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Abstract

A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed.
The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins),
SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to
predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved,
cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of
previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-
negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A
genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results
for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM
agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed
for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/
services/LipoP/.
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Bacterial lipoproteins consist of a large group of proteins
with many different functions. The characteristic feature of
all lipoproteins is a signal sequence in the N-terminal end,
followed by a cysteine (Hayashi and Wu 1990). The signal
sequence is cleaved by signal peptidase II (SPaseII), also
called lipoprotein signal peptidase (Lsp). These lipoprotein
signal peptides are quite similar to the signal peptides of
secreted proteins, which are cleaved by signal peptidase I
(SPaseI). So far, a few hundred putative lipoproteins in
Gram-negative Eubacteria have been annotated in SWISS-
PROT (Bairoch and Apweiler 2000).

Biosynthesis of lipoproteins in Gram-negative and Gram-
positive bacteria consists of three steps, as shown in Figure
1: transfer of a diacylglyceride to the cysteine sulphydryl
group of the unmodified prolipoprotein; cleavage of the
signal peptide by signal peptidase II, forming an apolipo-
protein; and, finally, acylation of the �-amino group of the
N-terminal cysteine of the apolipoprotein (Sankaran and
Wu 1994). Before the processing of the prolipoprotein,
which takes place on the periplasmic side of the inner mem-
brane, the prolipoprotein is exported through the inner
membrane by the general secretory pathway that is also
used by secretory proteins processed by SPaseI (Hayashi
and Wu 1990). In Gram-negative bacteria, the lipoproteins
are anchored to either the inner or the outer membrane,
and a single amino acid in position +2 is proposed to de-
termine the final destination of the lipoproteins (Yamaguchi
et al. 1988; Seydel et al. 1999). For more details about
biosynthesis and export of lipoproteins, see Braun and Wu
(1994).
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The signal sequence can be divided into three regions: an
n-region, an h-region, and a c-region. The n-region is char-
acterized by presence of the positive amino acids lysine
and/or arginine, the h-region consists of hydrophobic amino
acids, and the c-region has a characteristic region of four
amino acids around the cleavage site that is very well con-
served, a so-called lipobox. The most conserved amino ac-
ids in the lipobox are a leucine in position −3 from the
cleavage site, an alanine in position −2, and a glycine or an
alanine in position −1. The cysteine at position +1 is re-
quired: LA(G,A) ↓ C (von Heijne 1989). The consensus for
the lipoprotein signal sequence has previously been charac-
terized further, so it could be used for lipoprotein predic-
tions. One example is the consensus made by von Heijne,
(LVI)(ASTG)(GA) ↓ C, requiring only one match to the
first two positions. This pattern was able to discriminate
between all lipoprotein signal peptides and SPaseI-cleaved sig-
nal peptides known at the time (von Heijne 1989). The lipo-
protein predictor in PSORT (Nakai and Kanehisa 1991) inte-
grates the von Heijne consensus sequence in its predictions.
Another example is the Prosite pattern PS00013 {DERK}
(6)(LIVMFWSTAG)(2)(LIVMFYSTAGCQ) (AGS) ↓ C, where
{DERK}(6) means that none of the four amino acids are
allowed in the first six positions (position −10 to −5 relative
to the cleavage site). The pattern has two additional rules:
The cysteine must be between position 15 and 35, and at
least one lysine or arginine must be in one of the first seven
positions of the signal peptide (Falquet et al. 2002). More
recently, a new regular expression was made for Gram-
positive bacteria (Sutcliffe and Harrington 2002).

The lipoprotein signal peptide has been compared with
the SPaseI-cleaved signal peptides. The lipoprotein signal
peptides have a similar n-region, but the h-regions of lipo-
protein signal peptides are shorter and the SPaseI-cleaved
signal peptides have a polar c-region before the cleavage
site (Klein et al. 1988; von Heijne 1989). For lipoproteins,
as well as for the SpaseI-cleaved proteins, the n- and h-
regions are required for the translocation of the uncleaved
protein precursor through the inner membrane. The c-region
is necessary for the recognition of the cleavage site by the
signal peptidase (von Heijne 1990).

Methods for prediction of SPaseI-cleaved signal peptides
have been around for some time (Nakai and Kanehisa 1991;
Nielsen et al. 1997). The performance of these methods is
generally quite good, but it is a problem to discriminate
SPaseI-cleaved signal peptides from SPaseII-cleaved sig-
nals and N-terminal transmembrane helices (Nielsen et al.
1997; Nielsen and Krogh 1998). Similarly, methods for pre-
dicting transmembrane helices often, by mistake, predict
signal peptides as membrane helices (for example, see
Krogh et al. 2001).

Here we present a method to predict lipoproteins in
Gram-negative bacteria and their signal peptide cleavage
site based on a hidden Markov model (HMM) or a neural
network. Both methods are significantly better than the
above-mentioned existing methods. The HMM is trained on
both SPaseI-cleaved proteins, lipoproteins, and cytoplasmic
and transmembrane proteins, and it is able to classify an
N-terminal protein sequence as a lipoprotein signal pep-
tides, a SPaseI-cleaved signal peptide, or a protein without
a signal sequence (cytoplasmic or transmembrane) with
very low error rates. The HMM is also able to predict the
cleavage site in both SPaseI- and SPaseII-cleaved signal
peptides.

Results

Protein sets for training and testing was extracted from
SWISS-PROT as described in Materials and Methods. They
consisted of lipoproteins, SPaseI-cleaved proteins, cytoplas-
mic proteins from the two Gram-negative phyllums Proteo-
bacteria and Spirochetes (order: Spirochaetales), and trans-
membrane proteins from phyllums Proteobacteria and Gra-
cilicutes.

Analysis of signal peptides

The length distributions of the two kinds of signal peptides
are shown in Figure 2. The mean length of lipoprotein signal
peptide is found to be 19.3, and for the SPaseI-cleaved
signal peptide, it is 24.9. Sequence logos (Schneider and
Stephens 1990) for the regions close to the cleavage sites
(Fig. 3A,B) show that the cleavage site consensus differs in
amino acid distribution, which corresponds well with the
fact that the signal peptides are cleaved by different proteo-

Figure 1. Biosynthesis of a lipoprotein. Lipids are attached to cysteine.
Peptides are shown to the left and to the right of the cysteine residue.
Catalytic enzymes are written beside reaction arrows.
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lytic enzymes. The lipoproteins must have a cysteine after
the cleavage site, whereas the SPaseI-cleaved signal peptide
can have several different amino acids in the first position
after the cleavage site. The signal parts to the left of the
cleavage site differ as well. Figure 3, A and B, indicates that
the hydrophobic region is closer to the cleavage site for the
lipoproteins than for the SPaseI-cleaved signal peptides.
The SPaseI-cleaved signal peptides have a polar region right
before the cleavage site (mostly serine). Figure 3, C and D,
shows the sequence logos of the first 30 amino acids for
SPaseI- and SPaseII-cleaved proteins. SPaseI and SPaseII

signal peptides both have some positive amino acids in the
beginning of the sequence followed by a hydrophobic re-
gion with a similar amino acid distribution after that, and the
similarity between the sequences corresponds well with the
fact that all signal peptides are recognized by the same
secretory enzymes. Figure 3, C and B, also shows that the
hydrophobic region of the lipoproteins is shorter than the
one for secretory proteins, as expected. Cytoplasmic pro-
teins do not have a preference for a particular amino acid in
any positions besides the first methionine.

Neural networks

The logos (Fig. 3) showed that the lipoprotein cleavage site
consensus is quite different from the one for SPaseI-cleaved
proteins, whereas the rest of the signal peptides are quite
similar and are therefore a weaker discrimination factor.
Therefore, we chose to base the prediction of lipoproteins
with neural networks on whether a cysteine belonged to a
lipoprotein cleavage site or not. The neural network training
was thus carried out by using the lipoprotein cleavage site in
lipoproteins as positive examples and all remaining cys-
teines from lipoproteins, SpaseI-cleaved proteins, and cyto-
plasmic proteins as negative examples. The neural network
was designed to classify whether a cysteine in the center of
a symmetric window was a lipoprotein cleavage site or not

Figure 2. Length distribution for lipoprotein signal peptides and for
SPaseI-cleaved signal peptides.

Figure 3. Sequence logos of cleavage sites for SPaseI-cleaved proteins (A)and lipoproteins (B) aligned at the cleavage sites (cleavage
is between positions −1 and 1). Sequence logos of the 30 N-terminal residues for SPaseI-cleaved protein precursors (C) and lipoprotein
precursors (D). A logo displays the amino acid conservation at each position as the information content measured in bits (Schneider
and Stephens 1990). Black indicates hydrophobic amino acid (AA); green, neutral/polar AA; blue, positive AA; and red, negative AA.
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as in Nielsen et al. (1997). The number of hidden neurons
was varied from zero to four, and the size of the symmetric
input window was varied from 27 to 33.

The neural networks were evaluated by their performance
on the test data sets by cross-validation, and the correlation
coefficient were calculated (Matthews 1975). Based on the
correlation coefficients and the number of lipoproteins pre-
dicted, the best network was chosen and the optimal param-
eters were estimated.

Judging from the correlation coefficients, the best neural
network prediction (Fig. 4) was obtained for neural net-
works with the window size 29 and two hidden neurons,
which was chosen as optimal parameters. For this neural
network, there were 61 true positives (96.8% of all posi-
tives) and eight false positives (1.1% of all negative). Some
of the other neural networks with high correlation coeffi-
cients had less false negatives but also less true positives.
The network with these optimized parameters was used in
all the following analysis. With this neural network, none of
the transmembrane proteins were predicted as lipoproteins.

The fractions of true positive and true negative and the
correlation coefficient are dependent on the threshold for
the output neurons, and when the number of true positive
predictions increase, it is consequently difficult to avoid an
increase in false-positive predictions as well. Figure 5 illus-
trates this. When the threshold is raised, the number of true
positives decreases remarkably, whereas the number of false
positive remains constant. The opposite happens when the
threshold is lowered, and the correlation coefficient has a
visible maximum at threshold 0.5. If the number of false
positives has to be reduced significantly, the number of true
positives decreases even more. When the threshold is raised,
the probability of the predicted lipoprotein actually being a
lipoprotein increases. For example, with a threshold of 0.85,
all the predicted lipoproteins are true positives. Therefore,
the variation of the threshold can be used, if the relative
number of false positive needs to be lowered, even though
the number of true positives hereby decreases.

HMMs

The classification system was made as an HMM with four
branches. From a “begin” state of the model, there are tran-
sitions to each of these branches or submodels:

SPaseI-cleaved signal peptides
The submodel for signal peptides is shown in Figure 6. It

has states modeling the n-region, the h-region, and the c-
region. It also models part of the protein after the cleavage
site. The signal peptide model is very similar to the one in
Nielsen and Krogh (1998), but is simplified a little. Initially,
the same model as in Nielsen and Krogh (1998) was used,
but after estimation, states and transitions with very small
probabilities were eliminated.

SPaseII-cleaved signal peptides (lipoproteins)
The layout of the model for lipoprotein signal peptides is

essentially the same as the one for signal peptides, as shown
in Figure 6. The differences from the signal peptide model
were again arrived at by observing which states were very
unlikely to be used after initially estimating a larger model.

N-terminal transmembrane helices
N-terminal transmembrane helices are often mistaken as

signal peptides, and vice versa (Krogh et al. 2001). There-
fore, a submodel for N-terminal transmembrane helices was
included. It is essentially a part of the TMHMM model
(Krogh et al. 2001), in which just one membrane helix can
be modeled. The intention with this part of the model is
primarily to limit the number of false positives from the
signal peptide predictions and not to predict whether a pro-
tein has an N-terminal transmembrane helix or not.

Cytoplasmic proteins
This submodel consists of two states: a state for the first

amino acid and a state for the rest with a transition to itself.
Figure 4. Correlation coefficient as a function of window size and number
of hidden neurons.

Figure 5. Correlation coefficient and fraction of true positives and true
negatives as a function of the threshold.
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Only the first 70 amino acids were used for both training
and testing. The first three branches have a six-state sub-
model for modeling the length distribution and amino acid
composition of the last part of the sequence in the mature
protein. The whole model was estimated from the data and
tested with cross-validation as the neural network (see
Methods).

To classify proteins into each of the four classes pre-
sented by the submodels, the posterior probabilities of the
sequence given each branch were used. These probabilities
were divided by the probability of the protein according to
a null model. The logarithm of the ratio (the log-odds) was
used as the score for each class. We used the submodel for
cytoplasmic proteins as the null model, so the score for
cytoplasmic is always the same for any protein. To predict
the class of a protein, we chose the highest scoring branch.
Table 1 shows the number of predictions in each class in the
cross-validation versus the correct classification (a “confu-
sion matrix”).

The score difference between the predicted class and the
second highest score can be used as a measure of confidence
in the prediction. Figure 7 shows the fraction of correctly
predicted signal peptides and lipoproteins, as well as the
fraction of sequences wrongly classified in one of those
classes as a function of this score difference. For the signal
peptides, one can increase specificity significantly at a mod-
erate cost in sensitivity by setting a cut-off between two and
four in score difference. To a lesser extent, the same is true
for lipoproteins.

For the prediction of cleavage sites, we used the log-odds
based on the posterior probability of the state immediately
after the cleavage site, but otherwise normalized as above.
This score can immediately be turned into a probability of a
cleavage site given the model by subtracting the score for
the relevant branch and exponentiating. Usually several po-
sitions have a cleavage site score above a threshold of, say,
zero in log-odds, but we always chose the highest scoring as
the predicted site. Of the 61 lipoproteins correctly classified,
all except one had the correct cleavage site predicted. The
exception is NLPD�PSEAE (Lipoprotein nlpD/lppB homo-
log, Precursor, from Pseudomonas aeruginosa) in which the
predicted cleavage site is 15 amino acids after the annotated
one. Of the 309 correctly predicted signal peptides (SPaseI),
275 had the cleavage site correctly predicted, corresponding
to 11% error rate in the precise location of the cleavage site
or a 16% error rate as a fraction of the total number of signal
peptides (328). This is at about the same level of perfor-
mance as SignalP (Nielsen and Krogh 1998). Most of the
predicted sites are within ±5 amino acids from the correct
site, as seen in Figure 8.

Figure 7. HMM performance as a function of score difference. (Top) The
fraction of correct predictions as a function of score difference. (Bottom)
The fraction of sequences wrongly predicted as signal peptides or lipopro-
teins.

Figure 6. The architecture of the SPaseI and SPaseII models. N-states
model the n-region; H-states model the h-region; C-states and A-states
model the regions before and after the cleavage site, respectively; and
M-states model the remaining residues. All N-states except N1 are tied, all
H-states are tied, states C7–C9 are tied, and all M-states are tied. Dashed
transitions and light gray states are present only in the model of SpaseI-
cleaved signal peptides, and dotted transitions and dark gray states are
present only in the model of lipoproteins.

Table 1. Results of the prediction by the HMM

Correct class

Predicted class

SPaseI SPaseII Cytoplasmic TMH Total

SPaseI 309 2 14 3 328
SPaseII 2 61 0 0 63
Cytoplasmic 5 1 382 0 388
TMH 8 0 21 142 171

Juncker et al.
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Discussion

To compare the results from the neural network and the
HMM with existing tools, the PROSITE consensus pattern
with additional rules and the von Heijne consensus pattern
(von Heijne 1989) were tested on the same data sets.

The von Heijne consensus pattern predicted 54 of the 63
lipoproteins correctly, but also gave a total of 74 false posi-
tives. Forty-four of these were SpaseI-cleaved signal pep-
tides, which the consensus pattern should be able to distin-
guish from lipoprotein signal peptides. This is not surpris-
ing, because many lipoproteins and SPaseI-cleaved proteins
have been annotated since 1989. The Prosite pattern pre-
dicted 56 of the 63 lipoproteins correctly and it came up
with only 14 false positives, significantly better than the von
Heijne consensus pattern. Still, the HMM and the neural
network were both significantly better, as the number of
false positives was almost twice as much for the Prosite
pattern prediction compared with the neural network, and
even more when compared with the HMM.

When comparing the two new predictors, the HMM
seemed superior. By using the HMM, the same number of
lipoproteins were predicted correctly as with the neural net-
work. However, less false positives were predicted with the
HMM. Varying the threshold for the neural network, the
rate of false positives could be decreased, but at the cost of
true positives. Actually, raising the threshold for the output
neuron so that the number of false positives was decreased
to the same number as for the HMM, the number of true
positives was decreased to as little as 51. The worse per-
formance of the neural network could well be due to a much
larger number of free parameters compared with the rela-
tively small number of lipoproteins used for training. It is
possible that the neural net could have been further im-
proved by, for example, using an asymmetric input window
as in SignalP.

Table 2 summarizes the comparison. Because the HMM
gave the best results, it was used for further investigations.

It has previously been discussed whether the lipoproteins
should be considered as positive examples for SignalP
(Nielsen et al. 1997). SignalP is only trained on SpaseI-
cleaved proteins, considering the signal score and the cleav-
age score. Applying SignalP to lipoproteins the signal score
is very high, but the cleavage score is low as expected.
Depending on the combined score values, most lipoproteins
were predicted as having a signal peptide, but the cleavage
site was rarely predicted at the correct position.

The amino acid in position +2 relative to the cleavage site
is believed to determine whether the protein is attached to
the inner or outer membrane of Gram-negative bacteria.
Traditionally, it was thought that an aspartic acid in this
position directs the protein to the inner membrane, and all
other amino acids direct it to the outer membrane. However,
it has been shown that the situation is not quite so simple
(Seydel et al. 1999). We have not been able to find suffi-
cient experimental data to include this sorting signal into the
model, and instead the server provided at www.cbs.
dtu.dk/services/LipoP/ simply reports which amino acid is
in the +2 position to help users judge for themselves.
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Figure 8. Histogram of cleavage site prediction errors.

Table 2. Comparison of the HMM and neural network prediction with other available
lipoprotein prediction methods

Correct predictions of Lipoprotein False predictions of Lipoproteins
Correlation
coefficientNumber Lipoproteins Number Nonlipoproteins

Prosite pattern 56 88.9% 14 (11a/2b/1c) 1.6% 0.83
von Heijne consensus 54 85.7% 74 (44/20/10) 8.3% 0.56
Neural network 61 96.8% 8 (6/2/0) 0.9% 0.92
HMM 61 96.8% 3 (2/1/0) 0.3% 0.96

a SPaseI cleaved proteins.
b Cytoplasmic proteins.
c Transmembrane proteins.

Prediction of lipoprotein signal peptides
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Prediction of Gram-positive lipoproteins

Because lipoproteins from Gram-negative and Gram-posi-
tive Eubacteria are resembling each other in the consensus
sequence close to the lipid attachment site (Sutcliffe and
Russell 1995), we also tested the HMM on Gram-positive
lipoproteins.

A small data set consisting of 28 lipoproteins from Gram-
positive Eubacteria was extracted from SWISS-PROT by
using the same criteria as for the Gram-negative lipopro-
teins. Twenty-six of these lipoproteins were correctly pre-
dicted by the HMM to be lipoproteins, whereas the last two
proteins were predicted as transmembrane proteins. Be-
cause of the limited number of available sequences, the data
set was not similarity reduced, and these two sequences not
predicted to be lipoproteins by the HMM were actually
homologous cytochrome C oxidase polypeptide II precur-
sors from two different Bacillus species, B. firmus and B.
subtilis (COX2�BACFI and QOX2�BACSU). As these are
annotated in SWISS-PROT as having several potential
transmembrane helices, as well as having a lipoprotein sig-
nal peptide, the HMM prediction is actually not wrong. The
SPaseII scores were still relatively high (2.92 and 5.70)
compared with TMH scores (6.95 and 9.22). It should be
noted that several examples of integral membrane proteins
with cleavable lipoprotein signal peptide has been shown to
exist (Pyrowolakis et al. 1998; Bengtsson et al. 1999; Saka-
moto et al. 1999).

After the completion of the above data set, it came to our
attention that another set of 33 experimentally verified
Gram-positive lipoproteins was used by Sutcliffe and Har-
rington (2002). Twelve of these sequences are also in our
data set. We have tested our method on 31 of the sequences
(LppC and MBL from Streptococcus equi were not found).
Four sequences were wrongly classified, but three of them

had the correct cleavage site predicted in a suboptimal pre-
diction of lipoprotein (see www.binf.ku.dk/krogh/LipoP/).
Two cytochrome C oxidases (QOX2�BACSU and Q93HZ4)
were predicted as transmembrane, one protein was predicted
as an ordinary signal peptide (SODC�MYCTU), and one as
cytosolic (KAPB�BACSU).

Genome search

Lipoproteins were predicted in the complete proteomes of
13 microbial genomes from GenBank. Because the above
results indicated that the HMM also was capable of predict-
ing Gram-positive lipoproteins, the genome of the industri-
ally very important B. subtilis was included for testing.
Table 3 lists the number of proteins predicted as lipopro-
teins by the HMM model. The number of predicted lipo-
proteins annotated as such is listed for both GenBank and
SWISS-PROT. Many of the proteins included in the whole
genome data sets from GenBank cannot be found in
SWISS-PROT. Therefore, the number of predicted lipopro-
teins, which can be found in SWISS-PROT, is included for
comparison.

The predicted lipoproteins for Escherichia coli strain K12
are listed in Table 4 and sorted according to descending
differences in SPaseII and SPaseI scores. A more thorough
list of prediction results for all the analyzed genomes can be
found at www.binf.ku.dk/krogh/LipoP/. The lipoproteins
predicted for the E. coli strain K12 were compared with new
experimental data (S. Matsuyama et al., unpubl.). Table 4
indicates which of the predicted lipoproteins have been ex-
perimentally confirmed by the sensitivity to globomycin
and/or lipid-modification. As can be seen, 26 of the pre-
dicted lipoproteins have not yet been experimentally veri-
fied. When looking at the SWISS-PROT annotation, 17 of

Table 3. Proteins predicted as lipoproteins for the 13 genomes

Organism
Number of predicted
lipoproteins by HMM

Out of the number of predicted lipoproteins

Annotated as
lipoproteins in GenBank

Found in
SWISS-PROT

Annotated as lipoproteins
in SWISS-PROT

Agrobacterium tumefaciens str. C58 47 2 3 2
Bacillus subtilis 101 3 50 32
Borrelia burgdorferi 113 12 14 9
Campylocater jejuni 47 29 6 6
Escherichia coli K12 101 16 101 63
Haemophilus influenzae Rd 48 13 48 19
Helicobacter pylori 26695 37 5 8 3
Neisseria meningitidis serogroup A 72 28 6 5
Pseudomonas aeruginosa 186 8 13 10
Salmonella typhi 116 69 12 7
Salmonella typhimurium 110 63 19 15
Treponema pallidum 31 2 22 12
Vibrio cholerae 82 17 10 10

Juncker et al.
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these 26 predictions are annotated as hypothetical proteins.
The remaining nine predictions are all annotated as some-
thing else. We would, however, from the test results, expect
0.3% of the nonlipoproteins to be predicted falsely as lipo-
proteins, which corresponds to ∼13 false positives for the E.
coli K12 genome with ∼4000 annotated proteins. This cor-
responds well with the previous annotations. Fortunately, all
the lipoproteins included in the training set were experimen-
tally verified.

Table 4. Lipoproteins predicted for the Escherichia coli
K12 genome

SWISSPROT
entry

SPaseII–SPaseI
score

Predicted lipid
attachment site

Experimentally
verifieda

YFHM_ECOLI 15.770 18 −
YFBK_ECOLI 13.390 19 −
ACFD_ECOLI 13.220 24 −
YAIW_ECOLI 13.010 21 −
MLTA_ECOLI 12.940 21 +
YIIG_ECOLI 12.460 22 +
RLPB_ECOLI

b
12.140 19 +

YFIB_ECOLI 12.070 19 +
YIFL_ECOLI 11.890 20 −
YCFL_ECOLI 11.760 19 −
NLPB_ECOLIb 11.520 26 +
NLPA_ECOLIb 11.360 24 +
YHIU_ECOLI 11.060 21 +
YIAD_ECOLI 10.880 21 +
MULI_ECOLI 10.770 21 +
YFIO_ECOLI 10.680 20 +
MLTB_ECOLIb 10.660 19 +
YCFM_ECOLI 10.520 20 +
YBJR_ECOLI 10.250 17 +
SLYB_ECOLI 10.190 18 +
YCEB_ECOLI 9.875 19 +
YEHR_ECOLI 9.793 27 +
YCJN_ECOLI 9.705 21 +
NLPI_ECOLIb 9.677 19 +
YBHC_ECOLI 9.570 22 +
YQHH_ECOLI 9.422 20 +
YCDR_ECOLI 9.138 21 +
PAL_ECOLI 9.039 22 +
YAFT_ECOLI 8.961 19 +
NLPD_ECOLIb 8.943 26 +
YAEC_ECOLI 8.699 23 +
YHFL_ECOLI 8.644 20 +
YEAY_ECOLI 8.481 23 +
APBE_ECOLI 8.469 20 +
SLP_ECOLIb 8.097 30 +
YGER_ECOLI 8.042 34 +
RLPA_ECOLIb 7.906 18 +
YGHG_ECOLI 7.802 25 +
ACRA_ECOLIb 7.696 25 +
ACRE_ECOLI 7.696 24 +
HSLJ_ECOLI 7.680 17 +
FLGH_ECOLI 7.581 22 +
NLPC_ECOLI 7.428 16 +
LOLB_ECOLIb 7.363 22 +
YBFN_ECOLI 7.188 17 +
BLC_ECOLIb 7.034 19 +
MLTD_ECOLI 6.735 16 +
YBAY_ECOLI 6.537 19 +
OSME_ECOLIb 6.535 21 +
VACJ_ECOLI 6.469 18 +
RCSF_ECOLI 6.450 16 +
YBBC_ECOLI 6.358 18 −
YJEI_ECOLI 6.146 30 +
YGDR_ECOLI 5.750 20 +
BORD_ECOLI 5.519 17 +
YDCL_ECOLI 5.493 21 +
SPR_ECOLI 5.441 27 +

(continued)

Table 4. Continued

SWISSPROT
entry

SPaseII–SPaseI
score

Predicted lipid
attachment site

Experimentally
verifieda

YCAL_ECOLI 5.318 28 +
YFGH_ECOLI 5.271 22 +
YJAH_ECOLI 4.807 31 −
CUTF_ECOLI

b
4.759 21 +

YRAM_ECOLI 4.703 27 −
OSMB_ECOLIb 4.544 24 +
YOAF_ECOLI 4.476 17 +
WZA_ECOLI 4.375 21 +
YDDW_ECOLI 4.167 28 −
YGDI_ECOLI 4.107 21 +
YCCZ_ECOLI 3.873 21 +
YMCC_ECOLI 3.867 16 +
YBET_ECOLI 3.850 19 −
NRFG_ECOLI 3.780 22 −
YFEY_ECOLI 3.476 18 +
MLTC_ECOLI 3.345 18 +
YRAP_ECOLI 3.248 19 +
CSGG_ECOLI 3.121 16 +
YNFC_ECOLI 2.941 29 +
YNBE_ECOLI 2.896 17 +
CUSC_ECOLI 2.754 18 +
YFGL_ECOLI 2.544 20 +
YBFP_ECOLI 2.535 23 +
YFHG_ECOLI 2.522 26 −
YHDV_ECOLI 2.447 17 +
LEP_ECOLI 2.253 21 −
GUN_ECOLI 2.058 23 −
YCEK_ECOLI 2.041 16 +
YJBF_ECOLI 1.952 26 +
PANE_ECOLI 1.927 20 −
YFIL_ECOLI 1.884 30 +
YEDD_ECOLI 1.802 16 +
YECR_ECOLI 1.530 16 +
FLIL_ECOLI 1.291 27 −
YIHN_ECOLI 1.282 16 −
DCRB_ECOLI 1.123 38 −
KEFA_ECOLI 0.949 27 −
YJBH_ECOLI 0.801 18 −
YDEK_ECOLI 0.797 19 −
YBJP_ECOLI 0.641 19 +
VISC_ECOLI 0.435 20 −
SRLD_ECOLI 0.364 19 −
YPDI_ECOLI 0.131 19 −
YJCP_ECOLI 0.095 24 −

a According to S. Matsuyama et al., unpubl.
b Sequences included in training set.
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It seemed that the HMM prediction missed 15 of the
experimentally verified lipoproteins from E. coli (data not
shown). Two of the lipoproteins were, however, encoded by
plasmid genes and therefore not included in the E. coli K12
genome. By using the sequences from SWISS-PROT, they
were both predicted correctly as lipoproteins. Also, by using
the SWISS-PROT sequences instead of the GenBank se-
quences, seven of the remaining proteins were predicted
as lipoproteins. Because the protein sequences given in
GenBank in these cases were longer than the ones given in
SWISS-PROT, it is therefore very likely that the position of
the start codon in the GenBank sequence is incorrectly an-
notated. One additional protein was annotated as both po-
tential transmembrane and lipoprotein in SWISS-PROT
(CYOA�ECOLI, ubiquinol oxidase polypeptide II precur-
sor), and as with the Gram-positive case, the SPaseII score
was relatively high (6.64) compared with the TMH score
(7.87). All the above considered, only five of the 90 experi-
mentally verified lipoproteins were actually not predicted as
such by the HMM model.

In the Gram-positive B. subtilis, 101 annotated proteins
were predicted as lipoproteins. For comparison, Tjasma et
al. (1999) found 114 probable lipoproteins by a SignalP
search combined with a lipobox search and a Blast similar-
ity search. Sutcliffe and Harrington (2002) found 67 lipo-
proteins (61 probable and six proven) lipoproteins by a
regular expression called G+LPP, and Gonnet and Lisacek
(2002) found 65 lipoproteins predicted by another refined
regular expression.

Conclusion

A method for lipoprotein prediction, LipoP, was developed.
Both an HMM and a neural network were significantly bet-
ter at predicting lipoproteins than were any of the existing
methods discussed in this article. The HMM method was
chosen for the remainder of the analysis, mainly because it
distinguishes between lipoproteins, SPaseI-cleaved signal
peptides, cytoplasmic proteins, and proteins with N-termi-
nal transmembrane helices. However, when handling pro-
teins, which are both lipoproteins and have transmembrane
regions, the HMM, in some cases, misses the lipoprotein
signal peptide.

The method was used to predict lipoproteins in 12 Gram-
negative bacteria. When comparing a genome search of E.
coli with new experimental data, most of the experimentally
verified lipoproteins were correctly predicted as lipopro-
teins (94.6%). This verification of the lipoproteins predicted
in E. coli might be an indication of how well the HMM
performs on genome data in general. Even though the HMM
is trained on proteins from Gram-negative bacteria, it also
seems to be able to predict Gram-positive lipoproteins. This
feature was used to make a genome search of the Gram-
positive bacteria, B. subtilis.

The LipoP server is accessible at www.cbs.dtu.dk/
services/LipoP/. Genome predictions and other material are
accessible at www.binf.ku.dk/krogh/LipoP/.

Materials and methods

Data sets

A data set consisting of Gram-negative lipoproteins and SPaseI
and cytoplasmic proteins was created. The sequences were ex-
tracted from SWISS-PROT (release 40) by using keywords and
comments and by including only proteins from organisms belong-
ing to the two phyllums Proteobacteria and Spirochetes (order:
Spirochaetales).

Only a very limited number of lipoproteins with known signal
length and lipid attachment site for Gram-negative Bacteria could
be retrieved. Therefore, also lipoproteins annotated as probable for
signal length and lipid attachment site, as well as lipoproteins
annotated as potential in only one of these categories, but certain
lipoproteins in the other were allowed in the data set. Hereby, we
were able to extract 99 lipoproteins. More sequences where avail-
able for Gram-negative SPaseI-cleaved proteins and for Gram-
negative cytoplasmic proteins; thus all proteins with annotations
such as probable and potential were excluded from these data sets,
creating two parts of the data set consisting of 528 SPaseI-cleaved
proteins and 1026 cytoplasmic proteins, respectively. In these sets,
the first amino acid after the cleavage site was labeled.

The combined data set was then homology reduced to limit
biasing so it could be used for testing with cross-validation. Be-
cause we were primarily interested in the signal part of the se-
quence, only the first 30 amino acids were taken into consideration
for the lipoproteins and the first 60 amino acids for the SPaseI-
cleaved proteins and the cytoplasmic proteins in the similarity
reduction. To generate a nonredundant data set, we searched each
sequence in the data set against all the other sequences by using
BLASTP (Altschul et al. 1997) and a Blosum62 score matrix
(Henikoff and Henikoff 1992). By using a threshold of 10−6 on the
expectation score, we subsequently generated a maximal nonre-
dundant version of the data set using the Hobohm-2 algorithm
(Hobohm et al. 1992). Finally, the data set consisted of 63 non-
homologous lipoproteins (Table 5), 328 SPaseI-cleaved proteins,
and 388 cytoplasmic proteins.

A data set of N-terminal transmembrane segments was created
from the set of 160 membrane proteins used in Krogh et al. (2001).
Sixty-eight of them were from the above-mentioned phyllums, and
they were extracted. Because the original data set was already
similarity reduced, no more reduction was done. To obtain a rea-
sonable number of N-terminal membrane helices for training and
testing the methods, a set of “fake” N-terminal sequences was
created. Finding all the TM helices starting on the cytoplasmic
side, the following was done for each sequence. If it was the first
TM helix in the protein, up to 40 amino acids upstream were
included (or as many as there were). Otherwise, half the upstream
amino acids on the cytoplasmic side or up to 40 were included. The
first amino acid was replaced by a methionine. The sequences were
cut off at a total length of 70 amino acids, excluding those that
were short (C-terminal TM helices). The set of “constructed” TM
peptides ended up containing 171 sequences.

For testing the methods, the data were divided into 63 sets. Each
set contained exactly one lipoprotein. The other sets were distrib-
uted equally and randomly among the 63 sets. In the cross-vali-
dation procedure, the HMM or neural network was trained on 62
of these sets and tested on the one that was left out. This was
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repeated 63 times, so that all sets were used for testing once, and
finally, the test results were averaged. This is a standard method
for obtaining unbiased test results when the amount of data is
limited.

A data set consisting of Gram-positive lipoproteins was made
for testing purposes only. The extraction of proteins was done in
the same way as the data set for Gram-negative lipoproteins, but
the data set was not homology-reduced because the Gram-positive
lipoproteins would only be used for testing.

Recently, 90 lipoproteins from E. coli have been experimentally
verified by S. Matsuyama et al. (unpubl.). These were used as a
base for comparison of the results from the genome search carried
out for E. coli.

Neural networks

The neural network training was carried out by using the lipopro-
tein cleavage site on lipoproteins as positive examples and all
remaining “C”s from lipoproteins, SpaseI-cleaved proteins and
cytoplasmic proteins as negative examples. Thus, the neural net-
works were trained only on cysteines, and backward propagation
was used under the training. The number of hidden neurons was
varied from zero to four, and the size of the symmetric windows
was varied from 27 to 33. The neural networks were evaluated by
their performance on the test data sets. The test data from the 63
cross-validations were added together, and the correlation coeffi-
cient were calculated (Matthews 1975). In this way, all proteins in
the entire data set were included in the calculation, and none of
them were tested on the network they were trained on. By consid-
ering the correlation coefficient and the number of lipoproteins
predicted, the best network was chosen and the optimal parameters
were estimated.

The training set for the neural networks consisted of Gram-
negative lipoproteins and SPaseI and cytoplasmic proteins data
sets, whereas the transmembrane data set was used only for testing.
The neural network was trained on the first 100 amino acids of
each sequence. For testing, only the first 50 amino acids of each
sequence were considered.

HMMs

The four branches or submodels already described were denoted
SPaseI, SPaseII, TMH, and CYT. The first state of each branch
was given probability 1 out of 20 for all amino acids. This is
because the first amino acid always is methionine, so there is no
information in this amino acid. The advantage of this scheme is
that the model can deal with a wrongly assigned first amino acid
(which happens sometimes when the start codon of a gene is not
ATG).

The probability for entering each of the branches was not esti-
mated from the data. These entry probabilities reflect the prior
probabilities (in a Bayesian statistical sense) that a randomly cho-
sen protein belongs to each of the four classes. They also deter-
mine the number of predictions of each class, so by changing them,
one can, for instance, increase the number of predictions from a
certain class. They were set by trial and error so as to get reason-
able prediction levels for the classes, but mostly focused on the
performance on lipoproteins. Equivalently, one could fix the four
entry probabilities to, for example, one out of four and then in-
stead of choosing the highest scoring branch for prediction, one
could have class-specific cut-offs on the log-odds score. In our
final model, we have these probabilities: P(SPaseI) � 0.08,
P(SPaseII) � 0.02, P(TMH)�0.03, and P(CYT) � 0.87. The
system is not very sensitive to these parameters.

The model was trained using the Baum-Welch procedure for
labeled sequences (Krogh 1997; Durbin et al. 1998; Krogh and
Riis 1999). The sequences were labeled according to which of the
three classes it belonged to, and the cleavage site was labeled for
signal sequences. This ensures that a submodel is trained on the
correct set of proteins, and that cleavage sites are correctly posi-
tioned during training. Only the first 70 amino acids of each pro-
tein were used for training and testing.

We used the submodel for cytoplasmic proteins as the null
model, so the score for cytoplasmic is always equal to log[P-
(CYT)] � −0.1393 (the natural logarithm is used).

Genome search

Data sets were extracted from the GenBank genomic library (Ben-
son et al. 2002). The extracted genomes and the corresponding
GenBank files are listed in Table 6. The number of sequences
included in each genome file is listed as well.

The predictions were carried out on the whole genome data sets
extracted from GenBank. The proteins predicted as lipoproteins by
the HMM were compared with previous annotations in GenBank
as well as in SWISS-PROT. To find the corresponding SWISS-
PROT entry, the gene names were extracted from the GenBank file
(*.gbk) for each predicted lipoprotein, and by comparing these
with a SWISS-PROT file (*.sprot) for each microorganism, it was
possible to extract SWISS-PROT entry names for gene products
that were available in SWISS-PROT. By using “function” and
“product” annotation in the GenBank files and “keyword” anno-
tation in the SWISS-PROT files, the prediction was compared with
the existing GenBank and SWISS-PROT annotations.
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Table 5. Lipoproteins included in homology reduced data set

17KD_RICPR
ACRA_ECOLI
ANIA_NEIGO
BLC_ECOLI
BLC_VIBCH
BMPA_BORAF
BMPB_BORGA
BMPC_BORBU
BMPD_BORBU
COML_NEIGO
CUTF_ECOLI
CYCR_RHOVI
GLPQ_HAEIN
GUN_BURSO
H8_NEIMC
HBPA_HAEIN
HFD1_HAEIN
HLPA_HAEIN
LOLB_ECOLI
LP20_HELPY
LPPB_HAESO

LPPL_PSEAE
LYS4_ECOLI
MLTA_VIBCH
MLTB_ECOLI
MP17_FRATU
MULI_MORMO
MULI_PROMI
MULI_PSEAE
NLPA_ECOLI
NLPB_ECOLI
NLPD_ECOLI
NLPD_PSEAE
NLPI_ECOLI
OMLA_ACTPL
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TMPA_TREPH
TMPC_TREPA
TRT3_ECOLI
VACJ_SHIFL
VM07_BORHE
VM17_BORHE
VM21_BORHE
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Table 6. List of organisms used for the genome search

Organism
# Sequences
in genome Genbank file

Agrobacterium
tumefaciens str.
C58 (U.
Washington)

5402 AE008688 (circular chromosome)
AE008689 (linear chromosome)
AE008687 (plasmid AT)
AE008690 (plasmid TI)

Bacillus subtilis 4112 NC_000964
Borrelia burgdorferi

w/plasmids
1596 NC_001318 (chromosome)

Plasmids: NC_001904 (cp9),
NC_001903 (cp26), NC_000948
(cp32-1), NC_000949 (cp32-3),
NC_000950 (cp32-4), NC_000951
(cp32-6), NC_000952 (cp32-7),
NC_000953 (cp32-8), NC_000954
(cp32-9), NC_000957 (lp5),
NC_001849 (lp17), NC_000955
(lp21), NC_001850 (lp25),
NC_001851 (lp28-1), NC_001852
(lp28-2), NC_001853 (lp28-3),
NC_001854 (lp28-4), NC_001855
(lp36), NC_001856 (lp38),
NC_001857 (lp54), NC_000956
(lp56)

Campylocater jejuni 1634 AL111168
Escherichia coli K12 4279 NC_000913
Haemophilus

influenzae Rd
1714 NC_000907

Helicobacter pylori
26695

1576 NC_000915

Neisseria
meningitidis
serogroup A
strain Z2491

2065 AL157959

Pseudomonas
aeruginosa

5567 NC_002516

Salmonella enterica
subsp. enterica
serovar Typhi

4600 NC_003198

Salmonella
typhimurium LT2

4451 NC_003197

Treponema pallidum 1036 NC_000919
Vibrio cholerae 3828 AE003852 (chromosome I)

AE003853 (chromosome II)
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