a as a function of recombination rate
(r) and number of generations of look-ahead (k).

Note 2425

none of those homologs will recombine. There is a small chance that some of the copies of a chromosome will be
homologs of one another in the next generation. Therefore, the probability given by Equation A2 is not exact.

In general, when N is large, a is small and r . 0, the chance P(a) that all the descendants of a chromosome from
gen(1) are lost at gen(a 1 2) but not before that, without any of their homologs having undergone recombination is
nearly

P
sð1; m1Þp2N�m1ð1; rÞsðm1; m2Þp2N�m2ðm1; r Þ . . . sðma�1; maÞp2N�maðma�1; r Þsðma ; 0Þp2N ðma ; r Þ, where m1,

m2, . . . , ma can all vary from 1 to 2N � 1. Therefore, for k . 0, the total probability T(k) that all the copies of a
chromosome are lost by gen(k 1 1), without any of their homologs having undergone any recombination is nearly

sð1; 0Þp2N ð1; rÞ1
X

PðaÞ; ðA3Þ

where a varies from 0 to k � 1. Table A1 shows the approximate probability given by (A3) as a function of k and r.
Figures A1 and A2 show different views of this likelihood surface.

For r ¼ 0, T(k) is exactly equal to

sð1; 0Þ1
X

U ðaÞ; ðA4Þ

where a varies from 0 to k� 1 and U(a) ¼
P

sð1; m1Þsðm1; m2Þ . . . sðma�1; maÞsðma ; 0Þ, where m1, m2, . . . , ma all vary
from 1 to 2N � 1.

APPENDIX B

TABLE A1

Approximate probability that a chromosome is in class a as calculated from Equation A3

ka rb Fraction in class ac Fraction in class ad 2Ne

2 0.000000 0.531224 0.531224 1000
2 0.105361 0.464134 0.464082 1000
2 0.287682 0.381373 0.381282 1000
4 0.000000 0.687639 0.687642 1000
4 0.105361 0.565068 0.565018 1000
4 0.287682 0.435686 0.435589 1000
8 0.000000 0.810644 0.810645 1000
8 0.105361 0.609553 0.609490 1000
8 0.287682 0.448077 0.447974 1000

a Number of generations of look-ahead under the standard neutral model.
b Per-generation per-sequence recombination rate.
c Approximate probability that a chromosome is in class a as calculated from Equation A3.
d Probability that a chromosome is in class a as calculated from 10 million simulations.
e Total number of chromosomes in the diploid population.

TABLE B1

FORWSIM running times for different values of the look-ahead parameter

Timed

2Na Gen Length (Mb) ub rc No look-ahead ke ¼ 2 k ¼ 8 k ¼ 12

10,000 100,000 1.0 0.01 0.01 381.35 210.73 170.28 198.59
10,000 100,000 20.0 0.10 0.10 2593.21 1082.32 771.02 786.98
10,000 100,000 50.0 0.25 0.05 6482.35 2329.72 1187.71 1151.42
10,000 100,000 50.0 0.25 0.25 7521.44 3546.32 2700.23 3006.86
20,000 200,000 20.0 0.01 0.01 2368.04 1192.49 915.21 1141.35
20,000 200,000 50.0 0.10 0.10 9505.73 3573.17 2192.54 2315.15

a Total number of chromosomes in the diploid population.
b Per-generation per-sequence mutation rate.
c Per-generation per-sequence recombination rate.
d Time taken in seconds on a machine with two 2.66 GHz dual-core Intel Xeon processors and 8 GB of RAM.
e Number of generations of look-ahead under the standard neutral model.

2426 B. Padhukasahasram et al.

APPENDIX C

APPENDIX D

Let N be the total number of individuals in the population and s be the selfing probability and r be the per-
generation per-sequence recombination rate. For a given chromosome, the chance of no recombination events in any
given generation can be approximated by e�r. We first calculate the probability that, going backwards in time, a pair of
lineages resulting from a recombination event will eventually find two different ancestors.

The probability that it finds different ancestors in the first generation is (1� s)(1� 1/N) (i.e., not created by selfing
and choose different ancestors).

The probability that it finds different ancestors in the second generation is (s/2 1 (1 � s)/(2N))(1 � s)(1 � 1/N)
½i.e., probability of selfing but choosing different chromosomes in the same ancestor in the first generation (i.e., s/2) or
not created by selfing but picking different chromosomes within the same parent in the first generation (i.e., (1� s)/
2N) and then not created by selfing and choosing different ancestors in the second generation�.

The probability that it finds different ancestors in the second generation without further recombination is (s/2 1 (1� s)/
(2N))(1 � s)(1 � 1/N)e�2r.

In general, the probability that a pair finds different ancestors in the nth generation but not before that is: (s/2 1

(1 � s)/(2N))n�1(1� s)(1 � 1/N) and the probability that this happens without subsequent recombinations is (s/2 1

(1 � s)/(2N))n�1(1 � s)(1 � 1/N)e�(2n�2)r.
Thus, the total probability that a recombination event will eventually split lineages into two separate ancestors is

(summing up to n¼ infinity) 2(1� s)(1� 1/N)/(2� (s 1 (1� s)/(N))). Now, the total probability that this happens
without any subsequent recombination events is (summing appropriate terms up to n ¼ infinity) 2(1 � s)(1 � 1/N)/
(2 � (s 1 (1 � s)/(N))e�2r). Therefore, the probability of overlapping recombination events, given that after a
recombination event the pair of lineages will find different ancestors is (s 1 (1� s)/(N))(1� e�2r)/(2� (s 1 (1� s)/
(N))e�2r). Figure 2a shows this probability as a function of s and r.

Similarly, for models without self-fertilization, going backward in time, the probability that a pair of lineages finds
different ancestors in the first generation is (1 � 1/N). The probability of finding different ancestors in the second
generation is (1� 1/N)/2N (i.e., pick different chromosomes in the same parent in the first generation (i.e., 1/2N) and
pick different parents in the second generation, etc.). The probability of finding different ancestors in the second
generation without subsequent recombination is (1 � 1/N)e�2r/2N.

In general, the probability that a pair of lineages finds different ancestors in the nth generation is (1 � 1/N)/
(2N)n�1and the probability that this happens without subsequent recombinations is

ð1� 1=N Þe�ð2n�2Þr=ð2N Þn�1:

The total probability that after a recombination event, a pair of lineages will eventually find two separate ancestors is
(summing appropriate terms up to infinity) 2N � 2/(2N � 1) and the total probability that this happens without any
subsequent recombination is 2N � 2/(2N � e�2r). Therefore, the probability of overlapping recombination events,
given that a pair of lineages will eventually find two different individuals is: (1� e�2r)/(2N� e�2r). Figure 2b shows this
probability as a function of N and r.

TABLE C1

Approximate run-times for models with positive selection at multiple sites

Timef

2Na Generations ub rc hd se NEWSELg FPGh

1,000 10,000 0.01 0.01 0.50 0.01 4.78 82.06
1,000 10,000 0.10 0.10 0.50 0.01 5.70 174.91

a Total number of chromosomes under the standard Wright–Fisher model with constant population size and uniform mutation
and recombination rates.

b Per-generation per-sequence mutation rate.
c Per-generation per-sequence recombination rate.
d Dominance. A value of 0.5 denotes incomplete dominance in heterozygotes.
e Strength of selection per sequence.
f Approximate time taken for a single run on a machine with two 2.66 GHz dual-core Intel Xeon processors and 8 GB of RAM.
g NEWSEL is our C11 program freely available at http://people.cornell.edu/pages/bp85. We ran our simulation program un-

der a simple model where 40 known sites are subject to positive selection and fitness effects are additive.
h FPG is a C program freely available at http://lifesci.rutgers.edu/�heylab/ProgramsandData/Programs/FPG/FPG_Documentation.

htm#FilesinthisPackage. FPG was run for roughly comparable parameters for the same model.

Note 2427

