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Abstract

The explosion of biological data resulting from genomic and proteomic research has created a pressing need
for data analysis techniques that work effectively on a large scale. An area of particular interest is the
organization and visualization of large families of protein sequences. An increasingly popular approach is
to embed the sequences into a low-dimensional Euclidean space in a way that preserves some predefined
measure of sequence similarity. This method has been shown to produce maps that exhibit global order and
continuity and reveal important evolutionary, structural, and functional relationships between the embedded
proteins. However, protein sequences are related by evolutionary pathways that exhibit highly nonlinear
geometry, which is invisible to classical embedding procedures such as multidimensional scaling (MDS)
and nonlinear mapping (NLM). Here, we describe the use of stochastic proximity embedding (SPE) for
producing Euclidean maps that preserve the intrinsic dimensionality and metric structure of the data. SPE
extends previous approaches in two important ways: (1) It preserves only local relationships between closely
related sequences, thus allowing the map to unfold and reveal its intrinsic dimension, and (2) it scales
linearly with the number of sequences and therefore can be applied to very large protein families. The merits
of the algorithm are illustrated using examples from the protein kinase and nuclear hormone receptor
superfamilies.

Keywords: Stochastic proximity embedding; multidimensional scaling; nonlinear mapping; Sammon map-
ping; self-organizing; dimensionality reduction; protein kinase; nuclear hormone receptor; phylogenetic
analysis

The wealth of information provided by genomic sequencing
and other high-throughput experimental techniques such as
RNA microarrays, yeast two-hybrid screens and quantita-
tive proteomics, has created a need for data mining tech-
niques that extract information from large volumes of data.
Sequences are by far the most abundant type, and their
comparison has become a critical tool in modern molecular
biology. It is now well established that proteins with similar
sequence are likely to have evolved from a common ances-
tor and share common three-dimensional structure and func-
tion. Indeed, the most common approach to predict the bio-
logical role of a new protein is based on pairwise compari-
sons with other sequences of known function. This is
typically carried out by aligning the two sequences to pro-

vide an explicit mapping of their respective amino acid
residues and thus reveal the evolutionary events that led to
their divergence.

However, in many cases sequences have diverged to such
an extent that their common origin cannot be detected by
direct comparison. As the number of available sequences
grew, it became apparent that this information could be
mined more effectively when analyzed in a collective man-
ner. Simplistic pairwise comparisons gave way to more so-
phisticated multiple sequence alignment techniques (Durbin
et al. 1998; Gotoh 1999; Notredame et al. 2000), which can
identify conserved patterns shared by multiple sequences
and improve the ability to detect weak homologies between
distantly related proteins. This information has been orga-
nized in several excellent databases of protein families, mo-
tifs, and domains (Attwood et al. 2000; Apweiler et al.
2001; Silverstein et al. 2001; Bateman et al. 2002; Falquet
et al. 2002) utilizing expert knowledge and suitable cluster-
ing methodologies.
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Protein classification is rooted in the notion of transitiv-
ity, that is, the thesis that two not very similar sequences
may have similar function by virtue of their similarity to a
third sequence. The relationships among a set of proteins are
typically represented in the form of trees derived by hier-
archical clustering. One drawback to this representation is
the loss of information about the evolutionary distances
separating sequences within and between clusters. This
limitation has inspired a number of different methods that
attempt to capture more fully the rich nature of protein
similarities. Some of these methods are based on graphical
layout algorithms driven by a set of formal associations,
such as BIOLAYOUT (Enright and Ouzounis 2001) and
PHYLOGRAPHER (Kozik 2001), while others employ un-
supervised machine learning techniques such as Kohonen
networks (Ferran et al. 1994; Hanke and Reich 1996).

A very promising alternative is to produce a low-dimen-
sional Euclidean map that best preserves the similarities
between the embedded sequences, a method employed by a
number of authors, including Agrafiotis (1997), Apostal and
Szpankowski (1999), Forster (Forster et al. 1999), Grishin
and Grishin (2002), Yona and Levitt (2000), Holm and
Sander (1996), and Holm (1998). The classical methods for
constructing such a map are multidimensional scaling
(MDS) and nonlinear mapping (NLM). Given a set of k
objects, a symmetric matrix, rij, of dissimilarities between
these objects, and a set of images on an m-dimensional
display map {xi, i � 1, 2, . . . , k; xi � ℜ m}, these methods
attempt to place xi on the map in such a way that their
Euclidean distances dij � �xi − xj� approximate as closely
as possible the corresponding values rij. The quality of the
embedding is determined using a sum-of-squares error func-
tion such as Kruskal’s stress,

S = ��
i�j

�dij − rij�
2��

i�j

dij
2

which is numerically minimized to find the optimum con-
figuration. The actual embedding is carried out in an itera-
tive fashion by (1) generating an initial set of coordinates xi,
(2) computing the distances dij, (3) finding a new set of
coordinates xi using a steepest descent algorithm, and (4)
repeating steps (2) and (3) until the change in the stress
function falls below some predefined threshold (Borg and
Groenen 1997).

The primary failure of MDS lies in the fact that it tries to
preserve all pairwise proximities in the data sample, both
local and remote. However, it is well known that conven-
tional distance metrics tend to underestimate the proximity
of points on a nonlinear manifold, and lead to erroneous
embeddings (Shepard and Carroll 1965; Martinetz and
Schulten 1994). Sammon’s nonlinear mapping (NLM) al-
gorithm (Sammon 1969) partly alleviates this problem by

introducing a normalization factor in the error function to
give increasing weight to short range distances over long
range ones:

S = �
i�j

�dij − rij�
2

rij
��

i�j

rij.

However, this scheme is arbitrary, and fails with highly
folded topologies. A more robust procedure is embodied in
the ISOMAP method (Tenenbaum et al. 2000), which uses
an estimated geodesic distance instead of the conventional
Euclidean one as input to MDS. The geodesic distances are
estimated by connecting each point to its nearest neighbors,
and then tracing the shortest paths between all pairs of
points on the resulting graph. Although it was shown that, in
the limit of infinite training samples, ISOMAP recovers the
true dimensionality and geometric structure of the data if it
belongs to a certain class of Euclidean manifolds, the proof
is of little practical use because the (at least) quadratic com-
plexity of the embedding algorithm precludes its use with
large data sets. A similar scaling problem plagues locally
linear embedding (LLE; Roweis and Saul 2000), a related
approach that produces globally ordered maps by construct-
ing locally linear relationships between the data points.

Recently, we introduced an alternative self-organizing al-
gorithm that addresses the key limitations of ISOMAP and
LLE (Agrafiotis and Xu 2002). The method, known as sto-
chastic proximity embedding (SPE), builds on the same
geodesic principle first proposed and exploited by ISO-
MAP, but introduces two important algorithmic advances:
(1) It circumvents the calculation of estimated geodesic dis-
tances, and (2) it uses a pairwise refinement scheme that
does not require the complete distance (dij) or proximity (rij)
matrix and scales linearly with the number of points.

Here, we describe the use of SPE for producing globally
ordered maps of large families of protein sequences. We
also describe a procedure for determining a reasonable
neighborhood radius by examining the trade-off between
the stress function and the number of connected components
in the neighborhood graph, and show that the resulting maps
reveal well-defined clusters that are consistent with the
functional classification of their respective sequences.

Results and Discussion

The goal of generating a low-dimensional map is to repro-
duce the nonlinear relationships between the protein se-
quences so that distinct family and subfamily similarities
can be detected and visualized. For our distance metric,
which is based on a multiple sequence alignment, the input
dimensionality corresponds to the total length of the align-
ment, with each dimension assuming one of 21 possible
values (20 amino acids and a gap character).

Nonlinear geometry of protein homology
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Protein kinases

The two-dimensional (2D) SPE maps of the kinase domains
defined by Hanks and Hunter (1995) and Manning et al.
(2002) are shown in Figure 1. Each of these maps was
constructed by attempting to preserve the proximities of all
pairs regardless of their separation (i.e., by setting rc � �)
and are therefore similar to those derived by classical MDS.
For the Hanks set, each of the main families (AGC, CaMK,
CMGC, and PTK) occupies a broad but distinct region on
the map. The exception is the OPK or other protein kinase
category, which consists of sequences that do not share
strong similarity to any of the other large families. These are
largely excluded from the other clusters but do not assume
a compact shape. As we noted in our original paper (Agra-

fiotis 1997), it is intriguing that members of this class in-
clude sequences that are believed to exhibit dual specificity;
that is, they are capable of phosphorylating both Ser/Thr and
Tyr substrates. The only two kinases known to phosphory-
late both Ser/Thr and Tyr residues are the members of the
MEK family (MEK1 and MEK2), which are located in the
middle of the map; in most other cases, dual specificity has
been demonstrated only for autophosphorylation reactions
in vitro. Nonetheless, it is still remarkable that SPE places
most of these sequences in between the Ser/Thr (AGC,
CaMK, and CMGC) and Tyr (PTK) clusters, which sug-
gests that they may indeed share some of the structural and
functional characteristics of both classes. In addition, there
are two outliers in the AGC family, protein kinase C � (PIR
S40279) and protein kinase SPK1 (PIR A39616). Both do-
mains show strongest similarity to CaMK kinases rather
than AGC and would be more logically grouped with this
family.

For the Manning set, the plot (Fig. 1B) is much less
useful. The families are spread throughout the map and do
not separate from each other to any discernable extent.
However, this data contains significant structure, as seen by
Manning’s classification and in our subsequent analysis.
The increased dimensionality and size of the data set pre-
cludes the creation of a meaningful 2D map, suggesting that
an alternative approach is required to improve the visual-
ization.

A troubling aspect of these maps, even for the Hanks set,
where significant structure is obvious, is the absence of
clear boundaries delineating the various families. This is
largely due to the fact that like many other metrics used to
compare physical observations, sequence similarity is valid
only on a local scale. Although we can infer with confidence
the evolutionary distance between two protein sequences
when their dissimilarity score is very small, that confidence
diminishes as their dissimilarity increases, and becomes
meaningless beyond a certain threshold. By attempting to
preserve all pairwise distances, there is significant loss of
local information, causing scattering of closely related se-
quences and erroneous aggregation of unrelated ones.

If the sequences lie on a nonlinear manifold, a more
appropriate measure is the geodesic distance on the mani-
fold itself, which is obtained by tracing the shortest possible
sequence of evolutionary events that convert one sequence
to the other and computing the length of that path. What
complicates this analysis is the fact that our set of sequences
does not contain the complete evolutionary history of the
protein family, and therefore, the geometry of the manifold
must be inferred from a sparse number of samples. The most
critical choice in producing a meaningful embedding is that
of the neighborhood radius, rc. The “ideal” cutoff is one that
represents a good compromise between the stress and the
number of connected components, and is typically located
near the point where the two normalized curves, the stress,

Figure 1. Two-dimensional stochastic proximity embedding of (A) the
kinase domains identified and classified by Hanks and Hunter (1995), and
(B) the kinase domains identified and classified by Manning et al. (2002).
Both maps were constructed using a pairwise distance measure based on
a multiple sequence alignment and the PAM250 amino acid exchange
matrix.

Farnum et al.
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and number of connected components intersect, as shown in
Figure 2. As the neighborhood radius decreases, structural
families begin to emerge and become more clearly delin-
eated, until we reach the fragmentation threshold. Beyond
that threshold, the map disintegrates into a large number of
disconnected fragments losing much of its structure and
interpretability as shown in Figure 3 for the Manning set.

The resulting plots are visually compelling. By preserv-
ing only the closest distances, the map is able to unfold,
revealing clusters that are consistent with the functional
classification and evolutionary heritage of their constituent
proteins. In addition, it reveals structure and families that
are not evident in the original map (Fig. 1B). To ensure
global ordering, all the embeddings involving a neighbor-
hood radius were generated using the original SPE map (i.e.,
that obtained with rc � �) as a starting configuration. This
scheme serves two purposes: (1) It minimizes the compu-
tational effort required for the refinement because the map
is already preorganized, and (2) it ensures that related clus-
ters and singletons (i.e., proteins lacking neighbors within
the cutoff distance) are not scattered randomly on the plot.

Members of several of the groups, such as AGC, CMGC,
STE, and TK, show strong similarities among them, and
separate into subgroups only at very short cutoffs. Other
groups such as CaMK and TKL show much less cohesion.
For example, CaMK divides into two major subgroups at a
cutoff of 0.89, and TKL, which consists of a number of

diverse groups of kinases similar to tyrosine and serine/
threonine kinases, unsurprisingly splits into a significant
number of subfamilies.

In Figure 3, there are few outlier sequences, which do not
group with the others in the same annotated family. These
tend to represent sequences with unusual characteristics.
For example, at the largest cutoff used, there is a single
sequence from the CMGC family that does not cluster with
the rest. This is a pseudogene for PRP4 kinase, which is one
of the shortest sequences and shows weak similarity to the
other kinases in the set. Other examples include sequences
from the STE group, domain 2 from GCN2, NIK, and COT,
which are all classified as unique members of the STE class
by Manning.

As shown in Figures 4 and 5, SPE can also be used to
explore more subtle structure within individual subfamilies.
These plots show the embeddings obtained by applying SPE
only to the members of the CMGC family with and without
a cutoff radius. The families identified by Manning et al.
(CDK, CDKL, CLK, DYRK, GSK, MAPK, and RCK;
2002) are clearly defined. These subfamilies are not easily
discernible on the SPE map of the entire kinase data set, and
manifest the dependence of the neighborhood radius on the
sampling density and local curvature of the manifold. There
are few outliers on the map, with PRP4 kinase pseudogene,
as discussed previously, being the most prominent one. Fig-
ure 5 shows the strong similarity between Manning’s CLK
and CDKL families, both of which are similar to CDC
kinases. In contrast, the MAPK family remains distinct from
others in the group. These maps show that SPE can be
applied recursively to subsets of large, complex data sets,
allowing the investigator to drill down to the interactions of
interest.

Nuclear hormone receptors

The ability of SPE to detect structure that is invisible to
MDS and NLM is not specific to the kinase family. An even
more impressive example is illustrated in the mapping of the
nuclear hormone receptor ligand binding domains shown in
Figures 6 and 7. With a suitably chosen neighborhood ra-
dius, SPE can preserve not only relationships within sub-
families, but also between them, as in the case of the an-
drogen, glucocorticoid, and progesterone subfamilies high-
lighted in red, green, and brown in Figure 7B, respectively.
The outliers of that map most likely reflect the differences
between the methods used to create the classification and
the embedding. For example, the sequences for the estradiol
receptor from chameleon (SwissProt entry ESR1_ANOCA)
and estrogen receptor � from Rhesus monkey (SwissProt
entry ESR2_MACMU) are classified into the retinoid X
receptor and thyroid receptor families respectively by Inter-
Pro (Apweiler et al. 2001) and, in this case, the PRINTS
database (Attwood et al. 2000) on which these InterPro

Figure 2. Stress and number of connected components of the 2D SPE map
of the Manning kinase superfamily as a function of the neighborhood
radius, rc. For a well-sampled noiseless manifold embedded in the intrinsic
dimension, the ideal cutoff is any value that leads to zero stress and a single
connected component. For sparsely sampled data sets that contain discon-
tinuities (such as the ones examined here), no such value exists, and the
“ideal” cutoff is one that represents a good compromise between the stress
and the number of connected components, and leads to a visually mean-
ingful map. This value is typically located near the point where the two
normalized curves intersect.

Nonlinear geometry of protein homology
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families are based. The PRINTS database is based on pat-
tern matching of a series of short sequence segments and,
for these two proteins, produces a different result than the
overall sequence score produced by our multiple sequence
alignment metric. As would be expected from the functional
annotations of these proteins, their closest neighbors are in
the estrogen receptor family, which is the grouping shown
in Figure 7B.

Conclusions

Owing to the highly organized nature of living systems,
protein sequences—and biological data in general—exhibit
strong correlations. Here, we have described the application
of stochastic proximity embedding to the classification and
visualization of protein sequences. When used with a dis-
tance metric based on a multiple sequence alignment, the

Figure 3. Two-dimensional SPE maps of the Manning kinase domains using a neighborhood radius of (A) 0.87, (B) 0.89, and (C) 0.91. As the cutoff
decreases, distinct families that are not discernible in the conventional nonlinear map (Fig. 1B) begin to emerge and become more clearly delineated until
we reach the fragmentation threshold. At that point, the manifold breaks down into a large number of disconnected fragments and singletons, and the map
looses its structure and interpretability.

Farnum et al.
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method produced informative maps that preserve the intrin-
sic structure and clustering of the data. The success of the
method depends critically on the choice of the neighbor-
hood radius, which should be consistent with the sampling
density and local curvature of the underlying manifold. We
have described a procedure for determining a sensible ra-
dius by examining the trade-off between the stress function
and the number of connected components in the neighbor-
hood graph. By preserving exact proximities of related se-
quences and lower bounds of unrelated ones, the map is able
to unfold and reveal meaningful clusters that provide insight
into the structure, function, and ancestry of the embedded
sequences, as illustrated in the case of protein kinases and
nuclear hormone receptors. The method is general, requir-
ing only a distance measure between the objects of interest,
and holds great promise for exploring many other types of
biological data.

Materials and methods

Protein data

We demonstrate the utility of SPE on two well-characterized pro-
tein families of significant therapeutic interest: (1) the protein ki-
nases (PK) and (2) the nuclear hormone receptors (NHR). PKs
share the common function of phosphorylating other proteins and
are very important in signal transduction and regulation. Kinases
form one of the largest classes of proteins in eukaryotic species
(Bingham et al. 2000; Kostich et al. 2002). From a specificity
standpoint, kinases are divided into two main groups based on their
ability to phosphorylate Ser/Thr or Tyr substrates. They are related
by virtue of their catalytic domains, which consist of ∼250–300

amino acid residues. These domains are implicated in binding and
orienting the ATP phosphate donor and the protein substrate, and
transferring the g-phosphate group from ATP to the acceptor hy-
droxyl residue. Here, we consider two sets protein kinases, the
catalytic domains identified by Hanks and Hunter (1995), which
had been explored by Sammon mapping in a previous study by our
group (Agrafiotis 1997), and a recent catalogue of human kinases
by Manning et al. (2002). The conserved domain consists of func-
tional regions that include the phosphate anchor, catalytic residues,
and activation loop. Hanks identified four major families: (1)
AGC, including the protein kinase C, cyclic-nucleotide dependent
and b-adrenergic families; (2) CaMK, including the calcium/cal-
modulin regulated family; (3) CMGC, including the cyclin-depen-
dent, ERK, glycogen synthase 3, and casein kinase II families; and
(4) PTK, including the “conventional” tyrosine kinases. Also in-
cluded in the Hanks set is the additional “family” OPK, which
consists of sequences that do not belong to any of the four larger
families. The set of human kinases recently categorized by Man-
ning et al. (2002) supplements the Hanks classification by fourFigure 4. Stress and number of connected components of the 2D SPE map

of the CMGC subfamily of the Manning kinase domains as a function of
the neighborhood radius, rc. The embeddings were based on the same
multiple sequence alignment and pairwise similarity scores that were used
to construct the maps in Figures 1B and 3. Because fewer and more closely
related sequences are embedded, the neighborhood radius that reveals the
internal structure of this cluster is smaller than that determined for the
entire superfamily.

Figure 5. Two-dimensional SPE maps of the CMGC subfamily of the
Manning kinase domains using a neighborhood radius of (A) 0.89, and
(B) 0.87. Subtle structure within subfamilies is obscured by the presence
of distant sequences (A) and is only discernible when analyzed indepen-
dently (B).

Nonlinear geometry of protein homology
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additional major families: (1) MAPK, mitogen activated protein
kinases; (2) CK1, casein kinase 1, tau tubulin kinase, and vaccinia-
related kinases; (3) TKL, kinases that resemble both tyrosine and
serine-threonine kinases; and (4) RGC, receptor guanylate cycla-
ses. In addition to considering top level groups, we also investigate
the relationships between the subfamilies of the CMGC group as
defined by Manning, which include: (1) CDK, cyclin dependent
kinases; (2) CDKL, kinases similar to cyclin dependent kinases;

(3) CLK, CDC2-like kinases; (4) DYRK, dual specificity kinases;
(5) GSK, glycogen synthase kinases; (6) RCK, containing ICK,
MAK, and MOK kinases; and (7) SRPK, serine-arginine protein
kinases.

A multiple-sequence alignment and classification of 389 kinase
domains representing the Hanks classification was extracted from
the Protein Kinase Resource Web site (Smith et al. 1997). The
average domain length is 272 amino acids, and the multiple se-
quence alignment is 431 positions long. The average identity be-
tween aligned sequences is 24%, with a minimum of 9.5%. The set
of kinases classified by Manning includes a total of 625 protein
sequences, with 13 of these containing two kinase catalytic do-
mains. This set was filtered to include only sequences whose ki-
nase domain was between 200 and 400 amino acids, leaving 536
kinase domains. These domains were subsequently aligned using
ClustalW (Higgins et al. 1994). The resulting multiple sequence
alignment consisted of 937 positions, increasing the apparent di-
mensionality by a factor of three compared to the Hanks set. The
average identity in the Manning set was 19%, with a minimum of
2.4%. Within that set, 66 sequences belonged to the Manning
CMGC group.

NHRs are ligand-inducible transcription factors that regulate
gene expression and play an important role in the growth, differ-
entiation, metabolism, reproduction, and morphogenesis of higher
organisms and humans. Here, we consider the ligand-binding do-
main of the NHR family as defined by the PFAM database (Bate-
man et al. 2002; accession no. PF00104). A classification of these
domains is provided by InterPro (Apweiler et al. 2001), and in-
cludes the androgen, glucocorticoid, estrogen, progesterone, and
steroid hormone receptor families. Furthermore, the steroid hor-
mone family contains the following subfamilies: ecdysteroid re-
ceptor, nuclear receptor ROR, orphan nuclear receptor, peroxi-
some proliferator activated receptor, retinoic acid receptor, reti-
noid X receptor, thyroid hormone receptor, and transcription factor
COUP. The vitamin D family was also studied but was found to be
a relatively nonspecific sequence signature (data not shown) and
was omitted from further analysis. From the full listing of 844
domains identified by PFAM, selecting only those domains that
contain at least 100 residues and are referenced in the InterPro
classification left 299 sequences with an average length of 183
residues. A multiple sequence alignment of these 299 sequences
was constructed by ClustalW (Thompson 1994) and was used to
compute pairwise similarities as described below. The total length
of the alignment was 245 positions, with an average identity for the
set of 27% and a minimum of 1.8%.

Distance metric

The distance function for computing the dissimilarity between two
protein sequences was based on a multiple sequence alignment
(MSA). The MSA metric (Agrafiotis 1997) defines dissimilarity as

Sij = �
k = 1

n

Maikajk

where Maikajk
is the dissimilarity score between amino acids aik and

ajk as determined by a normalized exchange matrix, and n is the
length of the alignment. Because conventional nonlinear maps
were previously found to be relatively insensitive to the amino acid
substitution matrix, only the PAM250 matrix (Schwartz and Day-
hoff 1979) with values normalized in the range [0, 1] was consid-
ered in this analysis.

Figure 6. Stress and number of connected components of the 2D SPE map
of the NHR ligand-binding domains as a function of the neighborhood
radius, rc.

Figure 7. Two-dimensional SPE maps of the NHR ligand-binding do-
mains using a neighborhood radius of (A) rc � �, and (B) rc � 0.62.

Farnum et al.
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Stochastic proximity embedding

SPE minimizes the stress function

S = �
i�j

f�dij,rij�

rij
��

i�j

rij

where f(dij, rij) is the pairwise stress defined as f(dij, rij) � (dij − rij)
2

if rij � rc or dij < rij, and f(dij, rij) � 0 if rij > rc and dij � rij, and
rc is a predefined neighborhood radius. S is minimized using a
stochastic approximation of steepest descent that attempts to bring
each individual term f(dij, rij) rapidly to zero. The method starts
with an initial configuration and iteratively refines it by repeatedly
selecting two points (sequences) at random, and adjusting their
coordinates so that their Euclidean distance on the map dij matches
more closely their corresponding proximity rij. The correction is
proportional to the disparity,

�
|rij − dij|

dij
,

where � is a learning rate parameter that decreases during the
course of the refinement to avoid oscillatory behavior. If rij > rc

and dij � rij; that is, if the points are nonlocal and their distance on
the map is already greater than their proximity rij, their coordinates
remain unchanged. The algorithm proceeds as follows:

1. Initialize the D-dimensional coordinates of the N points, {xik;
i � 1,2, . . ., N; k � 1,2, .. .,D}. Select a cutoff distance rc and
an initial learning rate � > 0.

2. Select two points, i and j, at random, evaluate their proximity
(dissimilarity) in the input space, rij, and compute their Euclid-
ean distance on the D-dimensional map, dij � �xi − xj �. If
rij � rc, or if rij > rc and dij < rij, update the coordinates xi and
xj by

xi ← xi + �
1

2

rij − dij

dij + 	
�xi − xj� and

xj ← xj + �
1

2

rij − dij

dij + 	
�xj − xi�

where 	 is a small number used to avoid division by zero (here
set to 1.0 × 10−10). If rij > rc and dij � rij, leave the coordinates
unchanged.

3. Repeat (2) for a prescribed number of steps, S.

4. Decrease the learning rate � by a prescribed 
�.

5. Repeat (2)–(4) for a prescribed number of cycles, C.

Unlike conventional MDS, SPE preserves exact distances between
neighboring points and lower bounds between remote points, thus
allowing the manifold to unfold and reveal its true intrinsic di-
mensionality. In essence, the method views the input proximities
between remote points as lower bounds of their true geodesic
distances, and uses them as a means to impose global structure.

Neighborhood radius

SPE depends critically on the choice of the neighborhood radius,
rc. If rc is too large, the local neighborhoods will include data
points from other branches of the manifold, shortcutting them, and
leading to substantial errors in the final embedding. If it is too
small, it will lead to discontinuities, causing the manifold to frag-
ment into a large number of disconnected clusters. Here, we de-
termine a reasonable cutoff by examining the trade-off between the
stress function and the number of connected components (NCC) in
the neighborhood graph at different values of rc. For a given value
of rc, the neighborhood graph is an undirected graph that contains
a vertex for every point in the data set, and an edge between any
pair of points whose proximity is less than or equal to rc. Con-
nected components represent distinct fragments of that graph—
two vertices are said to belong to the same component if there is
a path between them. Efficient algorithms for computing con-
nected components can be found in Cormen et al. (1990).

When plotted against rc, both the stress and the NCC exhibit a
characteristic sigmoidal shape with well-defined asymptotic
bounds. The ideal cutoff is one that minimizes both the stress and
the NCC, that is, one that produces a low stress configuration
without causing excessive fragmentation of the data manifold.
When plotted on axes normalized to the range of these parameters,
a value of rc at the intersection point of the curves provides a
reasonable choice for the cutoff in each of the cases that we have
examined. Because the neighborhood radius is dependent on the
intrinsic curvature and sampling frequency of the manifold, this
approach is relatively insensitive to the embedding dimension.

Implementation

All programs were implemented in the C++ programming lan-
guage and are part of the DirectedDiversity software suite. All
calculations were carried out on a Dell Inspiron 8100 laptop com-
puter equipped with a 1.3GHz Intel Pentium III processor running
Windows 2000 Professional.
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