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Abstract

Phage display enables the presentation of a large number of peptides on the surface of phage particles. Such
libraries can be tested for binding to target molecules of interest by means of affinity selection. Here we
present SiteLight, a novel computational tool for binding site prediction using phage display libraries.
SiteLight is an algorithm that maps the 1D peptide library onto a three-dimensional (3D) protein surface. It
is applicable to complexes made up of a protein Template and any type of molecule termed Target. Given
the three-dimensional structure of a Template and a collection of sequences derived from biopanning against
the Target, the Template interaction site with the Target is predicted. We have created a large diverse data
set for assessing the ability of SiteLight to correctly predict binding sites. SiteLight predictive mapping
enables discrimination between the binding and nonbinding parts of the surface. This prediction can be used
to effectively reduce the surface by 75% without excluding the binding site. In 63% of the cases we have
tested, there is at least one binding site prediction that overlaps the interface by at least 50%. These results
suggest the applicability of phage display libraries for automated binding site prediction on three-dimen-
sional structures. For most effective binding site prediction we propose using a random phage display library
twice, to scan both binding partners of a given complex. The derived peptides are mapped to the other
binding partner (now used as a Template). Here, the surface of each partner is reduced by 75%, focusing
their relative positions with respect to each other significantly. Such information can be utilized to improve
docking algorithms and scoring functions.
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Protein binding sites are modules interacting with proteins,
other macromolecules, and small ligands. These interactions
are responsible for protein complex formation as well as
governing diverse biologic pathways. Predicted binding
sites are a promising starting point for pharmacologic target

identification, drug design studies, and protein engineering.
In addition, these sites can assist in identifying protein func-
tion, guide docking, and establish networks of protein–pro-
tein interactions.

Several computational methods exist for predicting pro-
tein interaction sites. These attempt to predict binding sites
at different resolutions: entire domains, a sequence window,
or at the single amino acid level. The majority of these
methods are sequence-based. The “proline-brackets”
method takes advantage of the high frequency of prolines
near interaction sites (Kini and Evans 1995). Other ap-
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proaches are based on correlated mutations (Pazos et al.
1997) or coevolution of proteins with their interaction part-
ners (Lichtarge et al. 1996a,b, 1997; Goh et al. 2000; Sowa
et al. 2001). According to the correlated mutations ap-
proach, residues close to an interaction site are expected to
mutate simultaneously during evolution. On the other hand,
the coevolution approach looks for simultaneous mutations
in two interacting partners rather than in a single protein.

Some of the sequence-based methods also rely on the
genomic context (Dandekar et al. 1998). Gene order con-
servation is considered a fingerprint for interacting proteins.
A different type of conservation, primary structure conser-
vation, was also utilized for binding site prediction methods.
Several sorts of conservation were taken into consideration
in different methods: residues that are conserved within a
subfamily of proteins but that differ between subfamilies,
residues that are conserved in a few subfamilies (Fariselli et
al. 2002), and domain homologies (Marcotte et al. 1999).
Domain homologies were used for site prediction on ge-
nome sequences (Marcotte et al. 1999). Interaction between
two proteins is suggested if in another organism homolo-
gous domains are assembled as a single protein. Interaction
sites involving hydrophobic residues are proposed to be
predicted using the mean �-helical hydrophobic moment
(Xavier et al. 2000). In contrast to the above-mentioned
methods for interaction site prediction based on primary
structure, which uses additional information, a support vec-
tor training machine uses solely the physicochemical prop-
erties of the sequence (Bock and Gough 2001).

Some methods use both sequence and structural data for
the prediction. Sequence profile, together with solvent ac-
cessible surface area and neighboring residues, were used
for binding site prediction using neural networks (Huan-
Xiang and Yibing 2001). Finally, structure-based methods
are also used for binding site prediction. Superposition re-
quires a homologous protein with a known binding site,
whereas docking (reviewed in Halperin et al. 2002) requires
structures (or models) of the two binding molecules. Some
of the existing computational methods for binding site pre-
diction cannot be applied to all proteins. Domain shuffling
and hydrophobic residue involvement in the interaction are
examples of assumptions that do not hold for all proteins,
and are a fundamental requirement for computational meth-
ods for binding site prediction. Nevertheless, protein bind-
ing sites are generally hydrophobic (Tsai et al. 1997), with
large, though variable, extent of nonpolar surface areas.
Further, information about active site residues is sometimes
available from site-directed mutagenesis, chemical cross-
linking, and phylogenetic data (Gabb et al. 1997; Blizynuk
and Gready 1999). Here, even in the absence of experimen-
tal data, it is sometimes possible to predict the correct bind-
ing site (Aloy et al. 2001). Functional regions in proteins
have also been identified by surface mapping of phylogentic
information (Armon et al. 2001). Potential hydrogen bond-

ing groups, enzyme clefts, and charged sites on a protein
surface, have all been used for binding site prediction (Gil-
son and Honig 1987; Laskowski 1995; Laskowski et al.
1996; Frommel et al. 1996; Bliznyuk and Gready 1999;
Pettit and Bowie 1999). Because binding sites are at least
partially flexible, searches for part-flexible part-rigid sites
have also produced encouraging results (Todd et al. 1998;
Freire 1999; Todd and Freire 1999; Luque and Freire 2000).
Algorithms that predict the location of hinges and modes of
motions (e.g., Hayward et al. 1997), or those that carry out
structural comparisons of a protein family, in particular, if
they allow hinge-bending movements (Shatsky et al. 2000,
2002) should be useful as well. Binding sites may, in prin-
ciple, be predicted through residue hot spots (Bogan and
Thorn 1998; DeLano 2000, 2002; Hu et al. 2000).

Several experimental strategies can be used for the analy-
sis of the spatial organization of protein complexes. These
include chemical cross-linking, two-hybrid systems, hydro-
gen–deuterium exchange, protein microarrays, random mu-
tagenesis, inhibition assays, alanine scanning, protection
from chemical alteration, or proteolytic digestion and phage
display, to name a few. These methods can provide four
types of data: (1) constraints (i.e., proximity of specific
residues from opposing partners in a complex); (2) binding
site location (i.e., assignment of the binding site to a specific
fragment); (3) hot spots determination (i.e., identification of
those residues that contribute dominantly to the binding
energy); and (4) binding site characterization (i.e., charac-
terize a set of sequences that bind a target molecule or the
consensus properties required for binding). Some of these
methods can be applied not only in a case-specific manner,
but also provide a generic tool. One fruitful method for
mapping interactions of protein complexes is screening
phage display libraries for peptide ligands (Geysen et al.
1986; Ferrer and Harrison 1999; Li et al. 2001; Wu et al.
1999, 2000; reviewed by Sidhu et al. 2003).

A critical aspect of phage display is the construction of
combinatorial peptide libraries. Synthetic oligonucleotides,
fixed in length but with unspecified codons, can be cloned
as fusions to capsid genes of a filamentous phage (Enshell-
Seijffers et al. 2001). These libraries, often referred to as
random peptide libraries, can then be tested for binding to
target molecules of interest. This is often done using a form
of affinity selection known as Biopanning (Kay et al. 1996).
Once a combinatorial library is built, it can be applied to a
wide array of macromolecules, proteinaceous and nonpro-
teinaceous, those that are known to interact with small pep-
tides and those that had previously undefined specificity for
peptides. Only a modest amount of time, effort, and re-
sources are needed for biopanning a library displaying up to
1013 different peptides.

The potential of phage display for computational binding
site prediction has been shown recently (Tong et al. 2002).
Phage display and a large-scale two-hybrid system were
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combined for computational prediction of interaction sites.
Consensus sequences based on phage display peptides were
used to search genomic sequences for potential ligands. The
intersection between the phage display prediction and the
two-hybrid system results is expected to yield biologically
relevant sites. This strategy was applied successfully to SH3
binding proteins in yeast. The SH3 binding motifs are se-
quential rather than “truly” 3D, that is, they are not discon-
tinuous order-independent residues on the binding site sur-
face. Nevertheless, although this strategy was applied only
to chain-contiguous epitopes and was not yet examined on
a diverse data set, the correlation between the phage display
binding site mapping, the two-hybrid system, and previous
biochemical data in the examined proteins is encouraging.

Here we present SiteLight, a novel computational tool for
prediction of a binding site on a 3D structure using phage
display libraries. SiteLight is applicable to complexes made
up of a protein termed Template, and any type of molecule,
termed Target. Given the 3D structure of a Template and a
collection of sequences derived from biopanning against the
Target, SiteLight predicts the interaction site of the Tem-
plate with the Target. The algorithm can be divided into
three main stages: (1) a combinatorial division of the Tem-
plate surface to overlapping patches; (2) a one-dimensional
(1D) to 3D alignment of peptide sequences with surface
patches; (3) scoring the derived matches and assessing the
results. SiteLight was implemented in C++, and runs on the
order of a minute (on Red-Hat Linux 7.1, 1 processor, Pen-
tium 4 1.80 GHz, 256 KB cache machine).

To assess the ability of SiteLight to correctly predict
binding sites, we have created a data set that includes ex-
perimental results from 25 complexes and 39 phage display
libraries. A variety of complex types are represented in the
data set. SiteLight was tested from three different aspects.
First, algorithm validity: SiteLight was run on peptides de-
rived computationally from a known binding site. Site-
Light’s ability to select the binding site out of the entire
protein surface was examined. This simple experiment con-
firms the correctness of the method. Second, phage display
libraries verification: From each phage display library one
peptide that yields the best results was selected. The purpose
of this presentation is to show that in each library there is at
least one peptide that can be mapped to the binding site.
This supports the applicability of phage display libraries to
3D binding site mapping. Third, assessing SiteLight’s per-
formance: SiteLight was run with all the library peptides (in
contrast to using only one peptide that yields the best re-
sults) and without prior knowledge of the binding site lo-
cation. Because the correct binding site is known from the
crystal structure of the complex, we should be able to con-
firm or refute the binding site predicted by SiteLight. To the
best of our knowledge, this is the first study that attempts to
validate the applicability of phage display libraries for au-
tomated binding site prediction on 3D structures.

Results

The data set

The newly released Artificially Selected Proteins/Peptides
Database (ASPD; Valuev et al. 2002), was searched for
complexes that fulfilled two criteria: (1) One of the macro-
molecules was used as a target for biopanning a phage dis-
play library. This molecule is named Target. (2) The second
macromolecule is a protein. This molecule is termed Tem-
plate. Nineteen complexes and 30 libraries were obtained
from this procedure. The ASPD is available at: wwwmgs.
bionet.nsc.ru/mgs/gnw/aspd/. To further augment and
supplement the data set, we have manually searched the
literature. This yielded six additional complexes and eight
libraries. The data set is listed in Table 1. As the table
shows, a variety of types of complexes are represented in
the data set: proteinous antigen–antibody, hapten–antibody,
dimers, domain–domain, receptor–hormone, enzyme–in-
hibitor/substrate, and other protein–protein complexes. The
structures have been taken from the PDB (Berman et al.
2000). A detailed description of the methods used to estab-
lish the data set is given in Materials and Methods.

Phage display library types

The term Combinatorial phage display library refers to a
library in which all amino acids are represented equally in
the peptides displayed on one of the phage surface proteins.
Here we call such libraries Type I (see Fig. 1). Because the
data set obtained using exclusively Type I libraries is small,
we have supplemented it by Semicombinatorial libraries.
Semicombinatorial libraries refer to four library types
(Fig. 1).

Type II

The purpose of these libraries is to display mutated vari-
ants of the binding site region. A fragment of the library
template protein that includes the binding site is displayed
on a phage coat protein. Positions within this fragment that
are known as hot spots from previous biochemical work are
mutated while the rest of the fragment, typically flanking
the mutated site, is unchanged. Here we used only the mu-
tated regions for the binding site search.

Type III

The purpose of these libraries is also to display the mu-
tated variants of the binding site region. However, they
differ from Type II with respect to the mutated parts. In Type
II libraries, the hot spot regions are mutated, whereas in
Type III libraries these regions are kept constant, while the
flanks are mutated. Both of these approaches try to change
the binding affinity to the target protein. Type II libraries
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Table 1. The data set used to assess SiteLight’s ability to predict sites

No. Target mol. Template protein Complex
Targ.
chain

Temp.
chain

ASPD
entry

Library
size

Seq.
leng.

Library
type

Protein–Protein
1A Bovine Hsc70 Bag chaperone regulator1 1HX1 A B PH1PO059 8 15 I
1B Bovine Hsc70 Bag chaperone regulator1 1HX1 A B H1PO059 3 6 I
2 subtilisin eglinC 1CSE E I PH1BS037 18 5 I
3 Factor VIIa soluble tissue factor 1DAN LH TU PH1BS102 34 11 V
4 Fyn SH3 V1 Nef 1AVZ C AB PH1BS005 18 11 I
5 Nef Hck-SH3 1AVZ AB C PH1PO057 19 6 II
6A Kallikrein Hirustasin 1HIA AB I PH1PO062 18 6 IV
6B Kallikrein Hirustasin 1HIA AB I PH1PO063 11 6 IV
7 plasmin streptokinase 1BML A C PH1NE002 32 7 V
8 Human � thrombin Haemadin 1E0F AD I PH1PO064 11 6 IV
9A Bovine trypsin APPI 1TAW A B PH1VV009 6 3 II
9B Bovine trypsin APPI 1TAW A B PH1VV010 11 3 II
9C Bovine trypsin APPI 1TAW A B PH1VV011 12 3 II
10 Actine Deoxyribonuclease I 1ATN A D Jesaitis 29 9 Ia

11 Rat trypsin Ecotin 1F5R A I PH1BS201 14 4 II

Dimers
12 ubiquitin ubiquitin 1AAR B A PH1NE004 6 5 IV
13A glutathione transferase glutathione transferase 1GSD B A PH1NE003 20 5 II
13B glutathione transferase glutathione transferase 1GSD B A PH1NE003 6 15 II
14 SH3 SH2 1G83 A B PH1BS005 18 11 I

Peptide–Protein
15 Peptide Plasminogen activator 1C5X A B PH1VV018 91 6 I

Antigen–Antibody
16A GP120 Ab 17B 1G9M G LH PH1BS014 13 13 Ib

16B GP120 Ab 17B 1G9M G LH Ferrer 10 7 I
17A VEGF VEGF Ab (CDR H1) 1BJ1 V LH PH1PO091 6 6 I
17B VEGF VEGF Ab (CDR H2) 1BJ1 V LH PH1PO092 5 5 I
17C VEGF VEGF Ab (CDR H3) 1BJ1 V LH PH1PO093 31 6 I
18A A6 Interferon gamma receptor 1JRH LH I Lang 23 5 III
18B A6 Interferon gamma receptor 1JRH LH I Lang 7 5 III
18C A6 Interferon gamma receptor 1JRH LH I Lang 36 5 III

Antigen–Fc
19A h IGg FC Fragment B of protein A 1FC2 D C DeLano 2 20 I
19B h IGg FC Protein G C2 1FCC A C DeLano 2 20 I
19C h IGg FC h IGM Rheumatoid factor 1ADQ A LH DeLano 2 20 I
19D h IGg FC Fc receptor (Neunatanl) 1FRT A B DeLano 2 20 I
20 IgM rheumatoid factor Human IGg FC 1ADQ LH A DeLano 12 10 I

Hapten–Antobody
21 Fluorescein 4-4-20 FAb 4FAB Hetero LH PH1PO122 4 4 II
22A Digoxin 26-10 FAb 1IGJ X AB PH1VV021 20 6 II
22B Digoxin 26-10 FAb 1IGJ X AB PH1VV022 2 6 II
22C Digoxin 26-10 FAb 1IGJ X AB PH1VV023 7 6 II
22D Digoxin 26-10 FAb 1IGJ X AB PH1VV024 8 6 II

Inhibitor/s–Enzyme
23A S-Benzyl-Glutathione Glutathione transferase A1 1GUH Hetero A PH1NE003 11 5 II
23B S-Benzyl-Glutathione Glutathione transferase A1 1GUH Hetero A PH1NE003 8 15 II

Receptor–Hormone
24A h Growth hormone Growth hormone receptor 3HHR BC A PH1BS006 24 20 II
24B h Growth hormone Growth hormone receptor 3HHR BC A PH1BS007 16 20 II
24C h Growth hormone Growth hormone receptor 3HHR BC A PH1BS008 7 20 II

The definitions of Target, Template, and Library Types are given in the text and in Figure 1. Library size indicates the number of phage display library
derived peptides. Sequence length (Seq. leng.) indicates the average number of amino acids in a peptide in the library. Library peptides have similar lengths.
Redundant cases (i.e, complexes with more than one library and libraries with more than one complex) are denoted by the same serial number. They are
distinguished by capital letters. The complex code refers to the Protein Data Bank (Berman et al. 2000). The ASPD entry is from Valuev et al. (2002). Where
not present in the ASPD database, these were searched and taken from the literature. (Ferrer � Ferrer and Harrison 1999; Jesaitis � Jesaitis et al. 1999;
Lang � Lang et al. 2000; DeLano � DeLano et al. 2000).
a Library formed in diluted antiserm.
b An antibody library prepared from bone marrow lymphocytes.



Figure 1. Library types. The different types of phage display libraries used in this study. They are described in detail in Results.
Roughly, these types can be divided into two groups: Combinatorial and Semicombinatorial libraries. The term Combinatorial phage
display library refers to a library in which peptides are displayed on one of the phage surface proteins. All amino acids are represented
equally in these peptides. Here we call such libraries Type I. Semicombinatorial libraries refer to the remaining four library types. The
semicombinatorial libraries are not as generic as combinatorial libraries. They were used because the data set obtained using exclu-
sively Type I libraries is small. Semicombinatorial-derived peptides contain mutated and nonmutated parts. If the entire peptide is used,
recognition of the binding site could be obvious, because the nonmutated parts would obviously match the interface. Thus, the peptides
were parsed to imitate Combinatorial libraries-derived peptides as much as possible. For all library types, only the mutated regions
were used (see Materials and Methods).



fulfill this task by mutating positions that are hypothesized
to contribute significantly to the binding, whereas Type III
libraries test positions that are presumed not to contribute
significantly to the binding.

Type IV

The purpose of this library type is to create novel binding
proteins. A protein that binds the Target weakly is used as
a Library Template. By mutating this protein it may acquire
binding capability. In this molecular evolution process, a
nonbinding protein turns into a binding one through muta-
tion and selection. Thus, in this library mutated fragments of
the nonbinding protein are displayed on the phage surface.

Type V

This type is used to bypass the limitations of the Types II
and III libraries. These libraries are not generic, because the
nonmutated regions may play a role in the binding process.
First, they may match the Target sterically and be energeti-
cally favored. Second, they help the mutated region to ac-
quire a “correct” conformation. Correct conformation may
not be established in the absence of the nonmutated regions.
Therefore, a local structural environment formed by the
nonmutated regions is essential for binding. Although this
conclusion was neither confirmed nor refuted by experi-
mental methods, its implications were not overlooked. Fur-
ther, libraries of Types II and III are not generic because
they might produce an epitope composed of both mutated
and nonmutated regions. The nonmutated regions are com-
posed of native residues located in the binding site, and
therefore might contribute to the interactions. Thus, libraries
of Types II and III are less informative than epitopes derived
only from the mutated regions. In the Type V libraries our
goal is to separate the contribution of the mutated regions to
the binding process. To achieve this purpose, we use two
different local structural environments. These environments
are taken from two proteins that are known to bind the same
{ffit Target}. One of these is used as a Library Template,
while the binding site is searched on the second. This is in
contrast to the other library types, where the same protein
serves both as a Library Template and for binding site
searching (see Fig. 1). Overall, 14 Type I and 24 Semicom-
binatorial libraries were used. Among these are 17 Type II,
three Type III, three Type IV, and one Type V libraries.

The algorithm

SiteLight seeks to match a phage display derived peptide to
a 3D epitope on a protein surface. The peptides are expected
to imitate the binding site on the Template protein with
respect to amino acid chemical properties and spatial orga-

nization. The surface of the protein is divided into overlap-
ping patches. The division is based on geodesic distances
between two residues rather than on Euclidean distances.
SiteLight examines the potential match of each peptide in
the library with each patch. For each potential match a
bipartite graph, Graph 2, is created. Its vertices represent
patch and peptide residues. Its edges represent similarity
between two residues. Residue similarity is determined by a
similarity matrix (Table 3 in Supplemental Material). The
best alignment of a peptide and a patch represented in a
bipartite graph is found by the maximal bipartite matching
algorithm. The score of each match is determined by the
best alignment. Potential matches are sorted by their scores.
High scoring matches are iteratively selected until 25% of
the Template protein is covered. The minimized surface is
expected to include the binding site between the Template
and the Target. To assess SiteLight’s success, the “correct”
binding site is determined. This site is defined by the Tem-
plate–Target complex interface (i.e., Template residues that
are spatially proximal to the Target). The correctness of
each match is represented by the patch overlap with the
interface. Figure 2 gives a flow chart of the algorithm, and
Materials and Methods describes it in further detail.

Algorithm validation

To validate the correctness of the algorithm, we first assess
its ability to predict the correct binding site using peptides
derived from this site. For each complex, peptides that rep-
resent its interface were created, by extracting residues from
the binding site, and arbitrarily linking them. The peptides’
length was equal to the average length of the phage display
derived peptides. These peptides are referred to as Artificial
Interface Peptides. They were then used for binding site
prediction on the entire protein. Hence, in this way we test
the ability of the Artificial Interface Peptides to remap the
interface. Although this may seem as a straightforward ex-
periment at first sight, there are many potential problems
that could have prevented its success. The peptides’ length
can be as short as 3 to 4 amino acids, while the protein
surface can contain more than 400 amino acids. The larger
the ratio between the surface size and the peptides’ length,
the higher the probability of finding false positive solutions.
An additional potential problem is the outcome of the partial
exploration of the solution space. To define the complete
solution space, let us reduce the problem to a graph theory
problem. Each vertex represents a residue. Edges connect
structurally defined neighbors (i.e., residues proximate in a
3D space). The complete solution space can be defined as
all walks of k steps in this graph, where k is the number of
residues in a phage library peptide. If n is the number of
residues in graph G1, then the number of walks is propor-
tional to 2n. Therefore, only partial exploration of this space
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is possible in a reasonable computation time. All of the
complexes presented in Table 1 were tested. Despite these
difficulties, in 82% the correct solution was ranked as the
first. In the remaining 18% a correct solution was ranked
within the top five solutions. A “correct” solution is defined
as one where the peptides optimally matched the interface
with an overlap of at least 25%. These results (data not
shown) demonstrate the algorithm validity.

Phage display libraries verification

We have tested the validity of the input for SiteLight, that is,
the phage display library biopanning results. The purpose is
to show that in every library there is at least one peptide,
referred to as Peptide A, which can be mapped to the correct
binding site. If it does, it should score higher than if it is
aligned by SiteLight to other parts of the protein. According
to its definition, Peptide A is sufficient for binding site
prediction. The method for selecting Peptide A is detailed in
Materials and Methods. In 76% of the complexes presented
in Table 2, a correct solution (over 25% overlap with the
interface) was ranked as the first using Peptide A. The best
way to estimate this result is by comparing it to the one
obtained with the Artificial Interface Peptides. There the
result for the Artificial Interface Peptides can be regarded as
the best possible solution that can be obtained. Because the
data set is the same, these results are comparable. The per-
cent of complexes in which a correct solution was ranked
first based on Peptide A is only 6% less than the one ob-
tained with the Artificial Interface Peptides. Only in 2 out of
the 43 cases no peptide could be aligned with the binding
site for a given complex and a library. The rank of the best
match, that is, the solution that overlaps with the interface to
the highest extent, is also high in almost all cases (see
column 9 in Table 2). The exception is in the hapten–anti-
body category. Overall, the categories with the worst results
are the hapten–antibody and the antigen–Fc.

Assessing SiteLight performance

Table 3 describes the results obtained when using all the
peptides from a phage library. This is the most critical test
of the algorithm. Out of the total number of 43 cases, in 30
the rank of the first solution that overlaps at least 25% of the
interface is at the top 5. Out of a total number of 43 cases,
in the 27 cases that we have tested, there is at least one
binding site prediction that overlaps the interface by at least
50%. Inspection of the different categories suggests that the
best results appear to be obtained for the protein–protein
complexes. Good results are also obtained for the antigen–
antibody and the receptor–hormone, the enzyme–inhibitor,
and dimer categories; however, the last categories have a
small number of cases. There appears to be a correlation
with the interface size. The protein–protein, antibody–anti-
gen, and receptor–hormone have large interfaces. On the
other hand, the hapten–antibody category has the smallest
number of residues in the interface, and represents a small
percentage of the antibody surface. The smaller library size
(Table 1) also appears to have an effect, possibly explaining
the worse cases for the antigen–Fc category. In terms of the
best coverage of the interface, in 13 cases within the first
100 solutions (N100) the solutions that cover the interface
the most (above 50%) rank at the top 10. Again, the distri-

Figure 2. SiteLight algorithm flow chart. This chart gives a schematic
description of the SiteLight algorithm. The algorithm is described in further
detail in Materials and Methods. SiteLight seeks to match a phage display-
derived peptide to a 3D epitope on a protein surface. The surface of the
protein is divided into overlapping patches. The division is based on geo-
desic distances between two residues rather than on Euclidean distances.
SiteLight examines the potential match of each peptide in the library with
each patch. For each potential match a bipartite graph, Graph 2, is created.
Its vertices represent patch and peptide residues. Its edges represent simi-
larity between two residues. Residue similarity is determined by a simi-
larity matrix (Table 2 in Supplemental Material). The best alignment of a
peptide and a patch represented in a bipartite graph is found by the maxi-
mal bipartite matching algorithm. The score of each match is determined
according to the best alignment. Potential matches are sorted by their
scores. High scoring matches are iteratively selected until 25% of the
Template protein is covered. The minimized surface is expected to include
the binding site between the Template and the Target. To assess SiteLight’s
success, the “correct” binding site is determined. This site is defined by the
Template-Target complex interface (i.e., Template residues that are spa-
tially proximal to the Target). The correctness of each match is represented
by the patch overlap with the interface.
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Table 2. Assessment of SiteLight’s performance on the dataset presented in Table 1

No. Fragments
Surface
residues

Interface
residues (%)

Predicted
residues

Matches
(selected)

Highest
solution

Best
solution N100

1A 2 104 21 (20) 13 832 (3) 1 (68) 1 (68) 1 (68)
1B 2 104 21 (20) 12 306 (12) 1 (28) 9 (83) 21 (100)
2 1 58 12 (20) 6 990 (3) 1 (100) 1 (100) 1 (100)
4 4 98 14 (14) 3 1692 (3) 1 (27) 1 (27) 65 (90)
5 4 55 12 (21) 1 988 (4) none 1 (14) 50 (75)
6A 2 48 11 (22) 3 912 (10) 1 (50) 1 (50) 11 (100)
6B 2 48 11 (22) 10 576 (7) 1 (100) 1 (100) 1 (100)
7 13 305 44 (14) 17 19500 (29) 1 (25) 27 (66) 27 (66)
8 6 55 18 (32) 5 624 (3) 1 (40) 1 (40) 65 (60)
9A 2 52 12 (23) 3 312 (6) 1 (100) 1 (100) 1 (100)
9B 2 52 12 (23) 8 572 (6) 1 (100) 1 (100) 1 (100)
9C 2 52 12 (23) 6 624 (6) 1 (100) 1 (100) 1 (100)
10 4 214 21 (9) 3 6400 (11) 7 (27) 7 (27) 29 (70)
11 2 56 11 (19) 7 658 (16) 1 (40) 8 (80) 20 (100)

Dimers
12 5 70 14 (20) 6 396 (5) 2 (66) 2 (66) 28 (100)
13A 7 205 14 (6) 8 3800 (31) 3 (40) 6 (75) 6 (75)
13B 7 205 14 (6) 5 1200 (5) none 5 (15) 88 (53)
14 3 156 8 (5) 0 2556 (25) none none 63 (36)

Peptide–Protein
15 6 104 22 (21) 8 7650 (57) 7 (60) 7 (60) 100 (83)

Antigen–Antibody
16A 4 406 13 (3) 5 2067 (27) 7 (28) 7 (28) 43 (33)
16B 4 406 13 (3) 4 1510 (24) 4 (33) 4 (33) 70 (40)
17A 4 205 18 (8) 12 1188 (63) 1 (100) 1 (100) 1 (100)
17B 4 205 18 (8) 4 985 (22) none 3 (16) 35 (100)
17C 4 205 18 (8) 6 6138 (24) 2 (83) 2 (83) 37 (100)
18A 5 94 15 (15) 8 2093 (6) 1 (85) 1 (85) 11 (100)
18B 5 94 15 (15) 11 637 (10) 1 (85) 4 (100) 4 (100)
18C 5 94 15 (15) 9 91 (6) 1 (33) 4 (100) 4 (100)

Antigen–Fc
19A 2 43 11 (25) 8 86 (2) 2 (38) 2 (38) 75 (81)
19B 1 54 13 (24) 12 108 (2) 1 (60) 1 (60) 21 (68)
19C 4 223 9 (4) 0 406 (3) none none 98 (26)
19D 5 90 26 (28) 12 1600 (3) 2 (57) 2 (57) 91 (70)
20 3 197 15 (7) 2 1940 (17) none 14 (18) 63 (41)

Hapten–Antibody
21 4 408 9 (2) 4 1548 (32) none 22 (14) 85 (25)
22A 3 378 9 (2) 0 7260 (22) none none 73 (71)
22B 3 378 9 (2) 4 6897 (143) 1 (60) 1 (60) 1 (60)
22C 3 378 9 (2) 1 2541 (26) none none 81 (60)
22D 3 378 9 (2) 1 2904 (24) none none 59 (100)

Unlike in Table 2 in the Supplemental Material, here the entire corresponding phage display library is used. All of the categories presented in this table
refer to 25% coverage of the surface. The number of potential matches used to predict interface residues is determined such that the number of predicted
residues will equal 25% of the surface residues.
Fragments, the number of contiguous sequences in the spatially defined interface of the complex; surface residues, the number of residues exposed to the
solvent; interface residues, Template residues that are proximate to the Target in space. The interface percent is calculated with regard to surface residues
as the 100%; predicted residues, the number of interface residues that were correctly predicted by SiteLight; matches, the number of potential matches. This
number equals the number of surface patches multiplied by the number of peptides in the library. The number of the obtained matches for binding site
prediction is indicated in parentheses; highest solution, the rank of the first solution that overlaps by 25% or more with the interface out of the obtained
matches. The percent of residues that overlap with the interface is indicated in parentheses; best solution, the rank of the match that overlaps with the
interface to the largest extent; N100, the rank of a match that overlaps with the interface to the largest extent out of the first 100 solutions. See Halperin
et al. (2002). The results refer to 25% coverage of the surface.
Example: in case No. 1A there are 104 surface residues. The interface is composed of 21 residues that are 20% of the surface residues. The interface is
made up of two sequential regions that are proximate in space to one another and to the Target. There are 104 potential matches that are tested by SiteLight.
Using the threshold that we allow, no more than 25% of the surface of the molecule is to be covered by the matches (otherwise, the prediction of a binding
site is too diffuse). Two matches (out of the possible 104) were obtained. Twenty-five percent of the surface is 26 residues. The two matches contain 17
interface residues (out of a possible 21 identified in the interface). Sixty-eight percent of the residues in the highest ranking match (solution no. 1) are
interface residues. The second solution overlaps with the interface to a lesser extent. Therefore, in this example, the highest ranking solution is also the best
solution with the largest interface coverage. Ninety-two percent of the residues of the 56th ranked match are interface residues. It is the highest overlap
with the interface in the first 100 ranked matches.



bution between the categories is similar. Analysis with re-
spect to the type of library (Fig. 1; Table 1) does not illus-
trate any significant difference. Figure 3 presents the top
solution for a few examples.

Combined, the results suggest that if the 3D structure of
the Template protein is available, for larger interfaces phage
display libraries can be used not only to detect which are the
binding peptides, but to also use them toward the prediction
of the binding site. Furthermore, by using 1D (peptide se-
quences) to 3D (protein surface) mapping, we are able to
detect epitopes that are not necessarily contiguous on the
sequence. To illustrate this point, we have characterized the
continuous (conformational) nature of each interface. Inter-
face residues were divided into groups according to their
sequence continuity. Each group represents a contiguous
sequence fragment. The number of these groups is given as
the number of fragments in Table 1. Our matching proce-
dure completely disregards this type of information. The
order of the residues on the chains is not taken into account,
making it a general procedure for binding site detection.

Hsc70—detailed result analysis

Hsc70 is a constitutively expressed protein. It prevents mis-
folding and aggregation of newly synthesized or misfolded
proteins. Hsc70 consists of three domains: ATPase, SBD
(substrate binding domain), and a C-terminal domain. ATP
binding by the ATPase domain regulates substrate binding
by an unknown mechanism. Substrate binding promotes
ATP hydrolysis. The Hsc70/ADP complex with the sub-
strate is more stable. ATP hydrolysis is also stimulated by
Hsp40 proteins. Substrate release is dependent on the ex-
change of bound ADP for ATP. This reaction is promoted
by a nucleotide exchange factor: GrpE in prokaryotes and

Bag-1 in euokaryotes. Bag-1 was shown to stimulate the
ATPase rate of Hsc70 in an Hsp40-dependent manner and
to promote substrate release from the chaperone (Sonder-
mann et al. 2001). Two structures were used for the analy-
sis: the complex of Hsc-70 ATPase doamin and Bag-1, and
unbound Bag-1 (PDB codes 1HX1 and 1I6Z, respectively).

Hsc70 phage display libraries

Bovine Hsc70 was used as a Target for screening a 15-
mer and a 6-mer phage display random peptide libraries.
Each library contained about 108 clones. Three clones were
sequenced from the 6-mer library. Ninety-seven clones were
sequenced from the 15-mer library after three rounds of
selection. These sequences were enriched with lysines, his-
tidines, and aspartic acid. Binding specificity to Hsc70 was
confirmed by negative and positive tests. The negative test
examined peptide binding to other proteins (BSA, actin, and
streptavidin). The positive test examined the peptides’ abil-
ity to stimulate ATPase activity in two ways: (1) inorganic
phosphate release measurement, and (2) competition with
the pigeon cytochrome c peptide, which stimulates ATPase
activity (Takenaka et al. 1995).

Previous results have suggested that the heptamers may
have an improved affinity compared to hexamers. There-
fore, 7-mer peptides were designed based on sequences ob-
tained by biopanning the 15-mer and the 6-mer libraries.
Two groups of control sequences of 6 and 7-mer lengths
were also constructed. These peptides failed to pass the
binding specificity tests (Sondermann et al. 2001).

SiteLight results for the Hsc70–Bag-1 complex

In Table 3 it can be seen that there is a correlation be-
tween the specificity of peptide binding and its ability to
predict the binding site. There is a significant difference

Table 3. The results of SiteLight’s prediction of bound and unbound Bag-1/Hsc70 binding site

No.
Bound/

unbound
Peptides

type
Peptides
length

Predicted
residues Matches

Highest
solution

Best
solution N100

1 Bound Peptide A 15 17 104 (2) 1 (68) 1 (68) 56 (92)
2 Bound Peptide A 7 16 102 (8) 1 (100) 1 (100) 1 (100)
3 Bound Peptide A 6 12 102 (8) 1 (57) 3 (100) 3 (100
4 Bound Entire Library 15 13 832 (3) 1 (68) 1 (68) 1 (68)
5 Bound Entire Library 7 14 918 (6) 1 (100) 1 (100) 1 (100)
6 Bound Entire Library 6 12 306 (12) 1 (28) 9 (83) 21 (100)
7 Bound Control 7 0 204 (6) none (0) none (0) 82 (88)
8 Bound Control 6 3 408 (7) 7 (37) 7 (37) 89 (100)
9 Unbound Peptide A 15 14 107 (3) 1 (80) 1 (80) 21 (85)

10 Unbound Peptide A 7 13 106 (9) 1 (87) 8 (100) 8 (100)
11 Unbound Peptide A 6 9 104 (10) 1 (80) 3 (87) 19 (100)
12 Unbound Entire Library 15 4 856 (2) 1 (28) 1 (28) 87 (85)
13 Unbound Entire Library 7 9 1060 (9) 1 (66) 2 (87) 90 (100)
14 Unbound Entire Library 6 9 312 (10) 1 (80) 6 (87) 82 (100)

The bound data refers to 104 surface residues and 21 interface residues. The unbound data refers to 109 surface residues and 23 interface residues. The
table categories are explained in Table 2.
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between control peptides and specific-binding peptides.
Control peptides of both 7 and 6 amino acids (lines 7 and 8
in Table 3) were not mapped to the binding site. Either none
or 3 residues out of 21 interface residues were found using
heptamers and hexamers control peptides, respectively. In
comparison, 14 and 12 residues out of 21 interface residues
were found using heptamers and hexamers specific-binding
peptides, respectively. For the 15-mer peptides, no control

was provided. In each of the three libraries (15-mer, hep-
tamer, and hexamer) there is at least one peptide (i.e., Pep-
tide A) that can be mapped to a binding site better than to
other parts of the molecule (lines 1–3 in Table 3). Bag-1
surface was minimized by 75%. The number of surface
residues was reduced from 104 to 26. Using each of the
15-mer, heptamer and hexamer Peptide A’s, a different set
of residues was located in the reduced surface. This surface
contains 17, 16, and 12 interface residues for the 15-mer,
heptamer, and hexamer respective Peptide A’s. The highest
ranking solutions (solution no. 1) obtained by the 15-mer,
by the heptamer and by the hexamer Peptide A’s overlap
with the interface by 68%, 100%, and 57%, respectively.

When the entire libraries (lines 4–6 in Table 3) were used,
a modest decline in prediction quality is observed compared
to the Peptide A results. The reduced interface contains 13,
14, and 12 interface residues for the 15-mer, heptamer, and
hexamer entire libraries, respectively. This yields an aver-
age decline of 1.6 residues. The rank of the highest solution
and the percentage of interface overlap did not change when
the 15-mer and heptamer Peptide A’s were replaced by the
entire libraries of the 15-mer and heptamers. As in other
examined cases, no positive correlation between peptide
length and binding site prediction quality was observed.

Bound and unbound Bag-1
Here our goal is to predict the Hsc70/Bag-1 binding site

if no such complex is available. In the absence of the Hsc70/
Bag-1 complex, the Template is the unbound rather than the
bound Bag-1. Therefore, we compared the performance of
SiteLight for the bound and unbound Bag-1 structures. The
bound structure of Bag-1 (1HX1) is taken from Homo sa-
piens. The unbound structure of Bag-1 (1I6Z) is from Mus
musculus. The sequences of the bound and unbound Bag-1
were aligned using CLUSTAL X (1.81) multiple sequence
alignment. They share 85% residue identity and 93.5%
similarity. Bag-1 unbound structure (1I6Z) was structurally
aligned to bound Bag-1 (1HX1 chain B) using FlexProt (Ma
et al. 2002; Shatsky et al. 2002). FlexProt detects the opti-
mal flexible structural alignment of a pair of protein struc-
tures. The first structure is assumed to be rigid, while in the
second structure potential flexible regions are automatically
detected. The root-mean-squared deviation (RMSD) is 2.14
Å for an alignment of 112 residues (the entire length of
bound Bag-1) without hinges. The RMSD could not be
lowered by insertion of one or two hinges. The structure and
sequence alignment are presented in Figure 4. The results
obtained with Peptide A for the bound and unbound Bag-1
(Table 3) show that the number of predicted residues was
smaller for the unbound than for the bound Bag-1. The
ranks of the first (highest) solution that overlaps the inter-
face by 25% or more and of the solution that overlaps the
interface to the largest extent draw a different picture. The
solution that overlaps the interface by at least 25% ranks

Figure 3. Examples of SiteLight’s binding site prediction for variable
complexes. The input in all of the examples presented here includes the
Template structure and all library peptides (in contrast to using only one
peptide that yields the best results, Peptide A). Although the complex is
known, no prior knowledge of the binding site location is used. The first
solution predicted by SiteLight to be a binding site is presented for each
example in space filling representation. The Target and the Template are
colored blue and pink, respectively. Each example represents a different
category of the data set (see Table 1) on which SiteLight was tested: (1)
Subtilisin/EglinC complex (1CSE), example 2. (2) VEGF/VEGF Ab (CDR
H1) complex (1BJ1), example 17A. (3) Human IGg Fc/Protein G C2
complex (1FCC), example 19B. (4) Digoxin/26–10 FAb complex (1IGJ),
example 22B. (5) S-Benzyl-Glutathione/Glutathione Transferase A1–1
complex (1GUH), example 23A. (6) Human Growth Hormone/Growth
Hormone Receptor complex (3HHR), example 24B. The example number
refers to Tables 1–2. The complex code refers to the Protein Data Bank
(Berman et al. 2000).

Binding-site prediction
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number one for all six cases: bound 15-mer, heptamer, and
hexamer and unbound 15-mer, heptamer, and hexamer. The
interface overlap percentage of the highest solution indi-
cates a nonuniform trend. It is higher for the unbound 15-
mer and hexamer (80% for both) compared with bound
15-mer and hexamer (68% and 57%, respectively). It is
lower for the unbound heptamer compared with bound hep-
tamers (87% and 100%, respectively).

The example of Hsc70/Bag-1 demonstrates SiteLight’s
ability to predict a conformational epitope based on phage
display peptide sequences. The Hsc70/Bag-1 interface con-
sists of two helices. Library peptides that were mapped to
the binding site, including Peptide A, could be mapped to
both. This demonstrates a correlation between the specific-
ity of peptide binding and its ability to predict the binding
site. Control peptides were poorly mapped to the binding
site compared to specific-binding peptides. The length of
the specific-binding peptides does not seem to affect the
prediction quality. Reasonable results could also be ob-
tained using the unbound structure of Bag-1. This demon-
strates the applicability of SiteLight to both bound and un-
bound structures.

Discussion

SiteLight enables testing the applicability of random phage
display libraries to binding site mapping on a 3D structure.
SiteLight’s application is primarily directed toward confor-
mational epitope search. Most macromolecular interfaces
are conformational (i.e., consist of a few, rather than one,
contiguous regions on the polypeptide chain). However,
most current studies aiming at phage-based epitope discov-
ery deal with contiguous epitopes. Computational tools, like
SiteLight, that enable searches for conformational “real” 3D
epitopes, substantially broaden the applicability of peptide
libraries. As a primary research tool, we put an emphasis on
short running times. Running time is less than 30 sec for all
tested cases (on a Red-Hat Linux 7.1, 1 processor, Pentium
4 1.80-GHz, 256-KB cache machine).

One of the initial research goals was to establish a data set
on which SiteLight can be tested. Our data set includes 25
complexes and 39 phage display libraries. Although this
data set is large and diverse, it is far from being ideal. It
needs to be considerably enlarged. Further, ideally, it should
primarily consist of the generic {ffit Type I} libraries. Be-
cause the interest in phage display application for compu-
tational prediction of binding sites is only beginning, we
expect that this limitation will be resolved in the near future.
Current available data were not fully exploited yet. In 2002,
Valuev et al. (2002), the creators of ASPD, have predicted
that its size would double within a year. The enlargement of
the available data set will enable application of statistical
tools in a meaningful way. In addition to the expected

growth in combinatorial phage display data, the data set
available to SiteLight may be enlarged by using nonphage-
based methods of peptide display and selection. These in-
clude both artificial evolution methods that are not phage-
based (like ribosome display; Hanes and Pluckthun 1997)
and bacterial display (Wikstrom 2000), as well as large
scale peptide display methods (like peptide microarrays).
From a computational point of view, there is no difference
between peptides derived from any of these methods. How-
ever, it remains to be determined if SiteLight will perform
equally well on such inputs as it does on phage display
inputs.

Two types of validation tests, algorithm validation and
phage display libraries verification, were carried out. The
first confirmed the ability to remap a binding site using
peptides derived from this site. The second revealed at least
one peptide in 95% of the tested libraries that can be aligned
to the binding site better than to other parts of the protein.
The existence of such peptides in each of these libraries
reinforces the idea that random phage display libraries can
be mapped to a 3D binding site. The expected result in the
first type of validation is clear—to be able to remap the site
from which peptides were derived. Such an experiment can
be carried out with various sites regardless of their binding
properties. On the other hand, in the second validation test
the expected result is not entirely clear because a few types
of epitopes can be defined as the “correct” answer.

A binding site can be divided into two types of epitopes:
structural and energetic. An energetic epitope consists of
amino acids that can be shown to individually contribute
significantly to the binding energy. This epitope is also
known as hot spots. On the other hand, a structural epitope
is expected to be larger than the energetic epitope because
not all interface residues are biologically relevant (Valdar
and Thornton 2001). Some of the structural nonenergetic
residues may be critical for dictating the 3D configuration
of the epitope. Thus, a consensus derived from combinato-
rial phage display peptides may include only hot spots, only
critical residues dictating the 3D structure, other structural
epitope residues, or their combination. The relative preva-
lence of these groups in the peptides sequences is unknown.
Experimental methods of hot spots determination vary from
one study to another and are often incomplete in the sense
that only a subset of the positions are examined. Therefore,
we have chosen crystallographically defined interfaces.
Such a definition is uniform, and appears most applicable to
computational studies. Nevertheless, it is unavoidable that
sometimes the epitope represented by phage display pep-
tides deviates from this definition.

SiteLight’s performance can be assessed within the
framework of the available data set and a “correct” epitope
definition. SiteLight can reduce the protein surface by 75%
without excluding the binding site. The reduced surface
includes at least one solution that overlaps the interface by
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at least 50% in 63% of the cases. The fact that we do not
achieve “correct” solution in the remaining cases can be the
outcome of a number of reasons: (1) partial exploration of
the solution space. It is possible that the patches that are not
explored include the ones that would yield the best results.
(2) Site mimicry: sites that have similar amino acid com-
position as the binding site cannot be distinguished from it.
This mimicry can shift the results from the interaction site.
The existence of such mimicry is indicated by false posi-
tives found using interface-derived peptides. (3) Irrelevant
peptides: The library is expected to include both relevant
peptides that bind the Target and irrelevant peptides that do
not bind. Despite the negative selection steps, there are de-
rived peptide sequences that are intrinsic to components of
the biopanning process itself, including the plastic, the im-
mobilization system or the blocking agents (Adey et al.
1995). These irrelevant peptides might mask the “correct”
peptides that can be mapped to the binding site. Further-
more, (4) the relevant peptides might not all bind the Target
at the same site as the Template. Let us consider a protein
with multiple binding partners. The binding sites on this
protein can overlap, but can also be distinct. Distal interac-
tion sites can each bind a different set of peptides. (5) Re-
lated to the last possible reason for failure is the fact that
during affinity selection a single high-affinity binding site
might dominate the library. Other binding sites may not be
represented at all. Thus, the presence of peptides that mimic
the Template binding site depends on the biopanning com-
ponents, the number of binding sites, and the affinity of the
peptides for each site. In this regard, it would be interesting
to experimentally examine proteins with a few binding part-
ners, particularly those with different site affinity to their
natural ligands. There may be a correlation between the
affinity of a site to its natural ligand and its ability to select
affinity peptides. Nevertheless, such a correlation does not
necessarily exist, because the peptides’ affinity can exceed
the affinity of the natural ligand. Fewer rounds of selection
might allow selection of peptides for multiple sites. In such
a case, the peptides will be mapped to more than one Tem-
plate, and may be divided into groups according to their
similarity. Each group should be aligned to one of the Tem-
plates.

Sequence alignment of the peptides may, in principle,
help in discriminating between relevant and irrelevant pep-
tides for a single binding protein partner. Relevant phago-
tope discrimination based on multiple alignment of peptides
derived from random phage display libraries was carried out
for the primary biliary cirrhosis and type I diabetes (Davies
et al. 1999). Although not yet tested on a large data set, the
encouraging preliminary results suggest that this procedure
may be adopted in the future to improve SiteLight’s perfor-
mance. Peptides can be divided into groups according to
their alignment. This alignment can then be utilized in two
ways: First, each group will yield a consensus that will be

searched on the Template. Second, weights can be assigned
to the peptides and (or) position according to its deviation
from the consensus. All of the peptides will be searched on
the Template. This may yield improved prediction.

One of the measurements used for phage display peptides
characterization is affinity to the Target molecule. Affinity
data was not used in this study due to two reasons: First,
affinity data are either incomplete or completely missing for
most of the libraries in the data set. This problem can be
partially resolved by an indirect affinity data. A potential
substitution for direct affinity data is the number of appear-
ances of the peptide. This number is assumed to reflect the
prevalence of the peptide in the postpanning library. Be-
cause Biopanning is based on the principle that high-affinity
binders are enriched with selection, if the representative
sample of sequenced peptides is big enough, the frequency
of the peptide in the library is likely to reflect the affinity.
Second, no correlation was found between the affinity and
the “goodness” of the binding site mapping. Assuming that
such a correlation should exist is not straightforward. In
some libraries peptides with improved affinity (i.e., higher
affinity than the native substrate) were found (Lang et al.
2000). Such peptides are expected to differ from the native
binding site with respect to binding site location and/or
residue composition. A good peptide for binding site map-
ping using SiteLight is one that (1) binds in the same or
overlapping location, (2) in a similar conformation, and (3)
consists of similar residues as the native Template. There-
fore, there is no simple correlation between peptide affinity
and similarity to the native binding site. It might be inter-
esting to examine this correlation when the binding location
is confirmed, for example, by competitive elution, catalytic
panning or structure determination. In such cases, peptides
that bind the Target with similar affinity as the Template
might mimic better the Template binding site.

The SiteLight algorithm may also be applicable to other
biologic problems in addition to phage-based binding site
mapping. SiteLight attempts to answer a broader question
than mapping a 1D peptide sequence, to a 3D protein struc-
ture. Because the sequence order of the peptide is disre-
garded, SiteLight can also be applied for 3D—3D amino
acid similarity detection. The main reason for not using the
peptide sequential order is the inclusion of Semicombinato-
rial libraries in the data set. Some of the peptides were
parsed (see Materials and Methods) and their order was lost.
This unique feature of SiteLight, performing sequence
alignment without sequence order, might be applicable to
searching promiscuous activities. These are typically found
by a search of a random library of ligands (James and Taw-
fik 2001). Mimicry of known interaction sites can be
searched by creating a series of peptides that represent the
amino acid composition of a known binding site. These
Virtual Peptide libraries can be used to search a database of
structures to discover similar sites in unrelated structures.

Binding-site prediction
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Conclusions

Here we illustrate that random phage-display peptide librar-
ies can be applied to binding site mapping on a 3D structure.
SiteLight provides a vehicle for such an application. Site-
Light maps binding sites consisting both of contiguous resi-
dues, and those that constitute “truly“ 3D conformational
epitopes. The algorithm is highly efficient and effective. It
successfully remaps short peptides (3–20 amino acids long)
to the sites they were derived from even on large 3D protein
structures.

SiteLight was able to reduce the surface by 75% without
excluding the binding site. The reduced surface included at
least one solution that overlaps with the interface by at least
50% in 63% of the cases. Although some trends appear to
occur, nevertheless, unfortunately, no firm conclusions can
be drawn regarding the applicability of this method to dif-
ferent molecular groups (antigen–antibody, protein–protein,
etc.) due to the current limited data set size. This limitation
also holds with respect to the comparison between different
phage display peptide library types.

In particular, this study appears to validate the applica-
bility of phage-display libraries for automated binding site
prediction on 3D structures, and as such, suggests the fea-
sibility of their further broadened utility.

Materials and methods

Data set creation

The ASPD (Valuev et al. 2002; available at wwwmgs.bionet.
nsc.ru/mgs/gnw/aspd/), is a new database that incorporates pro-
teins and peptides that were obtained through in vitro-directed
evolution processes. Most of them were obtained through phage
display libraries Biopanning. The current version of the ASPD
includes 195 selection experiments. It was searched for complexes
that fulfilled the following criteria: (1) One of the macromolecules
was used as a target for biopanning a phage display library. This
molecule is named Target. The types of phage display libraries
used is described in detail in the Results and illustrated in Figure
1. (2) The other macromolecule is a protein. This molecule is
termed Template. Nineteen complexes and 30 libraries were ob-
tained from this procedure. All of them are phage display libraries.
Six additional complexes and eight phage display libraries were
obtained by manual literature search. A variety of complex types
are represented in the data set: receptor–hormone, enzyme–inhibi-
tor/substrate, and other protein–protein complexes. Ten protein–
protein complexes with 14 libraries, three dimer complexes with
four libraries, one peptide–protein complex with one library, three
antigen–antibody complexes with eight libraries, four antigen–Fc
complexes with two libraries, two hapten–antibody complexes
with five libraries, one enzyme–inhibitor/substrate complex with
two libraries, and one receptor–hormone complex with three li-
braries. There is some redundancy in this data set. Redundant
examples (complexes with more than one library and libraries with
more than one complex) are denoted in Table 1 by the same serial
number. They are distinguished by capital letters. Overall there are
24 nonredundant cases in the data set.

Peptides parsing

In combinatorial libraries the entire mutated fragment of each pep-
tide is used without further parsing. However, semicombinatorial
libraries contain mutated and nonmutated parts. If the entire pep-
tide is used, recognition of the binding site could be obvious,
because the nonmutated parts would obviously match the interface.
Thus, the peptides were parsed to imitate combinatorial libraries-
derived peptides as much as possible. For all libraries, only the
mutated regions were used for the binding site search. Positions
that were mutated by less than eight amino acids were removed.
Two mutated positions were linked if the sequential distance be-
tween them did not exceed four positions. Thus, for example, if
position number 1 in a peptide was mutated by 8 residues, position
2 mutated by 2, position 3 by 4 residues, position 4 by 12, and
position 5 by 10 residues, the new peptide would consist only of
positions 1, 4, and 4. Because our matching is 1D to 3D, the order
on the chain can be disregarded. By omitting positions 2 and 3, we
do not use information that would otherwise straightforwardly lead
to matching to the binding site. Further, if the distance between
positions mutated by at least eight residues is larger than four
residues, the peptide is cut into short fragments, where each frag-
ment contains strictly the highly mutated residue positions. The
minimum fragment length is three residues. If a crystal structure of
the Library Template (defined in Fig. 1) is available, the peptides
are joined if their residues are next to each other in a three dimen-
sional space.

Algorithm description

The SiteLight algorithm can be divided into three main stages:
creation of surface patches, matching surface patches with phage
libraries-derived peptides, and scoring the solutions to assess their
correctness.

Stage 1: Creation of surface patches

There are three steps in the creation of surface patches:
1. Molecular shape representation. This step computes the

molecular surface of the molecule. First, a high density Connolly
surface is generated by the Molecular Surface program (Connolly
1983a,b). The Connolly surface is generated by rolling a probe ball
over the van der Waal’s surfaces of the atoms of the molecule.
Three types of shapes are created: convex, saddle, and concave. A
sparse surface representation is computed (Lin et al. 1994) con-
sisting of a limited number of critical points disposed at key lo-
cations over the surface. The sparse surface representation is com-
posed of three types of points nicknamed caps, belts, and pits.
These correspond to the face centers of the convex, saddle, and
concave areas. A cap point belongs to one atom, a belt to two
atoms. and a pit to three atoms.

2. Surface-distance calculation. Based on the set of sparse
critical points, we construct a graph (Graph 1 below). The graph
represents surface distances between two residues. Each vertex V
is an atom center that belongs to a surface residue. A residue is
defined as a surface residue if at least one of its atoms is assigned
to a critical point. This definition is very loose, and reflects our
goal of exploiting crystallographic data in an imprecise manner. It
enables application of this algorithm to low-resolution unbound
and modeled structures. An edge connects two atoms u and v if
they share a “critical” point. Therefore, a cap does not create
edges, whereas a belt and a pit create two and three edges, respec-
tively. To create a walk between every two C�-atoms in the graph,

Halperin et al.

1356 Protein Science, vol. 12



C�-atoms with a zero degree, that is, unconnected vertices are
connected to the closest atom of the same residue that is either a
belt or a pit. The geodesic distance between two connected atoms
is calculated and assigned to the connecting edge. The surface
distance between two residues is calculated as the shortest path
between the corresponding C�-atoms. Graph 1 is then

G1 � (V1,E1)
V1 � Atom centers
E1 � (u,v) | if u and v share a sparse critical point

An example for Graph 1 is presented in Figure II in the supple-
mental material.

3. Selecting patch members. The goal of this stage is to divide
the protein surface to overlapping patches. The number of possible
patches equals the number of walks of K steps, where K is the
number of residues in a phage library peptide in graph G1. If n is
the number of residues in graph G1, then the number of walks is
proportional to 2n. Therefore, only some of the possible patches
are created. C�-atoms are iteratively used as patch centers. The
patch radius is determined with respect to the average peptide
length, X, according to Equation 1. All residues with a surface
distance from the patch center lower than the patch radius are
regarded as members of that patch. Because nonidentical centers
can produce identical patches, the patches are processed to remove
multiple appearances. Therefore, the number of patches equals to
or is smaller than the number of surface residues. This method
explores the patch solution space only partially, and creates nearly
ball-shaped patches. A correction to this nonuniform space sam-
pling is achieved by Equation 1. The average number of residues
in patches cut by this radius is higher than X, the average peptide
length. If X � 5.0, the patch radius is 8.775 Å, and can include
seven residues. The number of combinations of five residues out of
a group of seven residues is 7!/(7–5)! � 2520. In other words, the
alignment of a five-residue peptide with a seven-residue patch can
be compared with an alignment of a five-residue peptide with 2520
five-residue patches. The patch radius is

0.0012 X^3 -0.0552 X^2 + 0.2985 X + 3.513

With Va, Vb being vertices belonging to the target and imapped
peptide.

Stage 2: Matching surface patches with phage
libraries derived peptides

There are two steps in this stage:
1. 3D sequence matching. The goal of this step is to match

peptide residues to patch residues. Because the patch lacks sequen-
tial order, sequence alignment methods cannot be used. Because
the peptides structures are usually unknown, structural alignment
methods cannot be used. Phage display-derived peptides are often
structured. Although this is not common for peptides, the peptides
structures are rarely solved.

To align 1D data from a peptide to 3D data from a surface patch,
we use a maximal bipartite graph algorithm. Each surface patch is
matched with each peptide. For each match a bipartite graph,
Graph 2, is created. The graph is composed of two parts: vertices
representing patch residues, and vertices representing peptide resi-
dues. All possible patch and peptide residues pairs are connected
by edges. Here an edge represents similarity between two residues.
The edge score is determined by a similarity matrix detailed below
(Table 3 in Supplemental Material).The maximal bipartite algo-
rithm is used to determine the best alignment between the patch

and the peptide. A set of edges, M, of a graph G(V,E) with no
self-loops is called a match if every vertex is incident to at most
one edge of M (Horwitz 1989). V is a vertex and E is an edge. The
bipartite matching complexity is given by Equation 2, where n is
the number of patch residues and m is the number of peptide
residues.

O(n* (m + n log n))
Graph 2:

G2 = (V2,E2)
V2 = Va U Vb

V1 � Patch residues
V2 � Peptide residues

E = Va x Vb

with Va, Vb being vertices belonging to the target and mapped
peptide.

2. Similarity matrix. Amino acid similarity can be quantified
according to geometric criteria (size, shape), chemical properties,
and frequency of replacement in sequences, surfaces, or binding
sites. Because we are looking for binding mimicry, we have used
chemical similarity to score the amino acids pairs. The matrix we
used is based on the one proposed by McLachlan (1972) and
presented in Table 3 in the Supplemental Material.

Stage 3: Scoring and correctness assessment

The score of each match was determined according to the best
alignment found by the maximal bipartite matching algorithm. The
scores of the edges that participate in the alignment are summed.
This score is expected to reflect the degree of similarity between
the peptide and patch matches. The matches were sorted according
to this score. A high score is equivalent to a high rank of a solution.

High scoring matches are iteratively selected until 25% of the
Template protein is covered. The number of selected matches can
therefore vary even between proteins of the same size (i.e., same
number of surface residues). If patches corresponding to high scor-
ing matches overlap to a large extent, then the number of selected
matches needed to cover 25% of the Template would be larger
compared to the modest number of overlapping patches. This
method was chosen over a fixed number of selected matches be-
cause it guarantees reduction of the effective surface. On the other
hand, even a small fixed number of selected matches can include
large portions of the Template’s surface. Such a prediction does
not contribute to the identification of the binding site location. The
now reduced surface is expected to include the binding site be-
tween the Template and the Target.

Because the entire Template molecules we use as a data set
(presented in Table 1) derive from complexes, the “correct” an-
swer can be calculated. Interface residues (i.e., Template residues
that are spatially proximal to the Target) are defined using geo-
metric hashing. The atoms of the Template are inserted to a geo-
metric hash of a 0.5 Å3 bin. The hash is queried by Target atoms
with a 4 Å threshold. The distance between the Target atoms used
for the query and each of the query results is calculated. If it is
lower than 4 Å the Template atom is defined as an interface atom.
A residue is defined as an interface residue if any of its atoms is an
interface atom. The correctness of each match is represented by the
patch overlap with the interface that is calculated according to
Equation 3. If A is the number of patch residues that are interface
residues, and B the number of patch residues, the match correct-
ness is:

A/B * 100
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Peptide A

Peptide A is defined as a peptide that can be mapped to the correct
binding site. If it does, it should score higher than if it is aligned
by SiteLight to other parts of the protein. According to its defini-
tion, Peptide A is sufficient for binding site prediction. To choose
such a peptide for a specific library, a few runs of SiteLight were
performed. In each of these the input library consisted of a single
peptide. Thus, the number of runs needed for the selection of
Peptide A equals the size of the library (i.e., the number of pep-
tides). The selection of Peptide A was based on the following
criteria: (1) the number of predicted residues, (2) the highest rank
of the solution that overlaps at least 25% of the interface; (3) the
highest overlap (percentage) of the solution with the interface; (4)
the rank of the solution with the largest overlap with the interface;
and (5) the rank of the solution with the largest interface overlap
percentage. The definitions of these criteria are given in the legend
to Table 2.
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