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Abstract

We address the problem of clustering the whole protein content of genomes into three different categories—
globular, all-�, and all-� membrane proteins—with the aim of fishing new membrane proteins in the pool
of nonannotated proteins (twilight zone). The focus is then mainly on outer membrane proteins. This is
performed by using an integrated suite of programs (Hunter) specifically developed for predicting the
occurrence of signal peptides in proteins of Gram-negative bacteria and the topography of all-� and all-�
membrane proteins. Hunter is tested on the well and partially annotated proteins (2160 and 760, respec-
tively) of Escherichia coli K 12 scoring as high as 95.6% in the correct assignment of each chain to the
category. Of the remaining 1253 nonannotated sequences, 1099 are predicted globular, 136 are all-�, and
18 are all-� membrane proteins. In Escherichia coli 0157:H7 we filtered 1901 nonannotated proteins. Our
analysis classifies 1564 globular chains, 327 inner membrane proteins, and 10 outer membrane proteins.
With Hunter, new membrane proteins are added to the list of putative membrane proteins of Gram-negative
bacteria. The content of outer membrane proteins per genome (nine are analyzed) ranges from 1.5% to 2.4%,
and it is one order of magnitude lower than that of inner membrane proteins. The finding is particularly
relevant when it is considered that this is the first large-scale analysis based on validated tools that can
predict the content of outer membrane proteins in a genome and can allow cross-comparison of the same
protein type between different species.

Keywords: All-� membrane proteins; all-� membrane proteins; structural genomics; neural networks;
hidden Markov models; topography prediction of membrane proteins

For an increasing number of organisms, particularly pro-
karyotes, we now know the genes and the encoded proteins
(Benson et al. 2002). In the genomic era methods for large-
scale analysis are necessary not only for a correct protein
annotation, but also for focusing on specific protein catego-
ries or predicting their interaction (Iliopoulos et al. 2001;
von Mering et al. 2002).

To understand the genetic blueprint of different organ-
isms, protein sequences are automatically analyzed for
function assignment and annotation by means of extensive
homology search with PSI-BLAST or hidden Markov mod-
els (Eddy 1996; Altschul et al. 1997).

However, there is still a substantial number of uncharac-
terized proteins, including hypothetical proteins (with ho-
mologs of unknown function) or unique proteins (without
known homologs) that deserve further characterization
(Fischer and Eisenberg 1999; Iliopoulos et al. 2001).

To this aim we integrated a set of independent predictors
that have been developed in our laboratory and tested their
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discriminating capability on the reannotated genome se-
quence data base of Escherichia coli K12, including 4173
protein coding genes (EcoGene; Rudd 2000). Of these, 52%
and 18% are fully and partially annotated, respectively. The
remaining 30% is nonannotated (without a Swiss-Prot entry
or corresponding to proteins that are not functionally anno-
tated).

In this article we test the efficiency of our programs in
correctly discriminating globular from membrane proteins,
and all-� from all-� membrane proteins using as a test set
the 70% annotated portion of the E. coli genome.

It is presently known that proteins found in the inner
membrane of bacteria are interacting with typical bundles of
� helices with the lipid bilayer (and are termed all-� mem-
brane proteins; von Heijne 1999). Conversely, in the outer
membrane of Gram-negative bacteria, proteins spanning the
membrane bilayer with �-strands (named all-� membrane
proteins, Schultz 2000) are organized in barrel-like struc-
tures.

Prompted by the high performance of our method, we
label new globular and membrane proteins on the remaining
nonannotated portion of the E. coli genome. This procedure
characterizes new sequences of globular, outer, and inner
membrane proteins. For the sake of comparison, the same
procedure is applied to the genome of the pathogenic strain
of E. coli 0157:H7 and highlights new sequences of mem-
brane proteins. New outer membrane proteins without a
counterpart in K12, and possibly related to pathogenicity,

are predicted. Furthermore a genome-wide analysis of other
pathogens and one thermophile is also presented. From this
it emerges that in the Gram-negatives taken into consider-
ation, outer membrane proteins are generally a small frac-
tion of the protein content, being at least one order of mag-
nitude lower than that of inner membrane proteins.

Hunter at work

The flow chart of Hunter is shown in Figure 1. The imple-
mentation essentially reflects the general rules that can be
derived from a statistical analysis of the protein chains from
E. coli K12, which are well annotated in Swiss-Prot (Gas-
teiger et al. 2001).

• Globular proteins can be endowed or not with signal pep-
tides (189 chains out of 1704, 11%)

• Similarly, all-� membrane proteins can include or not
signal peptides (23 chains out of 422, 5.5%)

• All-� outer membrane proteins contain signal peptides
(34 chains)

It is evident that the presence of a signal peptide in the
sequences is a characteristic tag of outer membrane proteins
(Nielsen et al. 1997). However, signal peptide predictors
are affected by rates of false positives even when top scor-
ing (Nielsen et al. 1999). Furthermore, not all the proteins
with a signal peptide are outer membrane proteins.

Figure 1. Hunter: The suite of predictors. The flow chart indicates the possible alternatives after the first prediction done with a neural
network-based method. Chain flow limiting steps are: a signal peptide predictor (acting with two different threshold values), trained
and tested on signal peptides of Gram-negatives; a hidden Markov model-based filter for outer membrane proteins; a neural network-
based filter for all � transmembrane proteins. All the predictors are described in the Materials and Methods section. See text for details.

Fishing outer membrane proteins in Gram-negatives

www.proteinscience.org 1159



On the other hand, it has been argued that enzyme func-
tion is less conserved than anticipated, and that functional
annotation may be biased when performed only on a se-
quence homology basis (Rost 2002). An alternative ap-
proach for classification is based on structure prediction
(Frishman and Mewes 1999; Jones 2000; Kelley et al. 2000;
Thornton et al. 2000; Frishman et al. 2001; Turcotte et al.
2001). In this article, we choose to address the problem on
a structural basis, relying on the classification obtained with
methods specifically suited for predicting membrane protein
topography.

We implemented a signal peptide predictor that compares
well with the top-scoring SignalIP (Nielsen et al. 1999).
Furthermore, we developed two well-performing predictors
of the topography of inner all-� and outer all-� membrane
proteins, endowed with filters that minimize the rate of false
positives (proteins falsely predicted in the category). The
predictor for all-� membrane proteins is similar to that al-
ready described (Jacoboni et al. 2001; Martelli et al. 2002).
That for all-� inner membrane proteins is based on neural
networks as other predictors of this type (Rost et al. 1995).
However, it is the first predictor trained and tested only on
the inner membrane proteins known with atomic resolution.
The predictors and their performance are described in the
Materials and Methods section.

One possibility to address the task at hand is to combine
all three predictors in an efficient manner. Now the set of
empirical rules that are to be taken into consideration for
solving our discriminative problem are:

• We need to maximize the number of protein chains en-
dowed with signal peptides to let the outer membrane
protein filter receive the maximum number of chains
(only the proteins retained by this filter will be classified
as an outer membrane)

• We have to take into consideration that all predictors are
affected by a rate of false positives and negatives, and
that this is particularly so for the signal peptide predictor
(so we need at least two different threshold values to filter
the genome)

• At the same time, we have to cope with the fact that the
predictor of all-� membrane proteins wrongly predicts
signal peptides as transmembrane segments in the N-ter-
minal portion of the chain, and that it can be affected as
well by false positives.

The scheme we propose to integrate our predictors (Fig.
1) is particularly suited to mitigate the number of false
positives and negatives and to send the maximal number of
chains endowed with a predicted signal peptide towards the
outer membrane protein classifier. The discriminative
power of the suite of programs resides mainly on two filters:
one based on a hidden Markov model specifically devel-
oped for the outer membrane proteins of Gram-negative

bacteria (Martelli et al. 2002); the other is a neural network-
based filter minimizing the rate of false positives of a neural
network predicting the topography of all-� membrane pro-
teins (this work). All predictors use as input the sequence
profile derived from multiple alignment of the target chain
towards the nonredundant database.

The protein content of the genome is first filtered with the
neural network-based predictor trained and tested on 36
membrane proteins known with atomic resolution. Depend-
ing on the number of helices predicted (zero, one, and two
or more) the chain is then filtered with the signal peptide
predictor. This is done both with low (more false positives)
and stringent threshold (less false positives).

A chain with no transmembrane helices predicted (blue
path in Fig. 1) is then filtered with the low-threshold signal
peptide predictor. If the protein is without a signal peptide
it is classified as globular. Otherwise, if the protein is re-
tained by the HMM filter, the chain is classified as trans-
membrane all-� and eventually predicted with the neural
network for computing the topography (Jacoboni et al.
2001).

When the protein is predicted to have a transmembrane
helix in the N-terminal (red path in Fig. 1) it is also filtered
with the low-threshold signal peptide predictor with two
alternatives: if the signal peptide is present, then the protein
is sent to the beta-strand filter and the end steps are those
described above; if not the protein is presented to the filter
for all-� membrane proteins, and if retained, it is accord-
ingly classified; if not, it is classified as globular.

When one helix is predicted in the chain (but not in the
N-terminal region) or two or more helices are predicted
(green path in Fig. 1), the stringent signal peptide predictor
is activated; then the protein can be classified as either
globular or membrane all-�, depending on the output of the
all-� transmembrane filter. When the protein is classified as
all-�, the signal peptide is excised and the topography pre-
diction is performed without the segment.

Testing the performance of Hunter

Although each of the predictors has been statistically vali-
dated during the implementation (see Materials and Meth-
ods), a more general validation of the integrated tool is
necessary before proceeding into the analysis aiming at fish-
ing new proteins in the twilight zone of the genome.

The test is performed using the subsets of proteins from
E. coli K12 that are well annotated (2160) or partially an-
notated (760) in Swiss Prot. Test experiments were per-
formed at three different values of sequence identity be-
tween the proteins of the testing and training tests of the
predictors: �20%; �25%, �30%. With the exception of the
number of sequences included in the training and testing
sets, the performance of Hunter was rather similar at each
level of sequence identity. We show the results obtained
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with the largest number of sequences, corresponding to se-
quence identity �30%.

The statistical validation of the predictor is shown in
Tables 1 and 2, respectively. In both cases the score per
protein (Q3p) is higher than 90% (95.6% and 92.6% in the
case of well and partially annotated sets, respectively). Also,
both the rate of proteins correctly predicted in the class
(Qclass) and the probability of correct prediction in the class
(Pclass) are good.

The rate of false negatives (1− Qclass) and of false posi-
tives (1 − Pclass) for the all-� transmembrane proteins ranges
from 8.8% to 9.9% and from 11.4% to 4.5% when the
estimate is evaluated on the two sets, respectively; similarly,
it is 17.6%–22.2% and 9.7%–12.5% for all-� outer mem-
brane, and 3.1%–4.4%, 2.3%–9.5% for globular proteins.
Evidently the rate of false negatives and positives is affected
by the smaller number of membrane proteins, particularly
all-�, compared to that of globular proteins.

From these figures we may roughly estimate the rate of
false negatives and positives to be associated to putative
numbers of proteins predicted in each of the three categories

as a value averaged over the two sets. We may conclude that
the outer membrane-classification may be affected by un-
derprediction (about 20%) more than overprediction (about
10%). Under- and overprediction for the other two catego-
ries are comparable: by averaging, about 9% for inner mem-
brane proteins and 5% for globular ones.

In conclusion, from the test it is evident that Hunter quite
accurately classifies the proteins of the E. coli genome,
although it misses and overpredicts some chains. This was
expected, considering also the statistical validation of each
predictor (see Materials and Methods).

Hunter is then used to filter the remaining portion of the
genome of E. coli K12. The results are shown in Table 3.
Out of 1253 proteins, 136 are classified transmembrane all-
�; 18 transmembrane all-�, and 1099 globular. We also
detail for the outer membrane proteins the name of the file,
the Swiss-Prot ID if existing, the length of the chain, the
number of predicted transmembrane beta-strands, the num-
ber and the annotation of the homologs (E-value <10−7). For
the sake of clarity we include the annotation of the first
homolog as detected by BLAST and the level of local and
global identity (%) of the target to the homolog.

Out of the 18 outer membrane proteins, six chains have
no homologs in Swiss-Prot, four are annotated as hypotheti-
cal proteins, and the remaining have homologs that inter-
estingly include an outer membrane protein C, a fimbrial
subunit C, a precursor of Pertactin (a virulence factor in
Bordetella pertussis; Emsley et al. 1996), and an Adhesin
AIDA-I precursor.

Filtering of E. coli 0157:H7

E. coli 0157:H7 is a major food-borne infectious pathogen
that causes diarrhea, hemorrhagic colitis, and hemolytic ure-
mic syndrome. Most of its genome (70% of sequence simi-
larity) is similar to that of E. coli K12 (Hayashi et al. 2001).
However, some genes are unique and clustered in the so-
called “O-islands” that possibly contains major causes of
pathogenicity (Perna et al. 2001). Similarly, the K12 strain
contains unique genes (K islands) that do not have ho-
mologs in 0157:H7. Furthermore, the annotation of the pro-

Table 1. Predicting well and partially annotated proteins of
Escherichia coli K12a with Hunter

Prediction

�-TM �-TM Globular Total

Well annotated proteins
Annotation

�-TM 389 0 33 422
�-TM 0 28 6 34
Globular 50 3 1651 1704
Total 439 31 1690 2160

Partially annotated proteins
Annotation

�-TM 317 0 35 352
�-TM 0 14 4 18
Globular 15 2 373 390
Total 332 16 412 760

a Annotation of Escherichia coli K12 is according to EcoGene (Rudd
2000).

Table 2. Scoring the performance of Hunter

Set
(E. coli K12)

Q3p

(%)
Q�-TM

(%)
Q�-TM

(%)
QGlobular

(%)
P�-TM

(%)
P�-TM

(%)
PGlobular

(%)

Well-annotated
proteins 95.6 92.2 82.4 96.9 88.6 90.3 97.7

Partially annotated
proteins 92.6 90.1 77.8 95.6 95.5 87.5 90.5

Q3p � accuracy per protein; Qclass � accuracy per protein class (transmembrane all-�, trans-
membrane all-�, globular); Pclass � probability of correct prediction per protein class. Statistical
indexes are as defined before (Jacoboni et al. 2001). The correlation coefficients are: 0.88, 0.86,
and 0.87 for transmembrane all-�, transmembrane all-�, and globular proteins, respectively.
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teome of E. coli 0157:H7 (available at NCBI) is presently
not as refined as that of E. coli K12; about 35% of the chains
are still annotated as hypothetical proteins in the NCBI re-
lease. Out of this set Hunter predicts 327 new all-�, 10 new
all-� membrane proteins, and 1564 new globular proteins.
Table 4 lists the NCBI code and the Swiss-Prot ID of the
homolog (if existing) in K12. The length, the number of
predicted transmembrane strands, and the Swiss-Prot anno-
tation of the first homolog are also shown. In 0157, the
proteins classified as outer membrane all-� include three
chains without annotation, three chains homologous to hy-
pothetical proteins, and four chains homologous to a surface
antigen, a probable lipoprotein, an outer membrane porin,
and a chain involved in TonB-dependent transport.

What did we learn?

From this analysis we may conclude that the all-� mem-
brane protein content (including the new proteins that we

add with our procedure) of both genomes is about 25% in E.
coli 0157:H7 and about 22% in E. coli K12. These figures
compare well with previous estimates performed with all-�
membrane protein predictors based on HMM and neural
networks (Krogh et al. 2001; Liu and Rost 2001). However,
what is novel is that Hunter classifies and lists together with
globular and inner membrane proteins, the putative contents
of all-� outer transmembrane proteins, and this may be
particularly interesting in pathogenic bacteria. We found
that the proteome of E. coli K12 contains about 1.7% of
outer membrane proteins; the estimate is similar in E. coli
0157:H7 (see also Table 5). These values are somewhat
lower than a previous estimate in E. coli 0157 done with a
scale-based method, however without an estimate of false
positives (Wimley 2002).

What did Hunter classify?
It has been estimated that about 10% of the genes in

genomes are due to overannotation of too short sequences

Table 3. Fishing new globular, inner, and outer membrane proteins in the E. coli KI2 genome with Hunter

New globular proteins 1099
New inner membrane proteins 136
New outer membrane proteins 18

EcoGene code Swiss-Prot code Length

No. of
predicted TM

strands

No. of
homologs

in Swiss-Prot

Annotation of homologs
(first homolog, % identity of local and

global alignments)

EG13412 CSGF_ECOLI 138 2 1 Biogenesis of curli organelles
(CSGF_SALTY: 90%; 90%)

EG12668 UIDC_ECOLI 416 18 0
EG11307 YDBA_ECOLI 2003 38 2 Hypothetical protein

(YHFJ_ECOLI: 38%; 38%)
EG12269 YHJY_ECOLI 232 10 1 Lipase 1

(LIP1_PHOLU: 27%; 11%)
EG12513 YTFM_ECOLI 577 12 1 Hypothetical protein

(YTFM_HAEIN: 43%; 42%)
EG12562 YJHT_ECOLI 368 14 5 Hypothetical protein

(YJHT_HAEIN: 43%; 42%)
EG12850 YFAL_ECOLI 1250 16 2 Pertactin precursor

(PERT_BORBR: 25%; 15%)
EG13297a YAIO_ECOLI 257 14 0
EG13480 YLII_ECOLI 371 2 3 Glucose dehydrogenase

(DHGB_ACICA: 32%; 22%)
EG13563 YAGX_ECOLI 841 14 1 Fimbrial subunit C

(CFAC_ECOLI: 25%; 20%)
EG13605 YAIT_ECOLI 486 28 5 Pertactin precursor

(PERT_BORBR: 33%; 14%)
EG13783 — 96 4 24 Outer membrane porin C

(OMPC_KLEPN: 60%; 15%)
EG13889 — 882 12 2 Adhesin aidA-I precursor

(AIDA_ECOLI: 29%; 23%)
EG13984 YDIY_ECOLI 252 12 0
EG14088 YFAZ_ECOLI 180 8 0
EG11743 YDDB_ECOLI 790 24 1 Hypothetical protein

(YDDB_HAEIN: 24%; 22%)
EG13160a YFEN_ECOLI 254 12 0
EG13565 YAGZ_ECOLI 195 2 0

a Outer membrane proteins in K-islands (Perna et al. 2001).
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(Skovgaard et al. 2001). In Figure 2A the number of pro-
teins in both strains is shown as a function of their length.
It is evident that 9% and 14% of the genes are shorter than
or include at least 100 residues, in E. coli K12 and
O157:H7, respectively. However, the transmembrane pro-
tein predictors do not retain such short sequences. In Figure
2, B and C, the membrane protein chains classified by

Hunter are listed as a function of their length (in residue
numbers). In both K12 and 0157:H7, proteins classified
membrane all-� (Fig. 2B) and all-� (Fig. 2C) are differently
distributed according to different lengths. The membrane
all-� in K12 have lengths from 1–50 to 1301–1350; in 0157,
from 1–50 to 1351–1660. The percentage of short se-
quences (�100 residues) is 5.4 and 9.9 in K12 and O157,

Table 4. Fishing new globular, inner, and outer membrane proteins in the E. coli 0157 genome with Hunter

New globular proteins 1564
New inner membrane proteins 327
New outer membrane proteins 10

NCBI code
Homologa in
E. coli K12 Length

No. of
predicted TM

strands

No. of other
homologous
in Swiss-Prot

Annotation of homologs
(first homolog, % identity of local and

global alignments)

13359635 UP05_ECOLI 810 18 5 Surface antigen
(D152_HAEIN: 45%; 45%)

13359780 YAGZ_ECOLI 195 2 0
13360600 YMCA_ECOLI 698 20 1 Probable lipoprotein

(YJBH_ECOLI: 65%; 64%)
13361464 OMPN_ECOLI 123 4 24 Outer membrane porin

(OMS2_SALTI: 85%; 26%)
13361566 YDDB_ECOLI 790 24 1 Hypothetical protein

(YDDB_HAEIN: 26%; 23%)
13361895 YDIY_ECOLI 252 12 0
13362260 CIRA_ECOLI 715 14 22 Colicin receptor; TonB dependent transport

(Y262_HAEIN: 24%; 23%)
13362608 YFAZ_ECOLI 187 8 0
13364489 YJBH_ECOLI 698 22 1 Hypothetical protein

(YMCA_ECOLI: 65%; 64%)
13364675 YTFM_ECOLI 577 12 1 Hypothetical protein

(YTFM_HAEIN: 44%; 42%)

a Homolog � with an E-value �10−7.

Table 5. Predicting globular, inner, and outer membrane proteins in genomes of
Gram-negative bacteria with Hunter

Organism Outer membrane Inner membrane Globular Total

Escherichia coli K12 65 (1.6%) 907 (21.7%) 3201 (76.7%) 4173
Newa 18 136 1099 1253

Escherichia coli O157:H7 78 (1.5%) 1034 (19.3%) 4249 (79.2%) 5361
New 10 327 1564 1901

Chlamidia pneumoniae CWL029 12 (1.1%) 290 (27.6%) 750 (71.3%) 1052
New 2 181 236 419

Salmonella typhimurium LT2 70 (1.6%) 1002 (22.5%) 3379 (75.9%) 4451
New 0 2 21 23

Neisseria meningitidis MC58 34 (1.7%) 372 (18.4%) 1619 (80.0%) 2025
New 6 176 662 844

Helicobacter pylori 26695 36 (2.3%) 352 (22.5%) 1178 (75.2%) 1566
New 10 141 445 596

Haemophylus influentiae Rd 23 (1.3%) 348 (20.4%) 1338 (78.3%) 1709
New 5 121 430 556

Thermotoga maritima 18 (1.0%) 370 (20.0%) 1458 (79.0%) 1846
New 11 203 559 773

Pseudomonas aeruginosa 131 (2.4%) 1292 (23.2%) 4142 (74.4%) 5565
New 62 616 1867 2545

a The number of new proteins predicted in the class with Hunter out of the nonannotated region.
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respectively, and the average length of all-� transmembrane
proteins is quite similar (364 residues in E. coli K12 and 342
in O157, respectively). The same observation holds also for
all-� membrane proteins (Fig. 2C, average length in K12
and O157, 592 and 547 residues, respectively). The percent-
age of short segments predicted ranges from 1.5 to 0, in K12
and O157, respectively. In conclusion, a negligible number

of short sequences is classified transmembrane by the suite
of predictors.

The topography of predicted membrane proteins.

Our analysis also allows predicting the number of trans-
membrane segments for each protein type. The number of

Figure 2. (Continued on next page)
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all-� transmembrane proteins with a given number of trans-
membrane segments is shown for both strains in Figure 3A.
Apparently, the number of monotopic all-� membrane pro-
teins nearly doubles in 0157. For all-� membrane proteins it
is worth noticing (Fig. 3B) that the number of proteins with
eight �-strands in the barrel is nearly threefold larger than in
K12. Interestingly, the larger number of eight �-stranded
barrel membrane proteins predicted in 0157 is consistent
with the notion that this type of outer membrane protein,
related to possible mechanisms of virulence (Vogt and
Schulz 1999), may be more abundant in the pathogen com-
pared to K12. Indeed, 10 chains belonging to this structural
subset in 0157 are homologous to protein X of E. coli
(OMPX_ECOLI), and belong to a family of highly con-
served proteins that promote bacterial adhesion to and entry
into mammalian cells (Vogt and Schulz 1999, and refer-
ences therein); one is homologous to PERT-BORPE,
the virulence factor P69 perctatin of Bordetella pertussis
(Emsley et al. 1996), and one to OMPA_ECOLI, required
for the action of colicins K and L and for the stabilization of
mating aggregates in conjugation (Pautsch and Schulz
2000). The remaining are proteins found in both strains and
annotated as hypothetical outer membrane proteins.

On the other hand, K12 is endowed with more outer
membrane proteins containing 12 �-strands (the typical ar-
chitecture of phospholipase A, OMPLA, participating in

secretion of colicins in E. coli; implied in virulence in
pathogens; Snijder and Dijkstra 2000).

Fishing new proteins in other genomes

We also filtered other genomes of Gram-negative bacteria:
one thermophile, and the other pathogenic bacteria (Table
5). We highlight what is newly labeled by Hunter in the
three classes. It is evident that the number of outer mem-
brane proteins is at least one order of magnitude lower than
that of the inner membrane proteins, ranging from 1% to
2.4% in Thermotoga maritima (a thermophile bacterium)
and Pseudomonas aeruginosa (another pathogen), respec-
tively. Also, the fraction of inner membrane proteins ranges
from about 18% to 28%. From these data, it may also be
concluded that neither the fraction of inner nor that of outer
membrane proteins seems related to the pathogenicity of
the bacterium.

Conclusions

We describe the performance of Hunter, a suite of programs
specifically developed for genome-wide analysis of Gram-
negative bacteria, containing a predictor of signal peptide
specific for this type of bacteria. The predictor is discrimi-
native towards three protein categories of the genome: inner
all-�, outer all-� membrane, and globular proteins.

Figure 2. The length distribution of protein chains in E. coli K12 and O157. (A) Bar plot of the length distribution of proteins in the
genomes. (B) Bar plot of the length distribution of inner membrane proteins after prediction with Hunter in both strains. (C) Bar plot
of the length distribution of outer membrane proteins after prediction with Hunter in both strains.
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We test its availability using 50% of the genome of E.
coli K12 as annotated in EcoGene, and estimate the rate
both of false negatives (proteins that may be missed in the
class) and false positives (proteins that may be wrongly
predicted in the class).

Filtering of E. coli K12 and 0157 adds new chains to
inner and outer membrane proteins and globular ones. We
propose Hunter for specifically fishing new inner and outer
membrane proteins in genomes of Gram-negatives, and pos-
sibly highlighting new virulence factors.

Materials and methods

Databases and alignment methods

Genome annotation of E. coli K12 and 0157:H7 was taken from
EcoGene (Rudd 2000) and NCBI (http://www.ncbi.nlm.nih.gov).
If not specified, annotations are as in NCBI for all genomes of
Gram-negative bacteria. Proteins, solved at an atomic resolu-
tion and included in training/testing sets of the predictors of
membrane proteins, were taken from PDB (http://www.rcsb.
org/pdb/index.html). Proteins used for implementing the signal

Figure 3. Topography of transmembrane proteins in E. coli K12 and O157 as predicted with Hunter. (A) Bar plot of inner membrane
proteins as a function of the number of transmembrane predicted segments in both strains. (B) Bar plot of outer membrane proteins
as a function of transmembrane predicted � strands in the barrel in both strains.
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peptide predictor were described before (Kersey et al. 2000;
Menne at al. 2000). The lists of the training sets as well as the lists
of the proteins predicted in a given category are available at our
Web site (www.biocomp.unibo.it/hunter).

The sequence profile was derived after alignment towards the
nonredundant database (July 2001) with PSI-BLAST (Altschul et
al. 1997). If necessary, local and global alignments were per-
formed with LALIGN (www.ch.embnet.org/software/LALIGN_
form.html) used with default parameters.

The signal peptide predictor

We trained and tested a neural network-based predictor on 598
chains, with 301 positive examples. The network architecture in-
cludes an asymmetric input window comprising 14 residues, three
neurons in the hidden layer, and one output layer. Our predictor
scores similarly to SignalIP (Nielsen et al. 1999). The accuracy is
96.5% and the correlation coefficient is 0.93. When E. coli K12
was filtered with a stringent filter the accuracy per protein was
95.3%. SignalIp under the same conditions and over the same set
had accuracy per protein of 95.5%. When using the predictor, a
stringent threshold means that only the output values larger or
equal to 0.99 are accepted. The low threshold is similarly set at
0.84.

The predictor of all-� inner membrane proteins

We trained and tested on a nonredundant set of 36 membrane
proteins known with atomic resolution a neural network-based
predictor. The predictor architecture includes a 17-residue long
input window that uses sequence profile, 15 neurons in the hidden
layer, and two output neurons. Per-residue accuracy is 86.3% and
the correlation coefficient is 0.72, with an overlapping score
(SOV; Zemla et al. 1999) of 86.8%. To increase the discriminative
power of the network, we implemented a filter, which takes into
consideration the maximal probability values characteristics of the
test set. A protein is accepted only if it is predicted with at least one
transmembrane region including probability values as high as 0.96.
When a nonredundant set of some 800 globular proteins are pre-
dicted, the rate of false positives decreases from 26% (the majority
with one � helix) to 0.5%.

The predictor of all-� membrane proteins

The neural network predicting the all-� membrane proteins has
been described before (Jacoboni et al. 2001). However, in this case
the rate of false positives was also decreased by using a hidden
Markov model similar to that previously described (Martelli et al.
2002). It has been discussed that the transmembrane strand pattern
is not as characteristic as that of alpha-transmembrane helices.
When some 800 nonredundant globular proteins are presented to
the neural network 30% are wrongly predicted with at least one
and two transmembrane � strands. When the HMM is added on top
of the network, the rate of false positive decreases down to 5%.

Hunter

Hunter is the suite of programs described above. The core tools are
written in C; the parsers and the global framework are written in
PERL. The suite is implemented on a Beowulf, comprising eight
CPUs. The running time for a genome of medium size (about 5000
genes) is about 5 h. Most of the time is used for computing the

sequence profile after sequence alignment towards the nonredun-
dant database done with PSI-BLAST (Altschul et al. 1997).

Statistical indexes to measure the predictor efficiency have been
described before (Casadio et al. 1996; Jacoboni et al. 2001; Mar-
telli et al. 2002).
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