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We study the local region-of-interest (ROI) reconstruction problem, also referred to as the local CT problem. Our scheme includes
two steps: (a) the local truncated normal-dose projections are extended to global dataset by combining a few global low-dose
projections; (b) the ROI are reconstructed by either the generalized filtered backprojection (FBP) or backprojection-filtration
(BPF) algorithms. The simulation results show that both the FBP and BPF algorithms can reconstruct satisfactory results with
image quality in the ROI comparable to that of the corresponding global CT reconstruction.
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1. INTRODUCTION

It is well known that the primary disadvantage of X-ray CT
is ionizing radiation which may induce cancers and cause
genetic damages with a probability related to the radiation
dose. Thus, reducing the dose as low as possible is a gen-
eral rule for practical medical applications. One effective
way is to reduce the region or volume to be imaged. For
example, reconstruction from truncated projections, which
is also referred to as local region reconstruction, has been
extensively studied. The existent algorithms can be catego-
rized into three categories: (1) iterative methods [1, 2] which
reconstruct the local ROI by minimizing I-divergence or
maximizing statistical likelihood; (2) analytic methods such
as those based on wavelet-based multi-resolution analyses
[3, 4]; and (3) lambda tomography methods [5-7] which re-
cover a gradient-like function of an object function.

To reconstruct a long object such as a patient, Katse-
vich proposed an exact and efficient FBP reconstruction al-
gorithm [8, 9] for a standard cone-beam helical scanning tra-
jectory. Zou and Pan derived a BPF algorithm [10]. Later,
several groups independent generalized both the FBP [11,
12] and BPF [13-18] algorithms to more general scanning
loci. These results offer a new opportunity to reconstruct the
local ROI from truncated data. Based on the idea of combin-
ing global and local data for improved ROI reconstruction
[3, 19-21], here we propose a local region reconstruction
scheme which is novel in terms of the reconstruction meth-
ods, that is, the utilization of the recently developed general-
ized FBP and BPF algorithms. The major characteristic is to

deliver a normal radiation dose to a local ROI that may con-
tain the cancerous tissue while applying a very low radiation
dose to the structures outside the ROL

In the following, the generalized FBP and BPF algorithms
are briefly reviewed in Section 2. The ROI reconstruction
scheme is described in Section 3. Simulated results and anal-
ysis are presented in Section 4. Finally, in Section 5 we con-
clude this paper.

2. REVIEW OF GENERALIZED FBP AND
BPF ALGORITHMS

Based on Katsevich’s FBP formula [9] for standard helical
cone-beam CT, Ye and Wang derived a generalized FBP for-
mula for exact image reconstruction from cone-beam data
collected along a flexible three-dimensional (3D) curve [12].
The key step is to choose a filtering direction based on the
general condition (see [12, equation 3.25]). A natural choice
is the direction of the generalized PI-segment, also referred
as a chord. As a result, the generalized FBP method does not
require the uniqueness of the chord. In fact, it can be used to
reconstruct images on any chord as long as a scanning curve
runs from one endpoint of the chord to the other endpoint.
We implemented this generalized formula and applied it to
reconstruct images from data collected along a nonstandard
saddle curve [22].

By interchanging the order of the Hilbert filtering and
backprojection operation in Katsevich’s FBP formula [9],
Zou and Pan obtained a BPF formula for a standard helical
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cone-beam CT [10], which reconstructs an object only from
the minimum data in the Tam-Danielsson window. Our
group contributed the first proof of the general validity of
the BPF formula in the case of nonstandard spirals as well as
other more general curves [14, 15, 22, 23]. Independent work
on exact cone-beam reconstruction in the case of a general
scanning curve was also independently reported by several
groups [11, 13, 17, 18]. Although there are several schemes
for constructing cone-beam inversion algorithms in a gen-
eral case [24-27] before these recent publications, the gen-
eralized exact cone-beam reconstruction algorithms are ex-
plicit and straightforward. Note that earlier than our SPIE
paper [14], Palamodov once formulated a general inverse for-
mula [28]. Unfortunately, his formula is not theoretically ex-
act [29]. Since a 2D locus can be regarded as a special class
of 3D curves, we can readily obtain the corresponding gen-
eralized fan-beam reconstruction formulas [30]. Therefore,
in this paper, we will discuss the reconstruction of a local
ROI from truncated fan-beam and cone-beam data collected
along flexible 2D/3D loci.

3. RECONSTRUCTION SCHEME

It is well known that a reconstructed 2D ROI from local trun-
cated projection data suffers from image cupping and in-
tensity shifting artifacts since the local CT problem is not
uniquely solvable [31]. Based on the fact that the artifacts
mainly distribute in low frequencies, the local ROI recon-
struction can be improved by combining the truncated local
projections and very few noisy global projections. Therefore,
we can deliver a normal radiation dose to the local ROI that
may contain the cancerous tissue while applying a very low
radiation dose to the structures outside the ROIL. As shown
in Figure 1, there are two types of detectors: one is a local de-
tector (solid thick line) which collects truncated local projec-
tions at a normal radiation dose rate, and the other is a global
detector (dotted thin line) which collects global projections
with very low radiation dose. For practical applications, the
two types of detectors can be combined into one. As illus-
trated in Figure 1(a), this can be physically implemented by
adding some lead filters in the current pre-patient collimator.
Compared to the local normal-dose projections, the global
low-dose projections can be obtained in two ways: (a) re-
ducing the number of photons for each detector aperture;
(b) shortening the scanning time by reducing the number of
projections. The global data and local data can be acquired in
two scans [21] or the same scan with an ROI beam filtering
technique [20].

If the global and local data are acquired in two scans,
an interpolation procedure is required to combine the two
datasets. Assume that both the local and global detectors have
the same scanning geometry. The local normal-dose projec-
tions Pjoca are finely sampled, while the global low-dose pro-
jections Pgobar are coarsely sampled. The two datasets can be
combined as

Plocal if Plocal is deﬁned,
Piopal = { i (1)
global

& otherwise,

2D locus

(a) Fan-beam geometry.

<

3D locus

.< .....

oL Detector

(b) Cone-beam geometry.

Figure 1: Configuration of the local region reconstruction from
truncated local normal-dose data and global low-dose data. The
dotted thin line represents the detector for global data while the
solid thick line represents the detector for local data.

where P;lobal denotes the linear interpolation of Pgil.1 on the
fine grid of Pjoc. The whole interpolation procedure is il-
lustrated in Figure 2 for fan-beam geometry. Once the com-
bined global dataset Py, is obtained, the local ROI can be
reconstructed by either the generalized FBP or BPF method.
For the implementation details of the reconstruction algo-
rithms, please refer to our previous papers [22, 23, 30]. It is
pointed out that the global dataset Py, can be directly ac-
quired using an ROI beam filtering technique [20].

4. SIMULATION RESULTS

According to the analysis of our CMCT system [19], the or-
gan dose, DOSE, is proportional to the total photons flux
®. Assume that there are N photons emitted from the X-ray
source to each detector aperture, the number of detectors is
S, and the number of projections is P, ® will be proportional
to N X § X P, that is,

DOSE oc ® oc N X S X P. (2)

Hence, the ratio between the dose from global projections
and that from local truncated data roughly is

DOSEglobal _ Nglobal
DOSElocal Niocal

P global
Piocal

Selobal

DOSEratio = Sl |
ocal

> (3)
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F1GURrE 2: Illustration of combining local normal-dose data and global low-dose data in fan-beam geometry.

where the subscribes “global” and “local” indicate the global
and local datasets, respectively.

Assume that among the N photons emitted by the X-ray
source only N photons arrive at the detector aperture due to
attenuation in the object, and that the number of photons N
obeys a Poisson distribution. Since the dose level as described
by noise variance is inversely proportional to the number of
the detected photons N, we can simulate projections at dif-
ferent dose levels in terms of Poisson random variables as a
function of the number of the detected photons (see the ap-
pendix). To demonstrate the performance of the proposed
algorithms, we implemented an X-ray projection simulator,
and the generalized FBP and BPF algorithms in Matlab on a
PC with all the computational intensive part coded in C++
language.

As shown in Figure 1(a), in our first set of numerical
tests, a 2D differentiable Shepp-Logan phantom (DSLP) [32]
was confined in a disk of radius r = 10cm, and centered
at the origin of the natural coordinate system. The X-ray
source was rotated along a circular locus of radius R = 50 cm.
Collinear local and global detectors were combined with the
local detector arranged in the middle of the global detec-
tor. The distance between the detector and the X-ray source
was D = 100 cm. Along a 40.82 cm length, 500 detector el-
ements were distributed for global data, while 250 detector
elements were spanned over 20.41 cm for local data. The lo-
cal detectors covered all the projections of an ROI of radius
r’ = 5.08 cm. In our simulation, 720 local truncated normal
dose and 36 global low dose projections were equiangularly
acquired in two scans. We set N = 1.0 x 10® per detector
element for collection of local data at the normal dose. For
different low-dose levels, global data were acquired, and the
local ROI reconstructed by both the FBP and BPF methods,
as shown in Figure 3. Furthermore, Table 1 includes the dose
ratios and signal-to-noise ratio (SNR) in the ROL

As the baseline, the last column of Table 1 gives the case
when the global dataset was obtained using the same dose
level and projection number as for the local dataset. From
Table 1 and Figure 3, it can be observed that (a) there were
some low-frequency artifacts at the edges of the ROI recon-
structed by the FBP method; (b) there were some strip ar-
tifacts along the PI-segments all over the ROI reconstructed
by the BPF method; (c) the FBP method offered better image
quality in terms of SNR than the BPF method; (d) both the

FBP and BPF methods reconstructed satisfactory results by
incorporating some low-dose global projections, at an addi-
tional cost of less than 1% purely local CT dose.

To demonstrate the flexible of the proposed scheme, our
second set of numerical tests were to reconstruct a 3D lo-
cal ROI from truncated cone-beam data along a nonstan-
dard saddle curve. These tests were based on the experiments
n [22]. All parameters are the same as those in [22] except
the following: (a) the reconstructed object was a 3D DSLP
[32]; (b) the global detector array contained 518 x 592 ele-
ments while the local detector array had 256 x 592 elements;
(c) 1200 local projections and 120 global projections were
acquired in two scans. The numbers of photons for local
normal-dose and global low-dose scans were N = 10% and
N = 10* per detector element, respectively. The dose ratio
was estimated as 2.02 X 107>, The SNRs in the local RO re-
constructed by the FBP and BPF algorithms were 49.94 dB
and 49.32 dB, respectively. Figure 4 presents representative
reconstructed images.

5. DISCUSSION AND CONCLUSION

Since the exact FBP and BPF algorithms are utilized, the
proposed scheme is different from the existent ROI beam
filtering technique [20] in which the approximate Feld-
kamp algorithm is used. Although our interpolation method
(1) appears similar to the multi-resolution analysis method
(MRAM) [3, 4, 21], we emphasize that the former is different
from the latter in terms of the radiation dose. Both the global
and local data are typically at the same dose level (noise level)
in the MRAM, while here the dose level of the global data is
far lower than that of the local data. Therefore, the contri-
bution of this paper is to combine a normal-dose local ROI
scan [3, 19-21] with a low-dose global scan, and apply the
exact FBP and BPF reconstruction algorithms such as those
described in [12, 15].

In conclusion, we have evaluated a new local ROI recon-
struction scheme from data collected along scanning curves.
By combining normal-dose local projections with some low-
dose global projections, we have enhanced a local normal-
dose dataset to a global dataset. Both the generalized FBP
and BPF algorithms have been tested to reconstruct a local
ROL The simulation results have shown that both the FBP
and BPF algorithms can produce excellent results with a min-
imal increment to the dose needed for purely local CT.
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FiGURE 3: Reconstructed local ROI images of the DSLP with different low-dose levels for global projections. The left column was recon-
structed by the FBP method while the right column by the BPF method. Each image includes a reconstructed image with a display window
[1.0,1.04] and a difference image against the real image with a display window [—0.02,0.02]. The global projections for the first row were
collected with the same N and P as that for the local projections. The white circle indicates the ROI. N for global data with the second and

third rows were 10, 10°, respectively.

TaBLE 1: Dose ratios and SNRs for different low-dose levels.

N 107 108

DOSEatio 1072 1073
SNR with FBP (dB) 61.29 61.12
SNR with BPF (dB) 61.03 59.78

60.95
55.65

10* 10° 102

107° 107° 1077 2.0
58.06 49.75 31.00 61.70
46.89 37.76 25.86 61.72

APPENDIX
Simulation of Poisson noise

When a material is bombarded by high-speed electrons, the
X-ray photons are produced. After their interactions (photo-
electric, Compton, and coherent scattering) with the mate-
rial, some photons are absorbed or scattered. In other words,
they are attenuated when they go through the material. The

attenuation process can be described by the Lambert-Beer
law in the case of single energy photons. As a result, the num-
ber of the transmitted photons is a random variable obeying
the Poisson distribution [33].

Assume that N photons are emitted from the X-ray
source towards each detector aperture, we can simulate the
Poisson noise inherent with projection data from the mathe-
matical phantom as follows.
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FI1GURE 4: Typical reconstructed images of the DSLP from data collected along a nonstandard saddle curve with a display window [1.0, 1.04].
The top slices were reconstructed by the FBP method, while the bottom slices were reconstructed by the BPF method. The left and right
slices are at X = 0 cm and Z = —2.5 cm, respectively. The two profiles along the white lines are plotted for each slice. The dotted and solid

curves represent the original and reconstructed profiles.

Step 1. Compute the projection data p by linear integration. Step 3. Generate a Poisson random variable N, with the
mean and variance being equal to N.

Step 2. Compute the expected photon number arriving
at the detector, according to the Lambert-Beer law N =
N exp(—pwp), where y,, is the X-ray linear attenuation co- Note that X-ray projection data p computed in Step 1 are
efficient for water. based on the relative linear attenuation coefficients that have

Step 4. Compute noisy projection data p = (1/p) In(N/N).
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been normalized with respect to the linear attenuation co-
efficient for water y,, [32]. Hence, in Step 2 the normalized
projection data p must be converted to have realistic magni-
tudes by multiplying the normalized data p with the water
coefficient y,,. Hence, with the formula N = Nexp( —Uwp)s
we can mimic the real X-ray attenuation process through the
human head.
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