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Abstract

Mutations in HIV-1 drug targets lead to resistance and consequent therapeutic failure of antiretroviral drugs.
Phenotypic resistance assays are time-consuming and costly, and genotypic rules-based interpretations may
fail to predict the effects of multiple mutations. We have developed a computational procedure that rapidly
evaluates changes in the binding energy of inhibitors to mutant HIV-1 PR variants. Models of WT com-
plexes were produced from crystal structures. Mutant complexes were built by amino acid substitutions in
the WT complexes with subsequent energy minimization of the ligand and PR binding site residues.
Accuracy of the models was confirmed by comparison with available crystal structures and by prediction
of known resistance-related mutations. PR variants from clinical isolates were modeled in complex with six
FDA-approved PIs, and changes in the binding energy (�Ebind) of mutant versus WT complexes were
correlated with the ratios of phenotypic 50% inhibitory concentration (IC50) values. The calculated �Ebind

of five PIs showed significant correlations (R2 � 0.7–0.8) with IC50 ratios from the Virco Antivirogram
assay, and the �Ebind of six PIs showed good correlation (R2 � 0.76–0.85) with IC50 ratios from the
Virologic PhenoSense assay. �Ebind cutoffs corresponding to a four-fold increase in IC50 were used to define
the structure-based phenotype as susceptible, resistant, or equivocal. Blind predictions for 78 PR variants
gave overall agreement of 92% (kappa � 0.756) and 86% (kappa � 0.666) with PhenoSense and Antivi-
rogram phenotypes, respectively. The structural phenotyping predicted drug resistance of clinical HIV-1 PR
variants with an accuracy approaching that of frequently used cell-based phenotypic assays.
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Antiretroviral drugs targeting the RT and PR enzymes of
HIV-1 may result in dramatic suppression of viral replica-
tion in infected individuals (Palella Jr. et al. 1998; Carpenter
et al. 2000). However, when viral replication is incom-

pletely suppressed, drug-resistant variants emerge through
the accumulation of mutations in the HIV-1 RT or PR
genes, leading to therapeutic failure (Hirsch et al. 2000).
Genotypic testing for resistance is a relatively rapid and
inexpensive method to identify PR and RT amino acid sub-
stitutions leading to drug resistance (Baxter et al. 2000;
Schinazi et al. 2000; Shafer 2002). Genotyping is recom-
mended for use in clinical practice (Hirsch et al. 2000).
However, rules-based interpretation systems are retrospec-
tive in nature and must be frequently updated to accommo-
date new mutational patterns and new antiretrovirals. As a
result, genotypic predictions for complex mutational pat-
terns and for new antiretrovirals may be inaccurate (Baxter
et al. 2000). Cell-based viral phenotyping assays (Hertogs et
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al. 1998; Petropoulos et al. 2000; Qari et al. 2002) have been
correlated with favorable clinical outcomes (Cohen et al.
2002) and may offer a more reliable measure of resistance
in cases in which mutational patterns are complex or the
genotypic resistance pattern has not been determined
(Haubrich et al. 2001). However, phenotypic assays are
more time-consuming and expensive than genotypic as-
says, and the clinically significant cutoffs for the change
in IC50 for some drugs are still uncertain. A hybrid ap-
proach, matching viral sequence against a database of
paired viral genotypes and phenotypes, is used to derive a
VirtualPhenotype, a computational prediction of viral resis-
tance (Tibotec-Virco; http://www.tibotec-virco.com). This
method provides a quantitative estimate of drug resistance,
although it may fail to give a prediction when few pheno-
typic matches for a particular variant are identified in the
database, as is the case for rare mutational patterns or newly
introduced drugs.

HIV-1 PR, a homodimer containing two identical 99
amino acid polypeptide chains, is a key enzyme involved in
the catalysis of HIV protein cleavage in the viral replication
cycle (Kohl et al. 1988). Processing by PR is essential for
viral maturation and infectivity. Therefore, an intense effort
has been made to rationally design and develop HIV-1 PIs
(for review, see Wlodawer and Vondrasek 1998; Gulnik et
al. 2000; Tomasselli and Heinrikson 2000). Six FDA-ap-
proved PIs (Fig. 1) are currently in clinical use. However,
the rapid emergence of resistant HIV-1 variants can result in
therapeutic failure (Schinazi et al. 2000; Shafer 2002). In-
dividual mutations and combinations of mutations at more
than 20 PR codons are known to contribute to PI resistance
(Hirsch et al. 2000), including amino acids directly involved
in the inhibitor binding, as well as some residues located up
to 20 Å apart from the inhibitor binding site. The structural
determinants of resistance for some of the PR variants have
been characterized by X-ray crystallography (Baldwin et al.
1995; Hong et al. 2000; Mahalingam et al. 2001; King et al.
2002).

Several attempts have been made to develop computa-
tional methodologies for molecular modeling of PR–inhibi-
tor complexes, and to build QSAR models for prediction of
PI activity (Holloway et al. 1995; Perez et al. 1998; Nair et
al. 2002). Molecular mechanics and molecular dynamics
approaches have also been used to predict resistance of
mutant PR variants to various PIs (Dominy and Brooks III
1999; McCarric and Kollman 1999). The approaches based
on calculations of protein–ligand interaction energies re-
sulted in significant correlations with experimental binding
energies (Weber and Harrison 1999) or in the correct pre-
diction of 75% of the single amino acid mutations causing
resistance to commercial PIs (Wang and Kollman 2001).
These computational methods, however, have not been de-
veloped to predict resistance of PR variants with multiple
amino acid substitutions obtained from clinical HIV-1 isolates.

The present study tests the hypothesis that resistance to
PIs results mainly from decreased inhibitor binding affinity
to mutant PR variants, as was previously shown by inhibitor
binding kinetics measurements for engineered PR variants
containing known resistant mutations (Gulnik et al. 1995).
We have further assumed that (1) mutant PR–inhibitor com-
plexes can be accurately modeled based on X-ray crystal
structures of WT PR complexes, (2) changes in the binding
affinity on mutation may be approximated as changes in
calculated binding energy of PR–inhibitor complexes, and
(3) PI resistance may be predicted from a significant in-
crease in the binding energy of an inhibitor with respect to
the WT complex. We describe here a structural approach to
predicting the resistance of HIV-1 PR mutants to the six
FDA-approved PIs using molecular modeling of the PR
complexes in order to calculate changes in the inhibitor
binding energy to the mutant PR relative to the reference
WT complex. In preliminary studies (Shenderovich et al.

Figure 1. Structures of the FDA-approved HIV-1 PIs used in this study.
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2001a,b), we obtained statistically significant correlations
between calculated and experimental values of binding en-
ergy of four FDA-approved inhibitors with engineered PR
variants containing single and double amino acid mutations.
In this study, we show that the changes in binding energy
can be directly correlated to the fold changes in PI IC50

values measured in two commercially available phenotypic
assays. We propose a model for a structural phenotyping
resistance assay based on these correlations.

Results

Accuracy of the models of mutant
PR–inhibitor complexes

Accuracy of the models may be estimated by comparison
with the X-ray crystal structure of the same or similar com-
plexes. A few structures of PR–inhibitor complexes con-
taining resistance-related mutations are available in the Pro-
tein Data Bank (PDB; Baldwin et al. 1995; Mahalingam et
al. 2001; King et al. 2002), and only one crystal structure
(Hong et al. 2000; PDB entry 1fb7) that involves an FDA-
approved inhibitor, SQV, in complex with a highly resistant
G48V/L90M PR mutant shows significant structural
changes with respect to the WT PR–inhibitor complex
(PDB entry 1hxb). In the preliminary study (Shenderovich
et al. 2001a,b), we modeled SQV complexes with PR vari-
ants containing the G48V mutation. Figure 2 displays su-
perposition of the crystal structure (yellow) and our model
(white) of the mutant G48V PR–SQV complex. The crystal
structure of the WT PR–SQV complex is shown in blue. In
the WT complex, the quinoline moiety of SQV is tightly
bound to the flap residues 47–50, and flexibility of the flap
residues is restricted by interactions with the Phe 53 side
chain. In the mutant complex, the bulky Val 48 side chain,
which appears exactly between the quinoline ring of the

ligand and the phenyl ring of Phe 53, causes a steric repul-
sion of the aromatic moieties that increases the van der
Waals component of the binding energy (see Table 1). Both
the crystal structure and the computational model show very
similar displacements of the aromatic moieties of the ligand
and Phe 53. The RMSD between the model and the crystal
structure of the mutant complex are 0.5 and 1.0 Å for C�

atoms and all heavy atoms, respectively, of the PR residues
located within a 7.0 Å shell from the ligand. It is noteworthy
that our model was built from an optimized crystal structure
of the WT complex before the crystal structure of the mu-
tant complex was published.

Crystal structures of the mutant L63P/V82T/I84V PR in
complex with IDV and its analogs were recently solved
(King et al. 2002). The mutant complex with IDV (PDB
entry 1k6c) shows relatively small changes with respect to
the crystal structure of the WT complex (PDB entry 1hsg)
with all C� atom RMSD � 0.46 Å. Our model of the mu-
tant V82T/I84V PR–IDV complex is also close to the WT
complex (all C� atom RMSD � 0.42 Å). Furthermore, the
crystal structure and our model of the mutant complex are
reasonably close to each other: C� atom and all heavy atom
RMSD is 0.5 and 0.75 Å, respectively, for residues located
in a 7.0 Å shell around the ligand. Both crystal structure and
the model predict similar positions of the ligand and con-
formations of the mutated side chains, and the calculated
change in the binding energy (Table 1) is very close to the
measured value (King et al. 2002).

Evaluation of resistance-related mutations
for HIV-1 PIs

Statistically significant correlations between calculated and
experimental binding energy were obtained in our prelimi-
nary studies (Shenderovich et al. 2001a,b) for four clinically
available PIs—APV, IDV, RTV, and SQV—in complex
with genetically engineered PR variants. In the present
study, we modeled complexes of six FDI-approved PIs (Fig.
1) with PR variants containing known resistance-related
mutations. The calculated changes in the main components
of the binding energy are given in Table 1 in comparison
with energy values estimated from experimental Ki or IC50

ratios. It may be noted that the computational mutagenesis
procedure predicts significant change in the binding energy
(�Ebind � 1.5 kcal/mole) for the majority of known resis-
tant single and double mutations: G48V for SQV; V82A for
IDV and RTV; I84V in various combinations for SQV,
NFV, IDV, RTV, and APV; and D30N for NFV. Further-
more, the most resistant mutations (>100-fold change in Ki

values) can be reliably predicted by �Ebind values of �3.0
kcal/mole. For the majority of resistance-related single and
double mutations, the increase in PI binding energy is due
mainly to the van der Waals component of the binding
energy function. Most of the conservative mutations in po-

Figure 2. Superimposed stereo views of the crystal structure (yellow;
Hong et al. 2000) and our model (white) of the SQV complex with the
G48V/L90M mutant HIV PR. The crystal structure of WT PR–SQV com-
plex (blue) is also shown for comparison. The SQV molecules are shown
as tube models. Only PR residues closest to the ligand are displayed.
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sitions 50, 82, and 84 do not change significantly the ligand
binding mode and structure of the complex, but only de-
crease the number of favorable van der Waals contacts be-
tween the ligand and the protein side chains. In particular,
the crystal structure of IDV in complex with the mutant
L63P/V82T/I84V PR (King et al. 2002) was similar to that
of the WT PR–IDV complex, whereas thermodynamic mea-
surements showed a 2.5 kcal/mole loss in the binding en-
thalpy of the mutant complex. This is in good agreement
with the increase in the binding energy due to the reduced
van der Waals contacts of the mutant side chains predicted
for the IDV complex with the V82T/I84V mutant PR (Table
1). The noticeable exception is the complex of NFV with the
mutant D30N PR, where substitution of neutral Asn for the
charged Asp 30 that directly interacts with the m-phenol
group of NFV weakens the hydrogen bonding and increases
electrostatic components of the binding energy. More com-
plex mutation patterns may cause significant changes in the
3D structure of the complex that leads to disruption of li-
gand–PR hydrogen bonding (APV complex with a triple
mutant and SQV complex with a quadruple mutant; see
Table 1). Only a combination of at least five mutations in
residues close to the PR binding site causes a significant
increase in the binding energy of the recently approved PI
LPV (Table 1). This is consistent with experimental find-
ings that clinical isolates resistant to LPV display complex
mutational patterns involving positions 46, 47, and 84 (Car-
rillo et al. 1998).

Using the computational mutagenesis procedure, we cal-
culated the binding energy profiles of each PI for the set of
single, double, and triple mutations that were described in
the literature (Gulnik et al. 1995; Markowitz et al. 1995;
Maschera et al. 1996; Pazhanisamy et al. 1996; Klabe et al.
1998; Markland et al. 2000). The profiles for SQV and APV
shown in Figure 3 represent the histograms of calculated
�Ebind ranked by increasing binding energy. The right
shoulders of these profiles contain potentially resistant mu-
tations. We assumed that �Ebind � 2.0 kcal/mole was a
reliable threshold for resistance prediction from the binding
energy profiles. The bars exceeding this threshold are col-
ored gray in the histograms in Figure 3; the most resistant
mutations (�Ebind � 3.0 kcal/mole) are shown in black.
Black bars in the binding energy profile of SQV correspond
to PR variants containing the G48V mutation, known to
cause a high resistance to SQV (Maschera et al. 1996).
Other potentially resistant variants (gray bars in Fig. 3A)
contain mutations I84V and I50V. The latter mutation is
known to cause resistance to APV (Pazhanisamy et al.
1996) but not to SQV. Indeed, mutation I50V, either alone
or in combination with substitutions in positions 10, 46, or
47, comprised the most resistant variants in the binding
energy profile of APV with �Ebind � 3.0 kcal/mole (Fig.
3B). Nonetheless, mutation I50V causes a 20-fold increase
in the Ki value for SQV (Pazhanisamy et al. 1996; Markland
et al. 2000), which is in good agreement with the calculated
�Ebind of about 2.0 kcal/mole (Table 1, Fig. 3A). The qua-

Table 1. Calculated and experimental binding energy changes for known resistance mutations of HIV-1 protease

Mutations PI
�Ebind (calc),

kcal/mole �Evw
a �Ehb

a �Eel
a

Fold
resistanceb

�Ebind (exptl),
kcal/molec Reference

G48V SQV 3.5 2.1 0.5 0.5 160 3.1 Maschera et al. 1996
I50V SQV 2.2 1.9 0.3 0.1 21 1.9 Markland et al. 2000

APV 2.9 2.9 0.1 0.1 83 2.7 Markland et al. 2000
M46I/I47V/I50V APV 3.6 1.5 1.8 0.4 270 3.4 Partaledis et al. 1995
M46I/G48V/I50V SQV 3.8 1.6 1.3 0.6 300 3.5 Markland et al. 2000
/I84L APV 0.9 1.0 −0.2 −0.1 2 0.4 Markland et al. 2000
V82A IDV 1.8 1.2 0.0 0.5 22 1.9 Gulnik et al. 1995

RTV 2.4 2.8 0.2 −0.5 10 1.4 Gulnik et al. 1995
I84V SQV 2.2 2.1 −0.1 0.1 12 1.5 Partaledis et al. 1995

APV 2.0 2.0 0.0 0.1 23 1.9 Partaledis et al. 1995
IDV 1.5 1.0 0.0 0.4 20 1.8 Partaledis et al. 1995

V32I/I84V IDV 2.9 2.2 0.2 0.2 80 2.7 Gulnik et al. 1995
RTV 2.0 1.7 0.2 0.1 64 2.6 Gulnik et al. 1995

V82T/I84V IDV 2.4 1.9 0.0 0.3 59 2.5 Schock et al. 1996
RTV 2.9 2.6 0.1 0.0 158 3.1 Schock et al. 1996

M46I/I84V NFV 1.7 1.5 −0.1 0.2 5–30d Patick et al. 1996
D30N NFV 1.5 −0.9 1.6 0.8 7d Patick et al. 1996
L10F/V32I/M46I/

I47V/I84V
LPV 2.9 3.3 −0.3 −0.3 25–100 2.0–2.8 Carrillo et al. 1998

a �Evw, �Ehb, and �Eel are changes in the van der Waals, hydrogen bonding, and electrostatic components of binding energy (see equation 2 in Materials
and Methods).
b Fold changes in Ki or IC50 values.
c �Ebind(exptl) was calculated using equations 4 or 5 in Materials and Methods.
d Ratios of EC90 values; experimental binding energies were not estimated.
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druple mutant (M46I/G48V/I50V/I84L) that combines
single-residue mutations determining resistance to both in-
hibitors appears to be highly resistant to SQV but sensitive
or only slightly resistant to APV (�Ebind � 3.8 and 0.9
kcal/mole for SQV and APV, respectively), which is con-
sistent with the experimental observations (Markland et al.
2000). The model of the quadruple mutant complex with
APV did not deviate significantly from the model of the WT
complex (RMSD of 0.4 Å for heavy atoms of the ligand and
binding site residues). Accommodation of the bulkier Leu
84 side chain in complex with APV resulted in tighter li-
gand packing in the vicinity of Val 50 and Pro 81. These
small conformational rearrangements, together with favor-
able van der Waals interactions of APV with the Val 48 side

chains, almost compensate for the ligand–protein van der
Waals interactions lost because of the I50V mutation. Su-
perposition of 3D models of the WT and the quadruple
mutant PR in complex with SQV is shown in Figure 4.
Conformational changes in the quadruple mutant complex
with SQV were similar to those caused by the single G48V
mutation (see Fig. 2) with similar displacements of the SQV
quinoline ring. The RMSD of the ligand heavy atoms in
both mutants is 0.4 Å compared with the RMSD of 0.7 Å
between the ligand positions in WT and quadruple mutant
models. However, additional mutations in positions 46 and
50 result in a more significant displacement of the flap
residues: RMSD � 0.66 Å between C� atoms of flap resi-
dues 46 to 54 in the single G48V mutant and the quadruple
mutant complexes. Furthermore, the simultaneous substitu-
tion of bulkier residues in positions 46 and 48 may cause a
rotamer transition of the Phe 53 side chain in the PR chain
A from �1 ≈ −60° to �1 ≈ 60° (Fig. 4). In this case, unfa-
vorable van der Waals interactions of the Val 48 side chains,
combined with the losses in hydrogen bonding and electro-
static energy due to conformational changes in the complex,
resulted in a high increase in binding energy consistent with
the 300-fold increase in Ki (Markland et al. 2000).

Correlation between calculated binding energies and
cell-based phenotypes of PR variants from clinical
HIV-1 isolates

The changes in binding energies of mutant versus WT com-
plexes calculated for 65 clinical HIV-1 PR variants with
five PIs and 48 PR variants with LPV were correlated with
PhenoSense cell-based phenotypic resistance assays from
ViroLogic Inc. (Petropoulos et al. 2000). Characteristics of
the regression analyses are given in Table 2A, and a cumu-
lative correlation plot for all drugs is shown in Figure 5. The
correlation coefficients R2, ranging from 0.76 for NFV to

Figure 3. Binding energy profiles for SQV (A) and APV (B). PR muta-
tions described in the literature are ranked by the increasing �Ebind. Pre-
dicted resistant (�Ebind � 2.0 kcal/mole) and highly resistant (�Ebind � 3.0
kcal/mole) mutants are shown as the gray and the black bars, respectively.

Figure 4. Superimposed stereo views of the model SQV complexes with
the WT (yellow) and the quadruple mutant (M46I/G48V/I50V/I84L, white)
HIV-1 PRs. The SQV molecules are shown as tube models. Hydrogen
bonds of the ligand and flap water molecule in the mutant complex are
displayed. Mutated residues and other important residues are labeled.
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0.83 for APV and SQV, demonstrate statistically significant
correlation with P < 0.001. Furthermore, the standard errors
in prediction for these correlations ranged from 0.4 to 0.6
kcal/mole, corresponding to only a 2.0- to 2.5-fold standard
error in predicted IC50 ratios (see the last column in Table
2A). The entire data set of 65 PR variants with six PIs gave
a correlation with R2 � 0.76 and about a 2.5-fold standard
error of prediction. Changes in binding energy calculated
for a group of 63 PR variants were correlated with another
commercially available phenotypic assay, the Antivirogram
assay from Tibotec-Virco (Hertogs et al. 1998). Correlation
coefficients R2 ranging from 0.53 (APV) to 0.81 (LPV) with
2.0- to 2.5-fold standard errors in resistance prediction were
obtained for this group (see Table 2B). Generally, the cor-
relations of calculated binding energies with the Antiviro-
gram phenotypes were less significant than the correlations
with the PhenoSense phenotypes, especially for APV. To
obtain significant correlations for five PIs with the Antivi-
rogram phenotypes, we needed to exclude several outliers,
that is, the data points with large discrepancies between
calculated and observed resistance measures. Most of the
outlying data originated from a small number of PR vari-
ants, indicating possible discrepancies between the geno-
typed sequence and the viral amplicon that was phenotyped
in the cell-based system. The correlation coefficients ob-
tained for five of six PIs after outlier exclusion were of the

same range as the correlations between two different phe-
notypic assays, Virco Antivirogram and Viralliance Pheno-
script (Dam et al. 2001). Interestingly, the correlation be-
tween APV phenotypes obtained in the two cell-based as-
says also was not significant (R2 � 0.12; Dam et al. 2001).

Semiquantitative resistance predictions

The ViroLogic PhenoSense data were used to group the
variants into susceptible (less than fourfold increase in IC50)
and resistant (fourfold or higher increase in IC50) classes for
each PI. We determined the �Ebind distributions and calcu-
lated the cutoffs c1 and c2 for semiquantitative prediction of
susceptibility and resistance, as described in Materials and
Methods (Fig. 6). PR variants were then classified as resis-

Figure 5. Total correlation between the calculated changes in binding
energies (�Ebind ) of the WT vs. mutant HIV-1 PR–inhibitor complexes
and the estimates of the changes in binding free energies obtained from
experimental IC50 ratios (see equation 5 in Materials and Methods). The
correlation plot includes 35 PR variants in complex with LPV and 65 PR
variants in complex with five other PIs (total 360 data points). Experimen-
tal IC50 ratios were obtained from PhenoSence resistance assay (ViroLogic
Inc., http://www.ViroLogic.com).

Table 2. Regression analysis of calculated �Ebind and
experimental changes in binding energya

A: ViroLogic PhenoSense

Inhibitor N R2 S.E. (kcal/mole) S.E. (fold)b

Amprenavir 65 0.83 0.36 1.8
Indinavir 65 0.80 0.43 2.0
Lopinavir 48 0.81 0.46 2.1
Nelfinavir 65 0.76 0.50 2.3
Ritonavir 65 0.78 0.57 2.5
Saquinavir 65 0.83 0.45 2.1

B: Virco Antivirogram

Inhibitor
N

(outliers)c
R2

(+outliers)
S.E.

(+outliers)
S.E. (fold)b

(+outliers)

Amprenavir 63 (6) 0.53 (0.34) 0.42 (0.55) 2.0 (2.4)
Indinavir 63 (8) 0.72 (0.51) 0.43 (0.57) 2.0 (2.5)
Lopinavir 63 (3) 0.81 (0.70) 0.35 (0.44) 1.8 (2.0)
Nelfinavir 63 (2) 0.70 (0.57) 0.47 (0.58) 2.1 (2.6)
Ritonavir 63 (3) 0.78 (0.68) 0.54 (0.68) 2.4 (3.0)
Saquinavir 61 (5) 0.66 (0.37) 0.56 (0.77) 2.5 (3.5)

a Experimental changes in the binding energy were estimated as RT
ln(IC50mut/IC50wt). The number of data points (N), correlation coefficients
(R2), and standard errors (S.E.) in predicted binding energies are given.
b The standard error of prediction is expressed as a change in the fold
resistance.
c Outliers are data points that were excluded to obtain statistically signifi-
cant correlations. Characteristics of correlations obtained with outliers are
given in parentheses.

Figure 6. A semiquantitative model for a structure-based PI resistance
assay. Distributions of calculated �Ebind for PR variants phenotypically
sensitive and resistant to six PIs were used to define the binding energy
cutoffs c1 and c2 for prediction of sensitivity (S) or resistance (R) to each
PI, respectively. Cases c1 � �Ebind � c2 are considered equivocal (E).
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tant, sensitive, or equivocal. Excellent concordances be-
tween the structural ratings and the PhenoSense ratings
(95% sensitivity, 88% specificity; 0.567 � kappa � 0.907,
P < 0.0001) were obtained for this training set of 65 PR
variants with six PIs. The same structural cutoff values were
then applied to Virco Antivirogram data and were able to
predict phenotypic resistance to five of six PIs with a high
degree of concordance (79% sensitivity, 88% specificity;
0.561 � kappa � 0.743, P < 0.0001). Good concordance
between structural prediction and Antivirogram phenotype
was not obtained for APV (50% sensitivity, 87% specific-
ity; kappa � 0.367). For the Antivirogram assay, pheno-
typic changes in APV resistance also showed the poorest
correlation with the calculated binding energies (see earlier).

In order to evaluate the performance of the semiquanti-
tative energy cutoffs, binding energy calculations and blind
resistance predictions were performed for an additional set
of 78 PR samples. The predictions were then compared with
phenotypic data available from PhenoSense (46 samples)
and Antivirogram (32 samples) assays. Drug-specific semi-
quantitative cutoffs and the observed concordances are
shown in Table 3. For both data sets, the number of equivo-
cal predictions was small, and rules-based genotypic pre-
diction agreed with the phenotypic predictions in most cases
(Table 3). The specificity of the structural predictions was
high for all drugs, but sensitivities were better for the Phe-
noSense phenotypes (Table 4). Overall agreement between
the structural predictions was 92% (kappa � 0.756) for the

PhenoSense phenotypes and 86% (kappa � 0.666) for the
Antivirogram phenotypes. For the 46 discordances, 20
(43%) of the structural predictions were concordant with
genotypic rules, whereas for 26 (57%) of the discordances
genotypic rules agreed with the phenotypic predictions; the
proportions were nearly the same for the PhenoSense and
the Antivirogram phenotypes. A comparable concordance
of 89% was reported in a study comparing these two ex-
perimental phenotypic assays (Qari et al. 2002). Another

Table 3. Concordance of structural phenotype predictions with the results of two phenotypic assays

A: ViroLogic PhenoSense

PI

�Ebind cutoffsa Phenotypic concordanceb Equivocal predictionsd

c1 c2 Sensitivity Specificity Kappac P Number Genotypic concordance

APV 0.7 1.4 62.5% 100% 0.730 <0.0001 4/46 4/4
IDV 0.6 1.5 100% 94.1% 0.870 <0.0001 3/46 3/3
LPV 0.3 0.7 100% 87.1% 0.652 <0.0001 0/46 NA
NFV 0.7 1.0 64.3% 96.9% 0.665 <0.0001 0/46 NA
RTV 0.7 1.4 72.7% 100% 0.800 <0.0001 2/46 1/2
SQV 0.6 1.1 71.4% 100% 0.809 <0.0001 0/46 NA

B: Virco Antivirogram

APV 0.7 1.4 85.7% 95.5% 0.812 <0.0001 3/32 2/3
IDV 0.6 1.5 69.2% 94.7% 0.664 <0.0001 0/32 NA
LPV 0.3 0.7 70.0% 90.5% 0.621 <0.0003 1/32 1/1
NFV 0.7 1.0 72.7% 88.9% 0.627 <0.0004 3/32 1/3
RTV 0.7 1.4 72.7% 100% 0.764 <0.0001 4/32 2/4
SQV 0.6 1.1 50.0% 95.5% 0.510 <0.002 0/32 NA

a �Ebind cutoffs in kcal/mole established as described in Materials and Methods.
b Sensitivity is the proportion of phenotypically resistant variants predicted to be resistant. Specificity is the proportion of phenotypically sensitive variants
predicted to be sensitive.
c Kappa is a measure of inter-assay agreement (Fleiss 1981). Kappa > 0.75, excellent agreement; 0.4 < kappa < 0.75, good agreement; kappa < 0.4, poor
agreement.
d Genotypic predictions were performed in cases of equivocal structure-based predictions. The number of such predictions and their concordance with the
phenotypic predictions are shown.

Table 4. Overall concordance of structural phenotype with
experimental phenotype for blind predictions

Structural Prediction

PhenoSensea Antivirogramb

S R S R

S 196 13 112 19
R 7 41 7 43
Ec 6 3 4 6

a 266 comparisons for 46 samples and 6 PIs. The overall agreement be-
tween structural phenotype and PhenoSense prediction of PI resistance was
92.2% (kappa � 0.756, P < 0.00001). (S) Sensitive; (R) resistant; (E)
equivocal.
b 191 comparisons for 32 samples and 6 PIs. The overall agreement be-
tween structural phenotype and Antivirogram prediction of PI resistance
was 85.6% (kappa � 0.666, P < 0.00001).
c Equivocal assignments where the change in binding energy was between
the lower and the upper cutoffs. For equivocal structural predictions, ge-
notypic resistance assignments agreed with the phenotypic predictions in 8
of 9 cases (PhenoSense) and 6 of 10 cases (Antivirogram).
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study comparing the Virco Antivirogram assay with the
Viralliance Phenoscript assay demonstrated 87% overall
concordance for 30 PR samples and five PIs (Dam et al.
2001). Therefore, we conclude that the qualitative structure-
based resistance predictions agree well with the resistance
class assignments of cell-based phenotypic assays.

Discussion

We have developed a computational approach for the pre-
diction of resistance of clinical HIV-1 PR variants to PIs.
This approach uses molecular modeling and binding energy
evaluation for the WT and mutant PR–inhibitor complexes.
The computational mutagenesis procedure can accurately
reproduce the changes in 3D structure of the mutant com-
plexes. Our model of the G48V/L90M mutant PR complex
with SQV correctly reproduced significant changes in 3D
structure with respect to the WT complex, including the
ligand movement and conformational changes in the PR
flap moiety (see Fig. 2), observed in the crystal structure of
the same complex (Hong et al. 2000). The model of the IDV
complex with the mutant V82T/I84V PR was also consis-
tent with the crystal structure of a similar complex (King et
al. 2002) and correctly predicted the experimentally ob-
served change in the binding energy.

This study is based on the assumption that PI resistance is
primarily determined by a reduction in binding affinity of
PIs to mutant PR. This implies that mutations in the PR
substrate cleft and in the flap regions are the major factors
determining resistance to PIs. The influence of these muta-
tions on affinity of PIs has been intensively investigated by
site-directed mutagenesis and enzyme kinetic studies
(Gulnik et al. 1995; Markowitz et al. 1995; Maschera et al.
1996; Pazhanisamy et al. 1996; Klabe et al. 1998), which
showed significant increases in Ki for PR variants with
known resistant mutations.

A second assumption of this study was that the changes in
binding affinity might be accurately reproduced by changes
in calculated binding energy of PR–inhibitor complexes.
Previously we obtained statistically significant correlations
with R2 ranging from 0.69 to 0.81 between changes in ex-
perimental binding affinities derived from Ki ratios and cal-
culated binding energies for complexes of four PIs with PR
variants containing primary resistance mutations (Shen-
derovich et al. 2001a). It should be noted that in these stud-
ies we did not attempt to develop a QSAR procedure to
evaluate and compare binding energies of different PIs. We
developed a computational procedure that calculated rela-
tively small changes in the binding energy on PR side chain
substitutions in reference WT PR–inhibitor complexes de-
rived from respective crystal structures. The binding energy
function that included nonweighted van der Waals, hydro-
gen bonding, side-chain entropy, and electrostatic Coulomb
and solvation terms (Schapira et al. 1999; Shenderovich et

al. 2001b) was able to identify resistance mutations by a
significant increase in binding energy. The primary resis-
tance mutations (G48V for SQV, V82A for IDV and RTV,
I50V for APV, D30N for NFV) caused more than a 1.5-
kcal/mole increase in the binding energy of the respective
PIs (Shenderovich et al. 2001b), whereas a strong (>100-
fold) resistance could usually be predicted by more than a
3.0 kcal/mole increase in binding energy.

The majority of resistance-related mutations are conser-
vative substitutions among hydrophobic side chains (Val,
Ile, Leu, Met, Ala) that do not change the structure of the
complex significantly, but modify van der Waals interac-
tions between the ligand and the side chains of the PR active
site. Respectively, changes in the binding affinity of PIs on
resistance-related single and double mutations are mostly
explained by changes in the van der Waals component of
the binding energy (see Table 1). These calculations were
able to predict both additive and differential effects of com-
bined primary mutations on the resistance to different PIs.
For example, the binding energy profile for IDV (not
shown) predicts about 1.0 and 1.5 kcal/mole increases in the
binding energy for single mutations V82T and I84V, re-
spectively. A combination of two point mutations results in
an additive 2.4 kcal/mole increase in binding energy of IDV
(Table 1), which is consistent with the 2.5 kcal/mole in-
crease in the binding enthalpy observed for a PR variant
containing V82T/I84V mutations (King et al. 2002). Such
additivity often appears when the WT side chains are sub-
stituted with less bulky ones and the structure of the mutant
complex does not change significantly. On the other hand, a
combination of the G48V mutation, which was highly re-
sistant to SQV (Maschera et al. 1996), with the I50V mu-
tation, which was highly resistant to APV and moderately
resistant to SQV (Pazhanisamy et al. 1996), resulted in the
quadruple mutant, M46I/G48V/I50V/I84L, which was
highly resistant to SQV but, surprisingly, sensitive to APV
(Markland et al. 2000). This effect was correctly reproduced
by computational mutagenesis (see Results).

Generally, accumulation of several resistance-related ac-
tive site and flap region mutations may cause significant
structural changes of mutant PR–inhibitor complexes,
which result in a partial disruption of the hydrogen bond
network between the ligand and protein, as reflected in the
increased hydrogen bonding component of the binding en-
ergy function. This is the case for the quadruple mutant
complex with SQV and for the triple M46I/I47V/I50V mu-
tant complex with APV (see Table 1). On the other hand,
except for rare mutations that involve charged and polar
residues located close to the active site (Arg 8, Asp 30, and
Asn 88), Coulomb and electrostatic solvation components
do not make significant contributions to changes in binding
energy of mutant complexes. This is probably due to the
specific structure of PR–inhibitor complexes, with a ligand
completely buried between the mostly hydrophobic residues
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of the PR binding cleft and the flap loops (Wlodawer and
Vondrasek 1998).

The presence of a deep, well-defined binding pocket, the
prevalence of van der Waals and hydrogen bonding ligand–
protein interactions, and the availability of numerous crystal
structures that can be used both as templates and as bench-
marks have made HIV-1 PR complexes a common target for
molecular modeling and docking simulations. Quantitative
structure–activity relationship studies based on various
binding energy functions have been generally successful in
obtaining significant correlation equations for a series of
structurally related PIs (Holloway et al. 1995; Perez et al.
1998; Nair et al. 2002), but have had a limited predictive
power for a more diverse set of inhibitors or for mutant PR
variants. Successful attempts have been made to calculate
binding free energies of PR substrates and inhibitors using
molecular dynamics simulations and thermodynamic cycle
calculations with empirical binding energy functions
(Dominy and Brooks III 1999; McCarric and Kollman
1999). Although these methods supply relatively accurate
binding energies, they are impractical for the routine screen-
ing of multiple PR variants against commercially available
drugs. Molecular modeling of mutant PR–inhibitor com-
plexes based on the crystal structures of WT complexes and
evaluation of changes in the binding energy of mutant ver-
sus WT complexes using molecular mechanics binding en-
ergy functions were performed by Weber and Harrison
(1999). They obtained significant correlations (R � 0.79
and 0.68 for SQV and IDV, respectively) between changes
in binding energy and binding affinity calculated from Ki

ratios for SQV and IDV complexes with nine single and
double mutant PR variants. In our preliminary study (Shen-
derovich et al. 2001a,b), we modeled IDV and SQV com-
plexes with 17 and 18 PR variants, respectively (including
mutations studied by Weber and Harrison), and obtained
stronger correlations between changes in binding energy
and in binding affinity (R � 0.79 and 0.84, respectively).
We also obtained significant correlations (R � 0.90) for
two other commercial PIs, RTV and APV.

An attempt to predict HIV-1 PR resistance to five FDA-
approved PIs using a complex binding energy function and
a simplified molecular modeling approach was recently
published by Wang and Kollman (2001). They calculated
residue contributions (�Gres) to the binding free energy of
WT complexes, and used a product of �Gres and residue
variability to predict resistance of single residue mutations
to five PIs. Mutant PR–inhibitor complexes were not mod-
eled, and therefore any conformational changes that could
influence binding energy were neglected. The residue con-
tributions calculated for WT sequences neglected the nature
of mutant residues and underestimated the consequences of
substitution of a bulky side chain for a smaller one. In
particular, this study failed to predict resistance of the G48V
mutant PR to SQV. As was shown earlier, introduction of

Val 48 in the PR–SQV complex causes significant steric
strain that is accompanied by conformational changes in the
complex. These effects could not be predicted by consider-
ing interactions of the parent Gly 48 residues only.

The primary aim of this study was to develop a relatively
simple computational procedure for rapid discrimination be-
tween resistant and sensitive PR variants. A typical set of
clinical PR variants included 20% to 30% of phenotypically
resistant PR–inhibitor complexes that might undergo sig-
nificant structural changes with respect to the WT com-
plexes. Accumulation of multiple resistance-related muta-
tions that may differentially affect binding modes of various
ligands is often the case for clinical PR variants that emerge
under therapeutic regimens involving multiple PIs. The total
number of amino acids mutated with respect to a consensus
WT sequence may amount to up to 20 for each of two 99
amino acid chains of the homodimeric HIV PR, and some
clinical PR variants may contain more than 10 side-chain
substitutions in the vicinity of the inhibitor binding site.
Evaluation of structural and energetic effects of multiple
mutations required the development of a stepwise compu-
tational procedure, which first introduces and locally opti-
mizes all side-chain substitutions, gradually moving from
the mutations closest to the ligand toward the periphery of
the protein, and then minimizes the molecular mechanics
energy of the complex over a flexible ligand and protein
amino acids in the vicinity of the ligand. The minimization
shell around the ligand (see Materials and Methods) should
be large enough to include all mutations that may directly or
indirectly influence ligand binding, but should be relatively
narrow to avoid significant deviations from the WT com-
plexes derived from the crystallographic coordinates. The
computational protocol was separately optimized for each
PI to get the best correlations between calculated and ex-
perimental binding energy for the training set totaling 127
PR variants obtained from clinical HIV-1. Furthermore, in
the preliminary study (Shenderovich et al. 2001a,b), we
found that optimization of the crystal structures of WT com-
plexes that involved a Monte Carlo search and energy mini-
mization (see Materials and Methods) was necessary to
achieve significant correlation between experimental and
calculated changes in binding energies. Modifications intro-
duced in nonrefined crystallographic structures usually did
not reproduce experimental changes in binding energies es-
timated from Ki ratios for engineered single and double
mutant PR variants.

The computational mutagenesis procedure developed in
this study was able to reproduce changes in binding affinity
of clinical PR variants, as shown by statistically significant
correlations between calculated changes in binding energy
and experimental measurements of drug resistance. We ob-
tained good overall correlation (R2 � 0.76) between calcu-
lated changes in binding energy and experimental measures
of phenotypic resistance (ViroLogic PhenoSense assay),
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with a standard error corresponding to only a 2.5-fold
change in resistance, comparable with the standard error of
cell-based phenotypic assays. This level of accuracy re-
sulted in well-separated distributions of �Ebind that were
used to determine binding energy cutoffs for phenotypically
sensitive and resistant PR variants, allowing the qualitative
classification of clinical isolates as susceptible or resistant
to the six FDA-approved PIs, with a small number of
equivocal assignments.

The remarkable concordance between the structural pre-
dictions and the measured resistance in two different cell-
based assays indicates that changes in inhibitor binding af-
finity indeed explain most of the observed PI resistance, as
was hypothesized. The failure to predict the phenotypic re-
sistance in some cases may have been caused, in part, by
mutations such as L90M (61% and 79% of the false nega-
tive calls for SQV and NFV, respectively) that do not
greatly alter inhibitor binding affinity but may cause resis-
tance by other mechanisms, such as decreasing the PR
dimer stability (Xie et al. 1999; Hong et al. 2000). More
than 40% of the predictions that were discordant with phe-
notype were nevertheless concordant with genotypic rules-
based predictions of resistance or susceptibility. The inher-
ent variability of cell-based phenotyping may be responsible
for some of these variations. The differences in phenotypic
technologies may also produce different results in a small
number of cases (Qari et al. 2002). Structural predictions
were complicated in some cases by the presence of multiple
viral quasi-species encoding more than one amino acid vari-
ant at several PR codons that occasionally resulted in sig-
nificantly different resistance predictions between these
variants. In such cases, we arbitrarily selected the variant
with the highest calculated �Ebind for our blind predictions,
which was not always the variant in closest agreement with
the experimentally measured phenotypic resistance.

Conclusions

We have developed a computational protocol for molecular
modeling and binding energy evaluation for the WT and
mutant PR–inhibitor complexes, and a structure-based ap-
proach for the prediction of resistance of clinical HIV-1 PR
variants to PIs. The computational mutagenesis procedure
accurately reproduced the changes in 3D structure of mutant
PR–inhibitor complexes and correctly predicted mutations
in the PR binding site and flap region that produce HIV-1
variants resistant to particular PIs. Applied to clinical HIV
variants with multiple mutations, the procedure resulted in
statistically significant correlations between calculated
changes in the inhibitor binding energies and fold changes
in inhibitor IC50 values determined in experimental pheno-
typic assays. These correlations were used to define the
binding energy cutoff values for semiquantitative prediction
of HIV variants sensitive or resistant to each PI.

Our structure-based resistance predictions performed as
well as the commercially available cell-based assays in cat-
egorizing viral variants as resistant or susceptible to PI in-
hibitors. The structure-based predictions may offer an alter-
native to rules-based genotyping for current PIs, and may be
used as a rapid resistance prediction method for new PIs, for
which genotypic rules are not yet known. The availability of
a large database of clinical sequences and PR structures (the
VARIOME database; Maggio and Ramnarayan 2001) can
also enable investigators to perform rapid in silico screening
of drugs under development to estimate the frequencies of
resistant variants in the patient population. The structural
phenotyping technology may be useful in prediction of
probable resistance mutation patterns for prospective anti-
retroviral drug candidates prior to expensive clinical trials,
and for selection of those drug candidates that are predicted
to be most effective against viral variants resistant to the
currently available drugs (Maggio et al. 2002). The compu-
tational mutagenesis technology may be extended to inhibi-
tors of other viral and bacterial proteins, in which structure
of the complex may be determined by X-ray crystallography
or molecular modeling, and high variability of the target
protein sequence is an issue for development of effective
drugs. The similar approach may be applied for design and
interpretation of site-directed mutagenesis studies of ligand
interactions with protein targets of known 3D structure, and
for design of ligands that would show selective affinities to
protein targets with homologous active site structures.

Materials and methods

Wild-type HIV-1 PR–inhibitor complexes

WT complexes were built from crystal structures available in PDB.
The PDB entries used were 1hxb for SQV, 1hsg for IDV, 1hxw for
RTV, 1ohr for NFV, and 1hpv for APV. The crystal structure of
the PR–LPV complex was obtained from Abbott Laboratories
(PDB entry 1mui; Stoll et al. 2002). The chemical structures and
abbreviations used for the inhibitors are shown in Figure 1. Co-
valent geometries of inhibitors were taken from the crystal struc-
tures and adjusted to ensure planarity of aromatic rings, rotational
symmetry of particular groups, and so forth. The Gasteiger-Marsili
algorithm (Gasteiger and Marsili 1980) was used to assign atomic
charges to the ligands. Most of the inhibitors were considered to be
electro-neutral compounds. IDV was protonated at piperazine ni-
trogen, which gave the best correlation with experimental binding
energies in the preliminary study (Shenderovich et al. 2001a).

Molecular modeling and Monte Carlo simulations were per-
formed using the ICM program, version 2.7 (Abagyan et al. 1994;
MolSoft 1999), with the ECEPP/3 force field (Némethy et al.
1992). A regularization procedure (Maiorov and Abagyan 1998)
was used to obtain relaxed structures of WT complexes with the
standard ECEPP/3 amino acids and heavy atom RMSD of �0.5 Å
from the crystal structures. Water molecules located in a 7.0 Å
shell around the ligand were retained in the regularized complexes.
A single “flap” water molecule (Wlodawer and Vondrasek 1998)
was placed into the binding site of the PR–LPV complex. In order
to find the optimal positions of ligands in the PR binding site with
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the force field used, Monte Carlo simulations with Minimization
(Abagyan and Totrov 1994) were performed starting from the
regularized crystal structures. Translational and rotational degrees
of freedom, and single bond torsion angles of the ligand, as well as
� torsion angles of PR side chains located within 7.0 Å of any
ligand atom were randomly perturbed during the Monte Carlo
simulation steps. Movement of water molecules was allowed dur-
ing the minimization. Protein–ligand interaction (binding) energies
were calculated for the conformations accepted at 1000 K, and
conformations with the lowest binding energies were selected as
temporary models of the WT complex.

Modeling of mutant HIV-1 PR–inhibitor complexes

Modeling of mutant complexes was performed in two steps: (1) a
search for an optimal conformation of each mutated side chain, and
(2) optimization of the positions of the ligand and water molecules
and conformations of the protein residues located near the binding
site. The list of amino acid mutations was defined by alignment of
the WT and mutant sequences. Individual mutations were intro-
duced simultaneously in the two PR chains in the order of increas-
ing distance from the mutated residues to the ligand. Initial con-
formation of a mutant side chain was “inherited” as much as pos-
sible from the WT side chain; that is, values of common � torsion
angles (like �1 angled of all non-�-branched residues) were as-
signed to the mutant side chain. A systematic search procedure
(MolSoft 1999) was applied to � torsion angles not common for
the WT and mutant side chains, which generated all combinations
of three rotamers (±60° and 180°) for the torsion angles involved,
minimized energy of each combination, and selected the lowest-
energy conformation. The minimization involved all � angles of
the side chains located in a 5.0 Å shell (see following) around the
mutant residue. After the local optimization for individual muta-
tions, energy minimization was performed for a substructure in-
volving the ligand, surrounding protein residues, and water mol-
ecules. The energy function used for the final minimization in-
cluded ECEPP/3 van der Waals, hydrogen bonding and torsion
potentials (Némethy et al. 1992), electrostatic potentials with a
distance-dependent dielectric � � 4.0rij, side-chain entropy, and
atomic solvation energy (Abagyan and Totrov 1994). Molecular
variables of the mutant complex included (1) translation and ro-
tation variables and all torsion angles of the ligand; (2) backbone
and side-chain torsion angles of PR residues that had at least one
atom within a distance �R1 from any atom of the ligand (shell R1);
(3) all torsion angles of PR residues that had at least one atom
within a distance R2 from any atom of the mutated residues in-
cluded in the shell R1 (shell R2); (4) translation and rotation vari-
ables of water molecules within shells R1 and R2. The radius R1 of
the shell surrounding the ligand was set to 7.0 or 8.0 Å. The radii
R2 of the secondary shells, which were included to relax the sur-
roundings of mutated residues located at the periphery of the li-
gand-binding site, were varied between 0 and 5.0 Å.

The binding energies of PR–inhibitor complexes

Binding energies were estimated (Schapira et al. 1999, Shenderov-
ich et al. 2001b) as

Ebind = E0 + Ecompl − Eligand − Eprot, ( 1)

where E0 is an adjustable constant, Ecompl is the energy of the
complex, and Eligand and Eprot are the energies of the ligand and

protein when separated. The components of the binding energy
were calculated using the following energy function:

E = Eel + Evw + Ehb + Es, ( 2)

where Eel is the exact-boundary electrostatics (Totrov and Aba-
gyan 2001) that includes a Coulomb term and electrostatic solva-
tion energy calculated with a dielectric constant � � 8.0 (Schapira
et al. 1999), Es is the side-chain entropy (Abagyan and Totrov
1994), and Evw and Ehb are the ECEPP/3 van der Waals and
hydrogen-bonding terms.

For mutant PR–inhibitor complexes with known dissociation
constants Ki, correlations between changes in the calculated bind-
ing energy

�Ebind �calc� = Ebind�wt� − Ebind �mut� ( 3)

and in the experimental estimate of binding free energy

�Ebind�exptl� = RT ln�Ki mut�Kiwt� ( 4 )

were established by linear regression analysis (Shenderovich et al.
2001a). For clinical HIV-1 isolates, ratios of IC50 measured in
cell-based phenotypic assays (Hertogs et al. 1998; Petropoulos et
al. 2000), were used to calculate a surrogate of experimental bind-
ing energies

�Ebind�exptl� = RT ln�IC50mut�IC50wt�. ( 5)

For clinical HIV isolates containing a mixture of PR variants,
separate �Ebind values were calculated for all essential PR vari-
ants, and either the maximum or the best-fit individual �Ebind-

(calc) value was used for correlation with experimental pheno-
types.

Genotypic and phenotypic determinations

HIV-1 RNA was extracted from clinical samples submitted for RT
and PR genotype determination to Quest Diagnostics Inc. or from
50 samples obtained from the California Collaborative Treatment
Group 570 study (Haubrich et al. 2001) and genotyped at Quest
Diagnostics Inc. The entire PR and the first 400 codons of RT were
amplified by RT PCR and sequenced on an ABI 3700 capillary
sequencer. Sequenced variants were aligned to an HIV-1 subtype
B consensus sequence, and amino acid changes relative to the
reference sequence were identified and tabulated. Genotypic resis-
tance predictions were performed with the Quest-Diagnostics
rules-based algorithm, an updated version of a published algorithm
(Baxter et al. 2000). For the determination of the fold changes in
IC50 values of six PIs, plasma samples were submitted for pheno-
typic resistance assays to ViroLogic Inc. (PhenoSense assay,
http://www. ViroLogic.com) or to Tibotec-Virco (Antivirogram
assay, http://www.tibotec-virco.com).

Structure-based resistance predictions

In order to define semiquantitative binding energy cutoffs for re-
sistance predictions, the phenotypic data set for 65 clinical isolates
(Virologic PhenoSense) was divided into sensitive (less than four-
fold increase in phenotypic IC50) and resistant (four-fold or higher
increase in phenotypic IC50) groups for each PI, and mean �Ebind

values and their standard deviations were calculated for all sensi-
tive and resistant groups. The �Ebind cutoff c1 defining suscepti-
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bility to each PI was set at two standard deviations above the mean
of the group of samples sensitive to the respective PIs (Fig. 5). The
cutoff c2 defining resistance was set at one standard deviation (1.5
S.D. for LPV) below the mean for the group of samples resistant
to the respective PIs (Fig. 6). Cases of c1 � �Ebind � c2 were
considered equivocal. Inter-rater agreement between categorical
resistance and susceptibility assignments was evaluated by the
Kappa statistic (Fleiss 1981).
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