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Abstract

We present a novel de novo method to generate protein models from sparse, discretized restraints on the
conformation of the main chain and side chain atoms. We focus on C�-trace generation, the problem of
constructing an accurate and complete model from approximate knowledge of the positions of the C� atoms
and, in some cases, the side chain centroids. Spatial restraints on the C� atoms and side chain centroids are
supplemented by constraints on main chain geometry, �/� angles, rotameric side chain conformations, and
inter-atomic separations derived from analyses of known protein structures. A novel conformational search
algorithm, combining features of tree-search and genetic algorithms, generates models consistent with these
restraints by propensity-weighted dihedral angle sampling. Models with ideal geometry, good �/� angles,
and no inter-atomic overlaps are produced with 0.8 Å main chain and, with side chain centroid restraints,
1.0 Å all-atom root-mean-square deviation (RMSD) from the crystal structure over a diverse set of target
proteins. The mean model derived from 50 independently generated models is closer to the crystal structure
than any individual model, with 0.5 Å main chain RMSD under only C� restraints and 0.7 Å all-atom
RMSD under both C� and centroid restraints. The method is insensitive to randomly distributed errors of
up to 4 Å in the C� restraints. The conformational search algorithm is efficient, with computational cost
increasing linearly with protein size. Issues relating to decoy set generation, experimental structure deter-
mination, efficiency of conformational sampling, and homology modeling are discussed.
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The three-dimensional structures of proteins play an in-
creasingly important role in our understanding of biological
phenomena. The growing rate of protein structure determi-
nation, prediction, and analysis, together with structural ge-
nomics efforts (Baker and Sali 2001) and large-scale mod-
eling (Pieper et al. 2002), has increased the need for accu-
rate, efficient, and reliable methods to model protein
structures. Modeling of protein structures by satisfaction of
spatial restraints (Sali and Blundell 1993) is a general

framework for the generation of three-dimensional protein
structures. Within this framework, the desired three-dimen-
sional structure is described in terms of a network of re-
straints among atoms and between atoms and positions in
space. These restraints can be derived from any source,
including small-molecule studies (Engh and Huber 1991),
surveys of protein structures (Lovell et al. 2000, 2003),
relationships to other proteins (Blundell et al. 1987), or from
experimental observations from X-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy experi-
ments. It remains a challenge to construct a three-dimen-
sional model of the protein structure consistent with such
restraints, however they are derived. A general approach to
modeling by restraint satisfaction would support a general
set of restraints and include an efficient algorithm capable
of solving arbitrary networks of these restraints.
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C�-trace generation, the problem of constructing an ac-
curate main chain or all-atom model from approximate
knowledge of the positions of the C� atoms, is a protein
structure modeling problem with several interesting appli-
cations. Algorithms to solve the C�-trace problem should
be applicable to the broader class of restraint-based model-
ing problems. The C�-trace problem is appealingly formal;
it has unambiguous measures of success; and it is free from
the errors and ambiguity caused by alignments in compara-
tive modeling or experimental phases in X-ray crystallog-
raphy.

Despite its idealized nature, the C�-trace problem is sur-
prisingly useful in structural biology. Experimental struc-
ture determination, comparative modeling, and ab initio
structure prediction can be reduced to the solution of re-
straint networks similar to those used in C�-trace genera-
tion. In X-ray crystallography, skeletonization is a widely-
used image analysis technique for automatic electron den-
sity map interpretation capable of identifying likely centers
for the main chain and side chains (Greer 1985). Following
skeletonization, the crystallographer must build a complete
model of the protein from the main chain and/or side
chain guide positions. In comparative modeling, the ap-
proximate positions of the C� atoms of the target protein
can be inferred from an alignment to homologous proteins
(Chothia and Lesk 1986; Blundell et al. 1987). Methods for
ab initio prediction and analysis typically employ a limited
representation of the protein structure (Levitt 1976; Park
and Levitt 1995), providing predicted coordinates for the
C� atoms and, in some cases, centroids of the side chain
atoms. Before journals required full disclosure of a struc-
ture’s coordinates following publication, many proteins
were submitted to the Protein Data Bank (Berman et al.
2000) containing only the C� positions or were unavailable
altogether, perversely forcing researchers to reconstitute the
complete model from the published C� coordinates (Reid
and Thornton 1989) or stereographic images (Rossmann
and Argos 1980).

There have been many previous approaches to the C�-
trace problem, including labor-intensive manual reconstruc-
tion (Jones and Thirup 1986; Reid and Thornton 1989),
methods based on fragment matching from the protein da-
tabase (Holm and Sander 1991; Levitt 1992), and de novo
methods that generate models without explicit reference to
known protein structures (Purisima and Scheraga 1984;
Correa 1990). Jones and Thirup (1986) described an early
knowledge-based method to construct a complete protein
structure from C� coordinates. Following the observation
that the unusual reverse turns in retinol binding protein
(RBP) were easily identifiable in unrelated proteins in the
Protein Data Bank, Jones and Thirup assembled a model of
RBP from short peptide fragments selected for similarity to
the RBP C� coordinates. Though fragments were taken
from only three unrelated proteins, a complete model was

constructed with main chain RMSD of 1.0 Å from the crys-
tal structure.

Following Jones’ work, Reid and Thornton (1989) used
fragments from previously solved structures and extensive
expert knowledge to rebuild an all-atom model of fla-
vodoxin from C� coordinates. Short stretches of backbone
were fit to the C� coordinates and side chains conforma-
tions added, until the model contained few atomic overlaps
and passed several knowledge-based filters. Following en-
ergy minimization, the final model was close to native (0.6
Å main chain, 1.7 Å all-atom RMSD).

Two important papers brought full automation to knowl-
edge-based methods. Holm and Sander (1991) matched
stretches of C� coordinates against a large set of high-
quality protein structures, assembled the best overlapping
fragments into a backbone model using a dynamic program-
ming algorithm, and assigned side chains to this fixed back-
bone with a Monte Carlo simulation of side chain rotamers.
Their method, implemented in a program called MAXSPROUT,
produced models with 0.4–0.6 Å main chain RMSD and
1.6 Å side chain RMSD for buried residues, even with up to
0.4 Å of noise in the C� coordinates. A similar approach
was adopted by Levitt (1992) in the program SEGMOD,
which automatically matched fragments from the protein
database to the C� coordinates, computed the mean model
of all well-fit fragments, and applied restrained energy
minimization to ameliorate poor covalent geometry and
nonbonded interactions introduced by coordinate averag-
ing. SEGMOD averaged 0.4/1.3 Å main chain/all-atom
RMSD to native with C� restraints on every residue over
eight test proteins, though on flavodoxin the models have
0.4/1.9 Å main chain/all-atom RMSD. Further, SEGMOD

proved insensitive to uniformly distributed random errors
in the C� coordinates up to 1 Å, a substantial improve-
ment over MAXSPROUT. The fragment database used by
SEGMOD, it should be noted, included proteins in the same
homologous superfamily (the human lysozyme target 1LZ1
and the database structure E.coli lysozyme 2LZM) and
structurally similar proteins (the aspartic proteinase tar-
get 3APP and the database structure aspartic proteinase
2RSP).

In contrast to knowledge-based methods, de novo meth-
ods rely heavily on geometric and energetic criteria to con-
struct main chain and side chain conformations for the tar-
get protein. Purisima and Scheraga (1984) developed a
purely geometric method to generate main chain coordi-
nates by solving polynomial equations parameterized by the
positions of the C� guide positions. Correa (1990) next
developed a largely automated C�-trace method by cou-
pling iterative chain building with energy minimization and
molecular dynamics in the CHARMM forcefield. Though
computationally expensive, Correa’s method successfully
reconstructed �-lytic protease to 0.3/1.3 Å and flavodoxin
to 0.5/1.6 Å main chain/all-atom RMSD.
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Rey and Skolnick (1992) inferred the positions of the
main chain and C� atoms from the geometric relationship
among three neighboring C� atoms, producing models
around 0.7 Å RMSD over the main chain and C� atoms.
Later, Milik et al. (1997) improved the method, achieving
an accuracy of 0.2–0.6 Å main chain RMSD and a perfor-
mance of over 8000 residues per second. Bassolino-Klimas
and Bruccoleri (1992) applied their directed conformational
search method to C�-trace generation by using the C� co-
ordinates to guide their conformational search algorithm
towards complete models free of van der Waals overlaps,
producing models with 0.5–1.0 Å main chain RMSD over
six proteins.

Payne (1993) reduced the problem of C�-trace construc-
tion to determining the peptide plane rotations between ad-
jacent C� coordinates that minimize a semi-empirical
Hamiltonian function describing internal peptide bonded
geometry and the interaction between neighboring residues.
Although models with extremely low main chain RMSD
(below 0.3 Å) were generated, Payne’s method displayed
significant sensitivity to errors in the C� coordinates. Van
Gelder et al. (1994) used molecular dynamics simulations
and the backbone building routine of Correa to construct
all-atom models from C� coordinates, with main chain ac-
curacies between 0.5–0.7 Å main chain and 1.5–1.9 Å all-
atom RMSD. Mandal and Linthicum (1993), using a data-
base of statistical relationships between C� and main chain
geometry, generated models with 0.3–0.8 Å main chain
RMSD and 1.7 Å all-atom RMSD following energy mini-
mization. Their modeling accuracy degenerated rapidly
with C� errors: The main chain RMSD of models for the
�-chain of hemoglobin increased from 0.15 Å under error-
free C�’s to 1.28 Å under C�’s with RMSD of 0.83 Å to the
crystallographic C�’s. Mathiowetz and Goddard III (1995)
applied dihedral probability grid Monte Carlo (DPG-MC) to
the C�-trace problem, predicting six small proteins to 0.5 Å
main chain and 1.7 Å all-atom RMSD. Based on discrete
sampling of the �/� and � angles, the DPG-MC method first
generates a complete main chain model, energy minimizes
this chain, and adds side chains, before ultimately accepting
the lowest energy all-atom model.

To convert the virtual-bond polypeptide chain produced
by their ab initio protein structure prediction method into an
to all-atom model for a more detailed analysis, Liwo et al.
(1993) developed a method that constructed an initial main
chain model with an optimal hydrogen-bonding network for
subsequent minimization in the ECEPP/2 forcefield. A
model within main chain RMSD of 1.1 Å to the crystal
structure of bovine pancreatic trypsin inhibitor was gener-
ated given the crystallographic C� atoms as guides. Kaz-
mierkiewicz et al. (2002) recently extended the work of
Liwo et al. with a fully automated Monte Carlo simulation
in the ECEPP/3 force field, generating main chain models
within 0.5 Å RMSD of two crystal structures. Finally, Iwata

et al. (2002) describe an analytic method that predicts �/�
pairs from the C� positions restrained to the favorable re-
gions in the Ramachandran plot. Following energy minimi-
zation, the reconstructing main chain conformations have
0.25–0.48 Å RMSD, but like most de novo methods, their
method was highly sensitive to errors in the C� guide po-
sitions.

C�-trace revisited

Despite considerable advances, current C�-trace methods
suffer from a number of serious problems and limitations
that invite further investigation on the problem. For knowl-
edge-based methods, the coverage of fragments extracted
from the database of proteins can be a source of model
inaccuracy on unusual conformations, such as loops that
exhibit substantial structural variability (Fidelis et al. 1994).
In general, unusual conformations will have few if any
structural neighbors from which to generate a model, lead-
ing ultimately to reduced model quality. An ideal modeling
method would perform equally well on all regions of the
target protein, regardless of its conformational commonal-
ity.

Further, an ideal method should be general, supporting
not only C� atom restraints but also a range of restraints on
other individual atoms such as the carbonyl oxygen or
�-carbon, on sets of atoms such as the centroid of the side
chain, or even on the secondary structure character at each
amino acid. Modeling under a greater number of restraints
will be difficult for knowledge-based methods, as fewer
fragments in the database will satisfy all the restraints.
Many geometric de novo methods are overspecialized to
solve the C�-trace problem (Payne 1993) and cannot be
easily extended to support further types of restraints, al-
though methods relying on molecular dynamics or energy
minimization have no such limitations.

An ideal method would be reliable, generating complete
models with little variation in accuracy across a wide range
of proteins. Previous knowledge-based and de novo meth-
ods suffer from substantial variability (ranging up to 0.3 Å
while averaging 0.5 Å in main chain RMSD) across their
target protein sets (Correa 1990; Holm and Sander 1991;
Bassolino-Klimas and Bruccoleri 1992; Levitt 1992; Payne
1993; Mathiowetz and Goddard III 1995; Wang et al. 1998).
When generating models under 1 Å main chain RMSD from
native, as all of the C�-trace methods do, reliability is an
important factor to discriminate among the methods. A
method that always produces models 0.5 Å RMSD from
native is probably preferable to one that produces 0.25 Å
models half the time, and 0.75 Å the other. Low variability
across a wide range of proteins provides a statistical guar-
antee on model quality that is essential for use in structure
determination or comparative modeling.
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An ideal method would be insensitive to nonsystematic
errors of up to several Å in the C� restraint coordinates. In
most applications of C�-trace methods (e.g., structure de-
termination and homology modeling), the position of the
C� restraints will be corrupted by both random and system-
atic errors due to experimental error or structural differences
from the template structures. Knowledge-based methods
have been superior in this respect, demonstrating a tolerance
of up to 1 Å of noise in C� coordinates. Several de novo
methods explicitly place C� atoms at the provided C� re-
straints, and consequently modeling accuracy must degrade
rapidly with increasing C� restraint errors. The de novo
methods that examined the effects of C� errors have not
fared well.

Given that proteins vary greatly in size, the efficiency of
a C�-trace generation method must be measured by its CPU
consumption as a function of protein size, that is, its com-
putational complexity. Several methods (Levitt 1992; Payne
1993) claim but do not demonstrate linear computational
complexity. Most other methods, especially those using en-
ergy minimization or molecular dynamics (Liwo et al. 1993;
van Gelder et al. 1994; Kazmierkiewicz et al. 2002), have
superlinear computational complexity and consequently be-
come prohibitively expensive on even moderately large pro-
teins. An ideal C�-trace method would have demonstrable
linear computational complexity and be inexpensive in ab-
solute CPU time on standard computer hardware.

In summary, an ideal C�-trace method should be accu-
rate, extensible, reliable, efficient, and robust. No previous
approaches to C�-trace generation have managed to com-
bine all of these features. We present here an extension to
our ab initio conformational sampling method for discrete
restraint-based protein modeling (de Bakker et al. 2003;
DePristo et al. 2003) that has all of these features. The
method uses a novel conformational search algorithm to
generate high-quality protein models by solving a network
of constraints derived from analyses of protein structures
and restraints on the C� atoms and side chain centroids. The
general constraints are idealized covalent geometry (Engh
and Huber 1991), fine-grained propensity-weighted �/�
maps (Lovell et al. 2003), and accurate side chain rotamers
(Lovell et al. 2000). For C�-trace generation, the network is
supplemented with restraints that enforce minimum inter-
atomic separation (DePristo et al. 2003), restraints that en-
sure model C� atoms lie near the provided C� coordinates,
and restraints on the model side chain centroids.

Results

Main chain modeling

Ensembles of 50 main chain only models were generated
under 1 Å C� restraints for the target proteins given in
Table 1. The ensemble average RMSD varies between 0.75
and 0.85 Å over the target set, though the standard deviation

within each target is low (Table 2). The ensemble average
main chain RMSD is 0.80 (0.03) Å averaged over the target
set. The low standard deviation indicates that the method
performs consistently across the whole target set, with little
variation among the target proteins.

As the determinant of the radius of the C� restraints, the
C� restraint threshold limits the distance the model C�
atoms can deviate from the origins of the C� restraints. The
average C� and main chain RMSD across the target set rises
with increasing C� threshold for all C� restraint thresholds
(Table 3). More flexibility in the model C� positions trans-
lates into greater deviation from the native structure.

At every C� restraint threshold, the best model is only
marginally better than the ensemble average, as shown by
the C� and main chain RMSDs (Table 2, Fig. 1). The low
variance in C� and main chain RMSD within each en-
semble of 50 models indicates that all generated models are
equally accurate (Table 3). Increasing the number of gen-
erated models above 50 does not significantly increase the
difference in accuracy between the best and average models
(data not shown). The difference in model accuracy among
different C� restraint thresholds is much larger than be-
tween the best and ensemble average models (Fig. 1).

The conformational search algorithm fails to find any
models for some targets under 0.25–0.75 Å restraints (Table
3). The number of failed targets increases quickly with de-

Table 1. Target proteins

IDa Protein dmin
b Sizec

1A6M Myoglobin 1.0 151
1CEM Cellulase 1.65 363
1CRN Crambin 1.5 46
1CTF L7/L12 50 S ribosomal protein 1.7 68
1IGD Immunoglobulin binding protein G 1.1 61
1LKS Hen egg white lysozyme 1.1 129
1NIF Nitrite reductase 1.6 333
1PHP Phosphoglycerate kinase 1.65 394
1TPH:1 Triosephosphate isomerase 1.8 245
1UBQ Ubiquitin 1.8 76
2ALP Alpha-lytic protease 1.7 198
2PRK Proteinase K 1.5 278
2WRP:R Trp repressor 1.65 104
3APP Penicillopepsin 1.8 323
3PTE Transpeptidase 1.6 347
4ENL Enolase 1.9 436
4GCR Gamma-b crystalline 1.47 174
5CNA:A Lectin (agglutinin) 2.0 237
5CPA Hydrolase (c-terminal peptidase) 1.54 307
5NLL Flavodoxin 1.75 138
6PTI Bovine pancreatic trypsin inhibitor 1.7 56
7PCY Plastocyanin 1.8 98
7RSA Ribonuclease A 1.26 124
8ABP Arabinose binding protein 1.49 305
8TLN:E Thermolysin 1.60 316

a PDB code and, optionally, chain identifier of the target protein.
b Resolution of the crystal structure in Ångstroms.
c Number of amino acids in the protein chain.
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creasing C� restraint threshold, from a single failure at 0.75
Å to almost total failure at 0.25 Å. The failed targets are
predominately large proteins, indicating that the conforma-
tional search algorithm itself begins to fail with very tight
restraints. The truly problematic 0.25 Å C� restraints, how-
ever, provide only a marginal improvement in model accu-
racy: reducing the main chain RMSD by 0.05 Å and 0.17 Å
over 0.50 and 0.75 Å restraints, respectively.

Insensitivity to randomly distributed errors

The sensitivity of our method to nonsystematic errors in C�
coordinates has been assessed by introducing uniformly dis-
tributed random errors of varying magnitude into the origins
of the C� restraint spheres. For a given noise magnitude �,
each C� restraint is centered on its corresponding crystal-
lographic C� atom and then displaced by a randomly ori-

Table 2. Accuracy of main chain only modeling under 1.0 Å C� restraints

Target

RMSD [Å]

Average
C�a

Best
main chain

Average
main chainb

Mean
model
C�c

Mean
model

main chaind

1A6M 0.69 (0.02) 0.69 0.75 (0.02) 0.36 0.41
1CEM 0.69 (0.01) 0.73 0.76 (0.01) 0.32 0.39
1CRN 0.64 (0.04) 0.68 0.83 (0.07) 0.30 0.49
1CTF 0.66 (0.03) 0.64 0.76 (0.04) 0.31 0.41
1IGD 0.67 (0.03) 0.69 0.79 (0.05) 0.34 0.45
1LKS 0.68 (0.02) 0.71 0.78 (0.04) 0.30 0.41
1NIF 0.70 (0.01) 0.77 0.81 (0.02) 0.33 0.44
1PHP 0.69 (0.01) 0.73 0.77 (0.02) 0.31 0.39
1TPH 0.69 (0.01) 0.74 0.78 (0.02) 0.31 0.40
1UBQ 0.66 (0.03) 0.71 0.81 (0.04) 0.27 0.41
2ALP 0.69 (0.01) 0.78 0.84 (0.03) 0.31 0.45
2PRK 0.69 (0.01) 0.74 0.80 (0.02) 0.32 0.42
2WRP 0.68 (0.03) 0.69 0.74 (0.03) 0.35 0.41
3APP 0.69 (0.01) 0.75 0.80 (0.02) 0.32 0.42
3PTE 0.70 (0.01) 0.77 0.81 (0.02) 0.33 0.45
4ENL 0.70 (0.01) 0.76 0.81 (0.02) 0.34 0.45
4GCR 0.68 (0.02) 0.72 0.81 (0.04) 0.29 0.41
5CNA 0.70 (0.01) 0.79 0.84 (0.02) 0.34 0.49
5CPA 0.70 (0.01) 0.79 0.84 (0.02) 0.33 0.48
5NLL 0.69 (0.02) 0.76 0.82 (0.03) 0.34 0.49
6PTI 0.65 (0.04) 0.68 0.78 (0.05) 0.31 0.44
7PCY 0.68 (0.02) 0.74 0.84 (0.05) 0.33 0.47
7RSA 0.68 (0.02) 0.77 0.85 (0.04) 0.31 0.51
8ABP 0.70 (0.01) 0.77 0.80 (0.02) 0.34 0.47
8TLN 0.69 (0.01) 0.73 0.79 (0.02) 0.32 0.41

Average 0.68 (0.02) 0.73(0.04) 0.80 (0.03) 0.32(0.02) 0.44(0.04)

a Ensemble average C� RMSD.
b Ensemble average main chain RMSD.
c C� RMSD of the unregularized mean model derived from the ensemble.
d Main chain RMSD of the unregularized mean model derived from the ensemble.

Table 3. Model accuracy as a function of C� restraint threshold

C� restraint threshold [Å]

0.25 0.50 0.75 1.00 2.00 3.00 4.00 5.00

No. targetsa 4 18 24 25 25 25 25 25
C� RMSDb 0.18 (0.00) 0.36 (0.01) 0.53 (0.01) 0.68 (0.02) 1.31 (0.04) 1.97 (0.06) 2.63 (0.08) 3.33 (0.08)
Main chain RMSDc 0.50 (0.06) 0.55 (0.03) 0.67 (0.05) 0.80 (0.03) 1.38 (0.03) 1.99 (0.05) 2.60 (0.07) 3.26 (0.08)

The C� restraint threshold determines the radius of the C� restraint sphere associated with each model C� atom. Values in parentheses are standard
deviations.
a Number of successfully modeled targets of the 25 target structures.
b Ensemble average C� RMSD [Å] over all successfully modeled proteins.
c Ensemble average main chain RMSD [Å] over all successfully modeled proteins.
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ented vector of length l, selected from a uniform random
distribution between 0 and �. To ensure reasonable re-
straints with large amounts of noise, restraints were ac-
cepted only if the distance between successive restraints
was less than 3.8 Å plus the C� restraint threshold. Further,
after each pass of the conformation search algorithm, a new
set of noisy restraints was derived. Due to these restrictions,
the amount of noise is not entirely determined by the mag-
nitude of the noise vector, and is consequently best mea-
sured by the restraint RMSD. The average restraint RMSD
is in almost perfect agreement with the expected RMSD of
uniformly distributed random deviations (Table 4), showing
that the addition of noise to the C� restraints described here
is representative of randomly distributed errors in C� coor-
dinates.

Conformations generated under 1 Å C� restraints with
less than 1 Å noise have identical C� and main chain
RMSD to native as those generated without any noise,
though modeling accuracy begins to degrade slightly with
noise at 1.5 Å (Table 4). At this level of error the restraint
RMSD is actually greater than the C� RMSD of the models,
a counterintuitive result possible only because model C�

Figure 2. Flow diagram of the conformational search algorithm. See Materials and Methods for a detailed description of the algorithm.

Figure 1. Relationship between model accuracy and restraint specificity
for (A) main chain only models generated under varying C� restraints and
(B) all-atom models generated under 1 Å C� restraints and varying side
chain centroid restraints. In both graphs, the average RMSD over all targets
is shown for the closest model to the crystal structure (circles), the en-
semble average RMSD (squares), (A) the main chain of the un-regularized
mean model (diamonds), and (B) all atoms of the regularized mean model
(diamonds). Error bars are drawn at one standard deviation from the mean.
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atoms are permitted to lie up to 1 Å from the center of the
C� restraints. It is almost impossible to generate sets of
restraints for noise levels of 2 Å or greater consistent with
1 Å C� restraints, though models generated for the small
number of consistent restraint sets at 2 Å of noise again
show only a minor decrease in model quality (main chain
RMSD of 0.87 Å). Results are similar when models are
generated under 2 Å C� restraints with up to 4 Å of noise.
The average main chain RMSD decreases from 1.38 Å to
1.34 Å as the noise level increases from 0 Å to 3 Å, but
jumps to 1.43 Å under 4 Å noise. It was not possible to
generate models with 5 Å of noise under 2 Å restraints. In
conclusion, model accuracy is largely unaffected by random
noise in the origins of the C� restraints, tolerating a noise
level of up to 1.5 Å under 1 Å restraints and up to 4 Å under
2 Å restraints.

All-atom modeling

All-atom models were generated by simultaneously adding
side chain rotamers to the main chain at each extension step
(see Materials and Methods). During unrestrained side
chain modeling, all-atom models were generated under 1 Å
C� restraints but with reduced side chain van der Waals
radii. Consequently, there was little available information to
discriminate among side chain rotamers, and accurate side
chain assignment was not expected. These low expectations

were met, as the models had an average all-atom RMSD
1.92 Å and only 58.3% of �1 angles assigned correctly
(Table 5).

During restrained side chain modeling, all-atom models
were generated under 1 Å C� restraints, reduced van der
Waals radii, but with additional restraints on the centroid of
the side chain conformation. The centroid restraints influ-
ence not only the orientation of the side chain relative to the
main chain but also the absolute position and orientation of
both the side chain and main chain. Centroid restraints af-
fect large, bulky side chains such as phenylalanine more
than short side chains such as valine. On the native back-
bone, 1 Å centroid restraints eliminate the majority of ro-
tamers for bulky side chains but none for small side chains.
Consequently, centroid restraints affect the all-atom RMSD
more than �1 accuracy, as bulky side chains contribute dis-
proportionately to the all-atom RMSD.

Restrained side chain modeling is very accurate under 1
Å centroid restraints, producing models with 1.03 Å all-
atom RMSD and 77.4% of �1 assigned correctly (Table 5).
These numbers are especially significant considering that
main chain accuracy is largely unaffected by the additional
centroid restraints, with 0.75 Å RMSD under 1 Å C� and
centroid restraints, in contrast to the 0.80 Å RMSD under
only 1 Å C� restraints. In fact, the side chains are modeled
almost as accurately as the main chain, as demonstrated by
the minor difference between the main chain RMSD and
all-atom RMSD.

Table 4. Main chain only model accuracy as a function of errors in the origins
of the C� restraints

Noisea

RMSD [Å]

Expectedb Restraintc

Ensemble averaged Mean modeld

C� Main chain C� Main chain

1 Å C� restraint threshold

0.0 — — 0.68 (0.02) 0.80 (0.03) 0.32 (0.02) 0.44 (0.04)
0.5 0.29 0.29 0.68 (0.01) 0.80 (0.03) 0.31 (0.02) 0.43 (0.03)
1.0 0.58 0.58 0.68 (0.02) 0.80 (0.03) 0.30 (0.02) 0.42 (0.03)
1.5 0.87 0.86 0.69 (0.02) 0.81 (0.03) 0.28 (0.02) 0.41 (0.03)

2 Å C� restraint threshold

0.0 — — 1.31 (0.04) 1.38 (0.03) 0.59 (0.03) 0.68 (0.05)
1.0 0.58 0.58 1.30 (0.04) 1.37 (0.04) 0.57 (0.02) 0.67 (0.04)
2.0 1.16 1.15 1.27 (0.03) 1.34 (0.04) 0.54 (0.03) 0.64 (0.05)
3.0 1.73 1.72 1.28 (0.04) 1.34 (0.04) 0.51 (0.03) 0.61 (0.05)
4.0 2.31 2.26 1.37 (0.04) 1.43 (0.04) 0.51 (0.03) 0.61 (0.04)

a Width, in Ångstroms, of a uniform distribution used to sample the lengths of randomly
oriented vectors added to the C� restraints.
b RMSD [Å] expected between the C� atoms of the crystal structure and the C� restraints for
the given noise magnitude.
c RMSD [Å] between the C� atoms of the crystal structure and the C� restraints enforced
during model generation.
d Mean model was not regularized because TINKER requires all-atom models for energy mini-
mization.
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The accuracy of restrained side chain modeling is
strongly dependent on the centroid threshold; both the all-
atom RMSD and the �1 accuracy worsen with increasing
centroid threshold. The �1 accuracy drops more rapidly than
the all-atom RMSD, as seen by comparing the accuracy of
modeling under 3 and 5 Å centroid restraints. Even large
centroid restraints, of 4 or 5 Å, restrict the conformation of
bulky residues and improve model accuracy relative to un-
restrained side chain modeling.

Side chains were reassigned with SCWRL on (1) the native
backbone of each target protein, (2) the 50 models generated
with unrestrained side chains under 1 Å C� restraints, and
(3) the 50 models under 1 Å C� and 1 Å centroid restraints.
Side chains reassigned to the native backbones had an av-
erage �1 accuracy of 80.3% over our target set, in excellent
agreement with the published result of 80% (Bower et al.
1997), and indicating that the target set used in this work is
equivalent to that used in the original SCWRL assessment. On
the backbones of all-atom models generated without side
chain restraints, SCWRL performs only marginally better than
our naïve assignment algorithm: improving the �1 accuracy
by 1% and all-atom RMSD by 0.1 Å. It appears that the
quality of unrestrained side chain modeling is comparable to
dedicated assignment methods.

Despite the low main chain RMSD to native of the un-
restrained models, it is possible that the reduced van der
Waals radii for side chain atoms lead to main chain confor-
mations inconsistent with any accurate side chain assign-
ment. Side chains were also assigned to main chain confor-
mations generated under 1 Å C� and centroid restraints. The
main chain conformations of these models are clearly con-
sistent with an accurate side chain assignment, as the side
chains assigned during generation have on average 77.4% of
�1 correct and a 1.03 Å all-atom RMSD (Table 5). Though
the accuracy of SCWRL reassignment improved, still only
62.0% of �1 angles were predicted correctly, far below the
modeling accuracy under the 1 Å centroid restraints and
only 4% above the assignment onto unrestrained backbones.

Insensitivity to local features of protein structure

The effects of secondary structure and solvent accessibility
on model accuracy have been assessed by comparing the
per-residue main chain RMSD over residues sharing the
feature to all residues. Only an analysis of the best model
generated under 1 Å C� restraints without side chain mod-
eling is shown, though the results are qualitatively similar
for both unrestrained and restrained side chain modeling.

Table 5. Accuracy of all-atom modeling

Ensemble average Mean model

Main chain
RMSDa

All-atom
RMSDb �1

c
Main chain

RMSDa
All-atom
RMSDb �1

c

RAPPER all-atom modeling
1 Å centroidsd,i 0.75 1.03 77.4 0.48 0.74 83.2
2 Å centroidsd 0.78 1.28 73.1 0.43 0.93 73.4
3 Å centroidsd 0.79 1.51 65.3 0.44 1.16 64.5
4 Å centroidsd 0.79 1.67 61.3 0.44 1.32 61.5
5 Å centroidsd 0.80 1.82 59.0 0.45 1.47 59.0
Unrestrainede 0.80 1.92 58.3 0.45 1.61 57.6

SCWRL reassignment
1 Å centroidf 0.75 1.60 62.0 0.48 1.20 65.4
Unrestrainedg 0.80 1.82 59.1 0.46 1.33 62.5
Nativeh — 1.13 80.3 — — —

a Average main chain RMSD [Å] of the fifty models for each target protein, averaged over all
target proteins.
b Average all-atom RMSD [Å] of the fifty models for each target protein, averaged over all
target proteins.
c Percentage of side chains with �1 within 40° of the equivalent �1 in the crystal structure,
averaged over all target proteins.
d Side chain centroid threshold used for restrained side chain modeling.
e These models were generated without any side chain centroid restraints.
f Side chain assignment with SCWRL onto backbones generated under 1 Å centroid restraints.
g Side chain assignment with SCWRL onto backbones generated without side chain centroid
restraints.
h Side chain assignment with SCWRL onto the backbone of the target crystal structure. The
slight discrepancy in the C� and main chain RMSD between SCWRL and RAPPER modeling is
due to SCWRL assignment failure on several models with restrained and unrestrained back-
bones, leading to their exclusion from the RMSD calculation. No mean model can be calcu-
lated as only a single conformation is produced for each target protein.
i No models could be generated for target 1NIF under 1 Å centroid restraints, due to a
substantially non-rotameric side chain conformation at histidine:306.
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The per-residue C� RMSD and main chain RMSD are
0.62 (0.22) and 0.71 (0.29) over all 5307 residues in the set
of models, with average main chain RMSD of 0.73 Å (0.04;
Table 2). There are 1577, 1242, and 2488 residues in the
corresponding crystal structures in the helical, strand, and
coil states, respectively. Residues in strands and coils are
modeled equally accurately, with 0.73 (0.28) Å and 0.73
(0.34) Å per-residue RMSD, respectively, whereas the he-
lical state residues are modeled slightly more accurately,
with per-residue RMSD of 0.66 (0.22) Å. The per-residue
C� RMSD is completely independent of secondary struc-
ture content, at 0.62 (0.21), 0.63 (0.22), and 0.62 (0.22) over
helices, strands, and coils. The slightly better performance
over helices is due to improved orientation of the main
chain and not superior spatial positioning. There is almost
no difference in model accuracy over the 3431 accessible
residues than the 1876 buried residues, with 0.71 (0.30) Å
and 0.71 (0.28) Å per-residue main chain RMSD, respec-
tively. In summary, the differences in model accuracy
among secondary-structure and solvent accessibility classes
are small compared to the variation within each class. Con-
sequently, neither secondary structure nor solvent accessi-
bility is a strong determinant of model quality.

Mean models are closer to native
than any individual model

Following the approach described by Levitt (1992), the
mean model was computed by averaging the atomic coor-
dinates of equivalent atoms in each of the 50 generated
models, without superposition. Because the averaging of
atomic coordinates introduces large errors in covalent ge-
ometry, the raw mean model was regularized by energy
minimization. Minimization under the bonded energy terms
is very efficient, as the expensive O(n2) nonbonded calcu-
lation is avoided. Bonded-term regularization fixes most
stereochemical problems; the mean models exhibit standard
variation from ideal geometry and have reasonable �/�
characteristics (To conserve space, the term ‘mean model’
may be used for the regularized mean model. It will be
explicitly noted when the raw or un-regularized mean model
is used). These corrections require only minor rearrange-
ments of the raw mean model, on the order of 0.3 Å all-atom
RMSD between the mean and regularized models. Fortu-
nately, the main chain and all-atom RMSD to native are
almost completely unchanged following regularization, in-
creasing by around 0.01 Å main chain and 0.03 Å all-atom
RMSD.

The mean model is substantially closer (P < 0.001, paired
t-test) to the native structure than even the best individual
models, for every C� and side chain centroid threshold
(Table 5, Fig. 1). The improvement in main chain accuracy
increases with larger C� restraints, from 0.35 Å under 1 Å
restraints to 1.51 Å under 5 Å restraints. On the other hand,

side chain modeling improves only a constant amount of 0.3
Å all-atom RMSD over the ensemble average of structures
from which it was derived.

In absolute terms, the mean models are very close to
native. Under 1 Å C� restraints and unrestrained side
chains, the mean models have main chain RMSD of 0.45
(0.05) Å, closer to native than even models generated under
0.25 Å C� restraints (Table 3). The mean models derived
from the ensemble with 1 Å C� and centroid restraints are
extraordinarily close to the native, with an all-atom RMSD
of only 0.74 Å and 83.2% of �1 angles assigned correctly.
Further, the mean models under 1 Å C� restraints with side
chains reassigned with SCWRL (0.46 main chain and 1.34 Å
all-atom RMSD) are comparable to the accuracy of side
chain assignment with SCWRL onto the native backbone
(1.14 Å all-atom RMSD).

The accuracy of the mean model as a function of C�
restraint error is given in Table 4. For every level of noise,
it is substantially more accurate (P < 0.001, paired t-test)
than the ensemble average and also the best individual
model. The C� and main chain RMSD both decrease
slightly with increasing levels of noise in the C� restraints.
Though the improvements are small, the mean models un-
der noisy C� restraints are better than the mean models
under noiseless restraints (P < 0.001, paired t-test). The
cause of this observed decrease is unclear. Regardless, the
improved accuracy of the mean model over any individual
model clearly does not depend on the C� restraints being
centered on the native C� atoms.

Mean models were derived from a variety of ensemble
sizes, from 5 to 500 models. Small ensembles, below 10
models, produced worse mean models than the 50 model
ensembles, whereas ensembles containing more than 50
models had only a marginal effect on the accuracy of the
mean model.

Modeling accuracy summary

Though not the sole criterion of success, the ability to gen-
erate models within a reasonable proximity of the native
structure is a necessity for any C�-trace method. The accu-
racy of the individual models produced by main chain only
modeling under 1 Å C� restraints is comparable to that of
previous methods, though slightly worse than the best meth-
ods. The mean models, on the other hand, are more accurate
than even the best previous methods, consistently producing
models with 0.4–0.5 Å main chain RMSD to native. The
mean model derived from all-atom models with unre-
strained side chains compare favorably with previous meth-
ods. The mean models computed with side chains reas-
signed with SCWRL are even more accurate, well below the
results obtained by all other methods except SEGMOD. Fi-
nally, all-atom modeling with side chain centroid restraints
produces the most accurate models of all, with mean models
within 1 Å all-atom RMSD of the native structure for rea-
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sonably strict centroid restraint thresholds. To put these
numbers in context, SCWRL side chain assignment on the
native backbone produces models with an all-atom RMSD
of 1.14 Å, including four heavy main chain atoms with no
deviation from the crystal structure. So even with backbone
flexibility, restrained side chain modeling is more accurate
than side chain assignment onto the native backbone. In
summary, our main chain only and side chain modeling
methods consistently produce highly accurate models, im-
proving main chain and all-atom modeling over all previous
methods.

Computational cost scales linearly with protein size

Here we assess the computational cost of the algorithm as a
function of protein size for main chain only and all-atom
modeling. The average-case behavior of the conformational
search algorithm is linear in the length of the protein for
main chain only generation (Fig. 3), excluding the outlier
3APP with an abnormally large number of pass failures
caused by glycine:314, with forbidden �/� angles, preced-
ing a cis proline:315. The total cost to build a model can be
decomposed into the actual cost to build a model plus the
cost of all failed passes. Removing the cost of failed passes,
the average running time per successfully built model shows
less variability and a nearly perfect correlation with protein
size (Fig. 3).

Simultaneous modeling of side chains is more costly than
main chain only modeling. Unrestrained side chain model-
ing is three times as expensive as main chain only, but has
an only slightly worse linear relationship between running
time and protein size (Fig. 3). As discussed previously, the
lower correlation for unrestrained all-atom modeling is a
consequence of the nonlocality of interactions between side
chains: A fatally incorrect rotamer assigned for one residue
may not be detected until further down the polypeptide
chain. This nonlocal behavior increases the likelihood and
cost of pass failures for the conformational search algo-
rithm.

Restrained side chain modeling (with 2 Å centroid re-
straints) is less expensive than its unrestrained counterpart,
due to fewer pass failures from fatally incorrect side chain
assignments. Its computational cost is more variable as a
function of protein size, as reflected by a correlation coef-
ficient of 0.68 over the entire target set. This greater vari-
ability is a consequence of three targets (1A6M, 5CPA, and
8TLN) that have an unusually large number of failed passes.
Excluding these three outliers increases the correlation be-
tween running time and protein size to 0.93 (Fig. 3).

The performance of restrained side chain modeling with
1 Å centroids is significantly worse than for 2 Å or larger
centroids (data not shown). This is due to nonrotameric side
chain conformations in the target structures, as ∼1% of resi-
dues have no conformation in the rotamer library satisfying

Figure 3. Computational cost (average CPU time to generate one model, y-axis) as a function of protein size (number of amino acids,
x-axis), for (A) main chain only modeling under 1 Å C� restraints; (B) main chain only modeling under 1 Å C� restraints but excluding
the CPU cost of failed passes of the conformational search algorithm; (C) all-atom modeling under 1 Å C� restraints and unrestrained
side chains; and (D) all-atom modeling under 1 Å C� and side chain centroid restraints. Linear regressions are plotted as thick lines,
with correlation coefficients of (A) 0.80, (B) 0.96, (C) 0.86, and (D) 0.93 excluding the outliers 1A6M, 5CPA, and 8TLN.
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the 1 Å centroid on the native backbone. These nonrota-
meric conformations make assignment extremely difficult
under 1 Å centroid restraints, as substantial repositioning of
the main chain is required to place such side chains.

The absolute computational costs of the conformational
search algorithm are modest. Main chain only and all-atom
with side chain centroids generation requires approximately
equal amounts of time: 15–20 sec for 1IGD (61 residues)
and 3–4 min for 4ENL (436 residues). Unrestrained all-
atom generation is around three times as costly, requiring 40
sec for 1IGD and 12 min for 4ENL. These costs are well
within reason for standard desktop computers. The algo-
rithm is also easily parallelized, as an ensemble of models
can be independently generated on separate processors.

Discussion

Among the most interesting issues addressed in this work is
the relationship between conformational sampling, restraint
specificity, and model accuracy. Considering that the en-
semble average RMSD is so different under different sets of
restraints, the accuracy of an individual model is determined
almost entirely by the specificity of the restraints under
which it is generated. The strong relationship between
model accuracy and restraint specificity is both positive and
negative. On one hand, reliable estimates of model accuracy
can be provided for any given set of C� and centroid re-
straint thresholds. On the other hand, the single largest fac-
tor determining model accuracy is the accuracy of the C�
and centroid restraints.

The ability to precisely control the radius of conforma-
tional sampling around the native structure has many inter-
esting applications. In experimental structure determination
with X-ray crystallography or NMR spectroscopy, con-
trolled sampling can be used to search for similar confor-
mations that better satisfy experimental data. It is now com-
mon to measure the discriminatory power of selection meth-
ods such as statistical potentials or molecular mechanics
forcefields by their ability to identify native conformations
against a background of decoy conformations (Park and
Levitt 1996; Samudrala and Levitt 2000; de Bakker et al.
2003). High-quality decoy sets could be created by com-
bining models generated by RAPPER under a variety of re-
straints. Models of a target sequence can be generated by
tracing through restraints derived from homologous struc-
tures (P.I.W. de Bakker, M.A. DePristo, and T.L. Blundell,
in prep.). We are also actively investigating the application
of RAPPER to molecular docking against multiple structures,
in which native restraints can be directly copied from the
crystal structure to generate compatible receptor structures.

A statistical argument explains why the mean model is
closer to the native structure than any individual model in an
ensemble of 50 models. Each model is very likely to contain
errors that keep its RMSD to native high. However, because

each model is independently generated, models are unlikely
to err in the same way at each position in the structure.
When viewed as an ensemble, the errors in the models are
nonsystematic and should be distributed evenly about the
native structure. The mean model should be free of much of
this nonsystematic error and thus closer to the crystal struc-
ture. Because the mean model is closer to native than the
ensemble of models even under noisy C� restraints, this
effect is not dependent on C� restraints centered on the
native C� atoms. However, each model is generated under
different noisy restraints, so the ensemble should again be
distributed equally around the native structure. The equiva-
lent modeling accuracy of the models even under different
noisy restraints suggests that the ensemble will be distrib-
uted even about the native even when derived under a single
set of noisy restraints. An ensemble of independently gen-
erated models under discrete C� restraints is largely free of
systematic error. Reducing this ensemble to a mean model
averages away the nonsystematic error in each model and
thus produces a model substantially closer to the native
structure than any individual model. The coordinate aver-
aging, however, can introduce structural problems beyond
covalent geometry, including poor van der Waals interac-
tions, �/� outliers, and nonrotameric side chains, that can be
fixed by energy minimization.

The surprising degree of robustness to errors in the C�
restraint origins is probably the most significant and excit-
ing result of this work. The insensitivity to nonsystematic
noise is a consequence of our strict adherence to local con-
formational correctness and the discretization of the spatial
C� restraints. Idealized geometry ensures that only reason-
able protein conformations are sampled, regardless of pres-
sure from the C� restraints. Propensity-weighted �/� sam-
pling further resists the influence of locally distorted C�
restraints. Further, the discrete C� restraints only require
models to lie within the C� restraint spheres. Consequently,
sampling is not biased toward the origin of the restraints,
providing the freedom to accommodate the demands of lo-
cal correctness from idealized geometry and �/� angles.
The chain-based competition of the conformational search
algorithm introduces cooperation among individual residues
that magnifies resistance to noise in the restraints. All of
these features combine to overcome nonsystematic errors in
the C� restraints, effectively pulling the generated confor-
mations toward the native structure even when subjected to
a large amount of noise.

It must be emphasized that these results do not imply that
our method is insensitive to systematic errors in the C�
restraints. The current algorithm alone is unlikely to correct
systematically distorted C� restraints, as occurs in practice
from problematic electron density skeletonization, poor
templates in comparative modeling, and incorrect position-
ing of secondary structures or noncompactness in ab initio
calculations. Perhaps the effects of systematic distortions
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may be reduced by iterative sampling and refinement in an
empirical forcefield.

Several interesting conclusions about the relationship be-
tween the main chain and side chain conformation can be
drawn from a comparison of main chain only and restrained
all-atom modeling. First, there are many conformations with
1 Å all-atom RMSD of the native structure that are consis-
tent with both the native main chain and side chain confor-
mations. Consequently, consistency with the native struc-
ture does not determine the structure of a protein to better
than 1 Å all-atom RMSD. This suggests that when applying
our method to comparative modeling, the most accurate
models obtainable would have around 1 Å all-atom RMSD.
That is, regardless of the errors inevitably introduced by an
incorrect alignment and inaccurate restraints derived from
homologous templates, the conformational search algorithm
itself would limit the accuracy of the resulting models. This
effect, which we suspect is a general feature of all modeling
algorithms, would be a significant constraint for close ho-
mologs, where a large fraction of the distance from the
native structure would result from inherent modeling diffi-
culties and not from alignment errors.

More fundamentally, several pieces of evidence suggest
that our method is incapable of generating models closer
than 0.5 Å main chain RMSD to the crystal structure. First,
extrapolating from Figure 1, a residual 0.5 Å main chain
RMSD would remain even if the C� restraints threshold
could be tightened to 0 Å. Second, the mean models under
1 Å C� restraints converge to an average of 0.5 Å main
chain RMSD with increasing ensemble size. One interpre-
tation of these results is that our approximations to protein
structure limit our ability to reproduce the actual crystallo-
graphic models: as the latter may well deviate from the
discrete sampling of �/� angles in 5° bins and ideal main
chain geometry, most notably the N—C�—C (�) bond
angle and the 	 dihedral angle.

However, it is cannot be overemphasized that the crystal
structures are themselves models of experimental data de-
rived from the time- and space-averaged diffraction of mil-
lions of conformations within the crystal lattice. The atomic
B-factors, which relate to the variation of the protein atoms
around their mean positions in the crystal structure, were not
used in our comparisons of the C�-trace models and crystal
structures. These issues should not be disregarded when
assessing the accuracy of models within 0.5 Å main chain
RMSD from the crystal structure. We are currently inves-
tigating a direct comparison of the C�-trace models to the
experimental structure factors.

We show that side chain reassignment onto near-native
backbones is significantly more difficult than assignment
onto the native backbone. The accuracy of SCWRL on both
the unrestrained and restrained backbones is markedly re-
duced from the published values of x1% of 80% onto native
backbones and 74% onto gapless homologous structures

(Bower et al. 1997). The large drop in accuracy from ho-
mologous structure assignment to near-native backbone
suggests that assignment of a nonnative sequence onto a
homologous but native backbone is far easier than assign-
ment of the native sequence onto a near-native backbone.
This is especially troubling for side chain assignment onto
comparative models, where a target sequence must be as-
signed to an at-best near-native backbone.

The effect of near-native backbones on the quality of side
chain assignment has clearly been underestimated. Because
side chain assignment methods are useful primarily on near-
native backbones, the accuracies reported here are more
representative of the real-world accuracy of side chain as-
signment programs. We expect that near-native assignment
will be equally difficult for other side chain assignment
methods, as they focus even more exclusively on native side
chain reassignment. The large effect of near-native back-
bones on side chain modeling accuracy demands that side
chain assignment methods be evaluated on both native and
near-native backbones. To encourage such evaluations, the
models generated in this study will be made available from
the RAPPER website.

Though effective and efficient most of the time, the con-
formational search algorithm tends to fail on overly restric-
tive restraint networks, leading to increased computational
costs (Fig. 1) or total search failure (Table 3). This behavior
is a natural consequence of attempting to build the entire
polypeptide chain in a single pass. We are currently inves-
tigating whether this problem can be circumvented by di-
viding modeling into small segments of restraints, sepa-
rately solving each segment, and then assembling them into
a complete model. Segment assembly should decrease the
number and cost of failed passes and increase the linear
relationship between protein size and running time (Fig. 3).

In conclusion, our de novo method for C�-trace genera-
tion is accurate, extensible, reliable, efficient, and robust,
meeting all of the proposed criteria for an ideal C�-trace
method. We are currently investigating the application of
our restraint-based conformational search method to experi-
mental structure determination, comparative modeling, and
protein-ligand docking.

Materials and methods

Target proteins

The target set of protein structures was chosen to cover the major
target structures from previous papers (Table 1). Superceded en-
tries have been replaced by their current structures. The first al-
ternate location was used when multiple locations were given.
Proteins 1CEM, 1NIF, 1PHP, 3PTE, and 8ABP were added to
increase the number of larger protein targets. All target structures
were solved with X-ray crystallography to better than 2 Å resolu-
tion and are structurally dissimilar according to CATH (Orengo et
al. 1997).

Discrete restraint-based protein modeling
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Model representation

Our approach to high-fidelity protein modeling is founded on the
belief that simple discrete restraints coupled with efficient algo-
rithms for conformational sampling can generate ensembles of
accurate model structures. This was implemented in the program
RAPPER and used to assess the energetic discrimination of decoy
ensembles of protein loops (de Bakker et al. 2003; DePristo et al.
2003). Here we introduce the standard model of protein structure
employed in this work.

The covalent geometry of the standard amino acids has been
well characterized by small-molecule crystallography (Engh and
Huber 1991). Since amino acids in protein structures exhibit little
deviation from their small-molecule values (Dauter et al. 1997),
idealized geometry is an excellent approximation to real protein
structures. Consequently, models are constrained to have idealized
geometry for the main chain {N, C�, C, O, H} and side chain {all
heavy atoms}. Conformational freedom is thus restricted to the
dihedral angles �, �, 	, and �i, greatly improving the efficiency of
conformational sampling.

Steric interactions between main chain and side chain atoms
within an amino acid restrict its backbone dihedral angles � and �
to highly localized regions of the �/� plot (Ramachandran and
Sasisekharan 1968). In RAPPER we constrain �/� angles to allowed
regions in fine-grained, residue-specific, �/� maps derived from
the database of protein structures (DePristo et al. 2003; Lovell et
al. 2003).

Due to the partial double-bond character of the peptide bond, the
	 dihedral angle occurs almost exclusively in the trans or the cis
conformations. The trans conformation is much more prevalent
(99.96%) than cis (0.04%) across the whole database of protein
structures. However, amino acids preceding proline are over 100
times as likely to adopt the cis conformation (6%; Jabs et al. 1999).
In the present study, trans and cis conformations were sampled at
their frequency of occurrence in the protein database for standard
and pre-proline residues.

Hard-sphere excluded volume

A hard-sphere approximation to excluded-volume principle is used
to enforce minimum interatomic separation. Despite its limitations,
a hard-sphere model for excluded volume is an acceptable approxi-
mation for excluded-volume interactions with several advantages
over more computationally expensive approaches. Grid algorithms
permit constant-time overlap detection to a set of frozen atoms.
Interactions such as disulfide and hydrogen bonding can be mod-
eled by permitting a closer approach between the donor/acceptors
and cysteine sulfurs. In this study, van der Waals radii were taken
from PROBE (Word et al. 1999a), reduced by 20% to exclude only
energetically infeasible atomic contacts.

C� and side chain centroid restraints

The provided guide positions are incorporated into the restraint
network by spherical restraints associated with each C� atom. A
C� atom at position p satisfies a spherical restraint centered at O
with radius r when

�p − O� 
 r

The radius of the C� restraints is called the C� threshold. For
benchmarking purposes, the C� restraints are centered on the C�
atoms of the crystal structure.

Similar to C� restraints, side chain centroid restraints are en-
forced by spherical restraints on the mean position of the side
chain atoms (here we take the set of side chain atoms to be all
atoms outwards from C�, excluding the C� as seen in other work).
A centroid restraint of radius r at position O is satisfied when

� �pi
i � side chains

�side chains�
− O� 
 r

For benchmarking, the centroid restraints are placed at the mean
coordinates of the crystal structure’s side chain atoms with radii
from 1 Å to 5 Å. Several targets have missing side chain atoms:
2PRK (residues 103-GLN, 167-ARG, 278-GLN), 2WRP (4-SER,
7-MET, 70-GLU), and 8ABP (2-ASN, 306-LYS); side chain cen-
troid restraints were not enforced for these residues.

Conformational search algorithm

A novel conformational search algorithm, combining aspects of
tree-search and genetic algorithms, was employed to solve restraint
networks (shown schematically in Fig. 2). First, an N-terminal
anchor residue must be generated to bootstrap the conformational
search (Anchor generation). Two points are randomly chosen
within the spheres of first and second C� restraints. A residue is
placed along the vector between the two points and rotated by a
random angle around the vector. The anchor is accepted if it and
at least some of its successor residues satisfy the restraint network;
otherwise the process repeats.

Next, a population of 100 conformations (the parents) is ex-
tended from the N anchor residue to the C terminus, one residue at
a time, generating at each step a new population of children con-
formations based on the parents (Search pass). During an extension
step, the members of the parent population are examined in a
round-robin fashion. For each parent P, a pair of backbone dihedral
angles is randomly selected, weighted by propensity, and the cor-
responding child residue C is built. If C satisfies the C� and clash
restraints, then side chains are added as described below. The
extension of the parent conformation proceeds until 100 children
have been found or 100,000 extension steps have been tried. If the
distance between the population and the closest common ancestor
shared by all members of the population exceeds 20 residues, then
the conformations sharing the most populous ancestor 20 residues
back are kept and all others rejected from the population. This
limits the diversity in the chain, and ensures that all residues pre-
ceding the common ancestor can be added to a grid-based cache
for constant time excluded-volume checks. The maximum length
of 20 is fairly arbitrary, and was selected because it enormously
improves performance without any noticeable effect on the quality
of the sampling algorithm.

Finally, when the population reaches the C terminus, only the
unique chains from the population are selected as independent
solutions. The whole process repeats until a complete ensemble of
conformations has been found or the maximum number of passes
has been exceeded (Population search).

Side chain modeling

Side chain conformations are taken from the penultimate rotamer
library with secondary structure-specific rotamer propensities
(Lovell et al. 2000). Rotamers are added to the main chain fol-
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lowing each residue extension step of the conformation search
algorithm. Given a residue with a valid main chain conformation,
a random rotamer is chosen from the rotamer library based on the
�/� state of the residue and placed onto the main chain. If the
rotamer satisfies all applicable restraints, the complete residue is
accepted, otherwise the assignment iterates with another random
rotamer until either a good conformation is found or all rotamers
have been examined. This process is efficient using an elimination-
based assignment algorithm (R.P. Shetty, P.I.W. de Bakker, M.A.
DePristo, and T.L. Blundell, in prep.). During unrestrained side
chain modeling, only excluded-volume restraints are enforced for
side chain atoms, whereas restrained side chain modeling includes
both excluded-volume and side chain centroid restraints.

Often residues distantly separated in the amino acid sequence
are spatially in close proximity due to close contacts between side
chains. During conformational search, an incorrectly chosen rota-
mer may affect only residues much later in the chain. The high
sensitivity and nonlocality of side chain excluded-volume interac-
tions give rise to a “needle-in-a-haystack” problem that the con-
formational search algorithm is particularly ill-suited to solve. In
order to limit the long-distance effects between amino acids and
ensure that the conformational search algorithm can construct
models, the van der Waals radii for side chain–side chain and side
chain–main chain interactions must be reduced by 50%.

Miscellaneous

The RMSD between two structures over a set of atoms was com-
puted after optimal superposition of the structures. The C� RMSD
is the RMSD over only C� atoms, the main chain RMSD is over
the heavy backbone {N, C�, C, O} atoms, and the all-atom RMSD
is computed over all heavy main chain and side chain atoms pres-
ent in the native structure. The restraint RMSD is the RMSD
between the center of the (spherical) C� restraints and the native
C� atoms. The ensemble average RMSD, over a set of atoms and
an ensemble of structure, is the average RMSD over the set of
atoms of each structure in the ensemble. It is an estimate for the
RMSD of a randomly selected model from the ensemble. IUPAC
atom name conventions were obeyed when comparing all-atom
models.

Throughout the text, values in parentheses are standard devia-
tions from the mean value. Secondary structure assignment was
performed with DSSP (Kabsch and Sander 1983), with ‘H’ state
residues considered helical, ‘E’ state strand, and all other states
coil. Surface accessibility calculations were performed with PSA

(Hubbard and Blundell 1987). A residue is considered buried when
its normalized accessible surface area is less than 7% (Hubbard
and Blundell 1987). Side chains were reassigned using SCWRL

(Bower et al. 1997; version 2.8, May 21, 2001). Side chains are
considered correctly assigned when the �1 angle of the assigned
rotamer is within 40° of the native �1 angle (Bower et al. 1997).
Energy minimization was performed under the bonded terms of the
AMBER forcefield (Cornell et al. 1995) using the program MINI-
MIZE from the TINKER molecular mechanics software package
(http://dasher.wustl.edu/tinker/, version 3.9, December 21, 2001)
to a gradient root-mean-square of 10 kcal/mole/Å. Hydrogens were
added to all models prior to minimization with REDUCE (Word et al.
1999b).

RAPPER is written in C using the Boehm garbage collector (http://
www.hpl.hp.com/personal/Hans_Boehm/gc/) for automatic mem-
ory management and runs under Linux, FreeBSD, Mac OS X, and
IRIX. All calculations were performed on a cluster of eight dual
2 GHz Althons running FreeBSD.
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