Skip to main content
. 2003 May;12(5):1060–1072. doi: 10.1110/ps.0236203

Table 5.

Estimated parameters of the mixture of up to six Gaussian functions and the Gumbel distribution using a maximum-likelihood approach with the computed log-likelihood values

Mixture of k Gaussian distributions
k Estimated parameters Log-likelihood
1 w = 1 −13,018
μ = 0.24
σ = 1.67
2 w = (0.86, 0.14) −10,818
μ = (−0.18, 2.77)
σ = (0.80, 2.92)
3 w = (0.69, 0.27, 0.04) −10,396
μ = (−0.45, 1.29, 5.31)
σ = (0.58, 0.98, 4.19)
4 w = (0.57, 0.32, 0.09, 0.02) −10,296
μ = (−0.61, 0.73, 3.05, 9.11)
σ = (0.49, 0.71, 1.46, 7.46)
5 w = (0.48, 0.34, 0.14, 0.03, 0.01) −10,239
μ = (−0.73, 0.33, 1.85, 4.86, 12.29)
σ = (0.41, 0.50, 0.78, 1.69, 8.22)
6 w = (0.39, 0.33, 0.18, 0.07, 0.02, 0.01) −10,229
μ = (−0.85, 0.02, 1.11, 2.68, 5.65, 14.35)
σ = (0.36, 0.39, 0.53, 0.87, 2.08, 9.61)
Gumbel distribution
Estimated parameters Log-likelihood
λ = −0.52; δ = 0.93 −10,723