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The early signs of diabetic retinopathy (DR) are depicted by microaneurysms among other signs. A prompt diagnosis when the
disease is at the early stage can help prevent irreversible damages to the diabetic eye. In this paper, we propose a decision support
system (DSS) for automated screening of early signs of diabetic retinopathy. Classification schemes for deducing the presence or
absence of DR are developed and tested. The detection rule is based on binary-hypothesis testing problem which simplifies the
problem to yes/no decisions. An analysis of the performance of the Bayes optimality criteria applied to DR is also presented. The
proposed DSS is evaluated on the real-world data. The results suggest that by biasing the classifier towards DR detection, it is
possible to make the classifier achieve good sensitivity.
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1. INTRODUCTION

According to the American Diabetes Association, 18.2 mil-
lion of the American population, which constitutes 6.3%
of the total population, have diabetes. In the United States
alone, diabetes is responsible for 8% of legal blindness, mak-
ing it the leading cause of blindness in people between 20 and
74 years of age [1–3]. Researchers including the authors of
this paper [4] have therefore suggested an automated screen-
ing system for diabetic retinopathy for prompt diagnosis.
Since the disorders exhibited in the early stage do not affect
the vision, detection of the disease right at its onset can be
done only if regular eye examination of the diabetic patients
is performed.

This paper proposes an automated screening system
that would detect early signs of nonproliferative diabetic
retinopathy (NPDR). The contributions of this paper are
twofold: (a) automated detection methods based on image
processing for identifying lesions related to DR and (b) a de-
cision support system (DSS) for automated DR screening.
Classification schemes for deducing the presence or absence
of DR are developed and tested. A univariate approach has
been devised to test the suitability of the classification mech-
anism with respect to the detection of retinopathy. Clas-
sification is performed by test data subjected to unsuper-

vised learning. This approach has been developed for one
particular feature but the feature space can be extended de-
pending on the number of disorders needed to be detected.
The detection rule is developed based on binary-hypothesis
testing problem which simplifies the problem to yes/no deci-
sions. An analysis of the performance of the Bayes optimality
criteria applied to DR is also presented.

The test data for the classification scheme is composed of
real-world retinal images obtained from Lions Eye Research
Center at LSU, New Orleans. The data contains retinal im-
ages that belong to either background retinopathy, macu-
lopathy, or preproliferative retinopathy. The DSS framework
focuses mainly on microaneurysms as these are the early
signs of DR and are present at all the stages as the disease
progresses from mild to severe NPDR. The DR screening re-
sults obtained from the DSS are compared with the physi-
cian’s diagnosis to measure the system’s sensitivity. The re-
sults suggest that by biasing the classifier towards DR detec-
tion, it is possible to achieve 100% sensitivity, although at
reduced specificity of 67%. Since sensitivity implies the pres-
ence of abnormality, this biasing towards sensitivity is rea-
sonable.

The organization of the paper is as follows. Section 2
describes the background and related work. Section 3
presents the decision framework adopted for the detection
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of microaneurysms followed by the experimental results and
conclusions in Sections 4 and 5, respectively.

2. BACKGROUND AND RELATED WORK

Diabetic retinopathy is a progressive disease and the con-
dition may advance from mild retinopathy to severe pro-
liferative retinopathy. Diabetes Control and Complications
Trial (DCCT) [5] and the UK Prospective Diabetes Study
(UKPDS) [6] concluded that blood glucose and blood pres-
sure control can slow down retinopathy.

2.1. DR related disorders and stages

Diabetic retinopathy can be broadly classified as nonpro-
liferative diabetic retinopathy (NPDR) and proliferative
retinopathy (PDR).The European Association for Study of
Diabetic Complications (EASDEC) [7] has characterized the
stages of diabetic retinopathy as follows.

(i) Background retinopathy. This condition is often pre-
sent without any visual impairment and can therefore
go unnoticed if dilated eye exam is not undertaken by a
diabetic patient after regular intervals. Findings in the
retina show microaneurysms and exudates that are en-
larged tiny blood vessels (dots) and tiny haemorrhages
or leaky areas (blots), respectively, on the surface of the
retina.

(ii) Maculopathy. Areas of leakage develop in the retina
and the retina becomes boggy. The leak can continue
to enlarge. The waterlogging can affect the central part
of retina, macula, and eventually affect the vision.

(iii) Preproliferative retinopathy. A large number of haem-
orrhages and microaneurysms are exhibited and
IRMA along with venous beading is seen. The condi-
tion is called “preproliferative” as it usually progresses
to proliferative retinopathy, when “new vessels” de-
velop.

(iv) Proliferative retinopathy. Proliferative diabetic retino-
pathty (PDR) has the greatest risk of visual loss. The
condition is characterized by the development of new,
abnormal vessels (neovascularisation) near the optic
nerve and haemorrhages in the vitreous humor and in
front of the retina. The neovascular vessels are weak
and can bleed into the vitreous humor of the eye lead-
ing to permanent complications.

The stages that precede the proliferative retinopathy
constitute nonproliferative diabetic retinopathy (NPDR). A
prompt diagnosis at the early stage of the diabetic retinopa-
thy can help prevent severe damages to the retina of a diabetic
patient.

2.2. Automated DR screening system

An automated screening system for diabetic retinopathy con-
sists of the following three stages as described below. The
first stage involves image-based feature detection and anal-
ysis, that is, identifying the patterns of interest using image

processing methods. Image segmentation, edge/boundary
detection, shape, and texture analysis are some of the tech-
niques commonly used in image processing for pattern de-
tection purposes. Feature analysis can be carried out on the
original image or in the transform domain.

The next stage involves representing the features in the
feature space and analyzing the features jointly in order to
characterize the image, as a whole, in terms of retinal disor-
ders. The abnormal features detected using the feature analy-
sis provide very useful information such as the location, size,
center, and other geometrical aspects of the features. This in-
formation needs to be analyzed in the feature space in or-
der to reduce the ambiguities that are common in any image
analysis.

The final stage involves developing a classification sche-
me that classifies the given retinal image based on the abnor-
malities present in the retinal images and the severity that
they exhibit. Confidence levels need to be estimated using
statistical methods for all the estimates. Discriminant func-
tions and algorithms for distinguishing images based on the
features present in the image need to be developed.

While significant research [8, 9] is being carried out in
the field of extracting vessels and abnormalities from retinal
images, a comprehensive framework for automated screen-
ing using statistical framework and feature analysis has not
been developed so far in the research community.

2.3. Feature detection using image
processing techniques

Researchers [10–14] have approached the problem of fea-
ture detection in varied ways. A modular system developed
in [15] makes use of a large database of images where fea-
tures have been identified by the physicians. This database
is later used to detect similar features in new images. The
recognition process employs unsupervised learning mech-
anism and the classification phase uses supervised learn-
ing.

Another technique proposed in [16] automatically de-
tects and distinguishes between different lesions (hard exu-
dates, cotton-wool spots, and haemorrhages) after image en-
hancement. The image is enhanced by taking the difference
between the background illumination and an edge detection
operator.

An automated system such as the one proposed in [17,
18] can be used to substitute a trained observer to identify
and quantify microaneurysms. In this system, a combination
of shade correction, matched filters, and shape algorithms are
used to detect microaneurysms in fluorescein angiogram.

A comparative microaneurysm digital detection system is
described in [10, 19, 20]. This system registers retinal images
of the same eye subjected to a series of studies by focusing on
the regions centered around the fovea and provides a com-
parative result for the count of microaneurysms.

Detection of microaneurysms in digital angiograms of
the eye fundus is proposed in [21]. This system determines
the count of microaneurysms by first enhancing the retinal
image and then employing object segmentation.
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3. PROPOSED DECISION SUPPORT SYSTEM

In this paper, three different classification schemes based on
the Bayesian framework, namely, the likelihood ratio test,
maximum a posteriori detector, and Bayes detector, are pre-
sented. The decision framework considers the following four
possible outcomes in order to analyze the performance of the
classification schemes.

(i) Correct accept/hit (sensitivity): a person affected with
diabetic retinopathy has a true diagnosis.

(ii) False accept/false alarm: a normal person diagnosed
with diabetic retinopathy.

(iii) False reject/miss: an affected person diagnosed as nor-
mal.

(iv) Correct reject (specificity): a normal person classified
as unaffected.

The erroneous classifications are given by false accept (FA)
and false reject (FR) which are referred to as type-I and type-
II errors [22]. In relation to diabetic retinopathy application,
the cost associated with each of these would be governed by
the amount of harm caused by a misdiagnosis. The repercus-
sions incurred in categorizing a person affected with diabetic
retinopathy as normal are obviously more than the converse.
Some statisticians refer to the cost function as the loss func-
tion. The cost or the loss associated with any misclassification
is directly proportional to the severity induced by the error.

Considering a univariate case and analyzing each feature
independently, the probability density functions obtained for
the case wherein microaneurysms are present and the case
where they are absent are shown are Figure 1. The data is
composed of 25 normal images and 23 affected images of the
retina selected from a large pool of images.

It can be seen that the region of overlap ranges from a
feature value of 0.1 to 0.375. The boundary value occurs at
feature value of 0.3. At the boundary value, decision can be
taken for either case. But the loss function can be such that
the loss associated with normal classification is more than
that with abnormal classification. Thus, in order to mini-
mize the risk involved in misclassification, all the cases at the
boundary value can be classified as abnormal.

The region under the abnormal probability density func-
tion ranging from 0.1 to 0.3 corresponds to the false reject
rate where an abnormal person is classified as unaffected.
And the region under the normal probability density func-
tion ranging from 0.375 to 0.4 corresponds to the false ac-
cept rate where a normal person is categorized as affected.
The area under the false accept region gives the false alarm
probability and was found to be equal to 9.8374e−007. It is
these two regions that correspond to the erroneous regions.

The rest of the regions are classified as correct detec-
tion wherein there is a clear demarcation between the two
hypotheses. The detection probability is given by the area
under the abnormal density function excluding the overlap
and was found to be 0.7071. The discriminability is directly
proportional to the difference in the means and varies in-
versely with the variance. Therefore, the farther apart the two
density functions are and the lesser the variance they exhibit,
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Figure 1: Class-conditional probability density functions for nor-
mal category (unaffected retina) and abnormal category (affected
retina) with discriminability = 2.7528, false alarm probability =
9.8374e−007, and detection probability = 0.7071.

the greater is the discriminability and the lesser the overlap. If
the discriminability is infinity, then the two density functions
do not exhibit any overlap and the type-I and type-II errors
are zero and the detection is perfect. The discriminability is
a quantitative measure of decidability and is independent of
the chosen decision criteria. This factor is given as

d =
∣
∣μ1 − μ0

∣
∣

√
(

σ2
1 − σ2

0

) . (1)

The discriminability for the case shown in Figure 1 was
found to be d = 2.7528. When a feature value is presented
to the system, then it can be classified either as normal or
abnormal. This detection process can be treated as a binary-
hypothesis testing problem. The hypotheses supported are
the null hypothesis, H0 (specifies the absence of the microa-
neurysms), and the alternative hypothesis, H1 (specifies the
presence of the microaneurysms). Each of the hypotheses has
a probability density function associated with it. In the case
of diabetic retinopathy, each of the two categories, that is, the
affected and the unaffected, represents a Gaussian distribu-
tion where the feature values tend to a particular value (given
by the mean) but with a little variation (given by the vari-
ance). For the aforementioned data, maximum likelihood es-
timation was carried out in order to determine the condi-
tional probability density functions and the problem was re-
duced to the detection of the following hypotheses:

H0 : p0 ∼ N
(

μ0, σ2) (2)

versus

H1 : p1 ∼ N
(

μ1, σ2), (3)

where p0 and p1 are the density functions for the normal
and the affected case, respectively. The variance obtained for
the normal and the abnormal case for the data under con-
sideration was found to be the same. The respective values
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Figure 2: Likelihood ratio p1/p0 versus feature value (microa-
neurysms).

obtained for these two sample datasets are μ0 = 0.0475 and
μ1 = 0.5842 for a standard deviation of σ = 0.0832. Since the
variance for the two categories is the same and the difference
between the means is small, the discriminability is small. De-
cision rule, δ, for H0 versus H1 is a function of the feature
and can take either a value of 1 or 0 depending on whether
the feature belongs to H1 or H0. Also, if the feature does not
belong to H1 then it belongs to H0, that is, H0 = Hc

1. There-
fore, the decision rule can be mathematically represented as

δ(x) =
⎧

⎨

⎩

1 if x ∈ H1,

0 if x ∈ H0 = Hc
1,

(4)

where x is the feature. Detection can be performed by em-
ploying any optimal decision criteria. This paper considers
the following detection methods.

3.1. Likelihood ratio test

The conditional pdf, pi(x), gives the likelihood that a feature
value x belongs to a particular state of nature Hi. The likeli-
hood ratio is given by

l(x) = p1(x)
p0(x)

. (5)

Detection method that compares the likelihood ratio with a
certain threshold value is called the likelihood ratio test. For
the Gaussian distributions considered for the two possible
classes, the likelihood function is given as

l(x) = e((μ1−μ0)/σ2)(x−(μ0+μ1)/2). (6)

Figure 2 shows the likelihood ratio. Since the two distri-
butions are independent of each other, the numerator and
the denominator can be interchanged.

A threshold τ is fixed such that decision can be made on
τ. Thus, the decision rule becomes

δ(x) =
⎧

⎨

⎩

1, l(x) ≥ τ,

0, l(x) < τ.
(7)

The threshold depends on the prior knowledge about each
hypothesis and cost or loss associated with each classifica-
tion. The prior probability does not depend on the feature
value. The prior probabilities for diabetic retinopathy can be
demographically based on the percentage of population af-
fected by the disease. The sample space consisting of retinal
images for our analysis belongs to Louisiana State University
Eye Center. The statistics that correspond to Louisiana State
University Eye Center imply that 60% of the diabetic popula-
tion is prone to diabetic retinopathy. Thus, the prior proba-
bility for the abnormal case is P(abnormal) = 0.6 and for the
normal case would be P(normal) = 1− P(abnormal) = 0.4.
Loss associated with each classification is determined by a
loss matrix L, where an element Li j represents the loss as-
sociated with choosing a hypothesis Hi when Hj is true. For
a binary-hypothesis testing problem, i and j can only take
values of 0 or 1. Also, the range of loss would be from 0 to 1.
Zero corresponds to no loss and 1 corresponds to maximum
loss. Zero loss would be attributed to the case where detec-
tion occurs, that is, type-I (FA) and type-II (FR) errors are
absent. As mentioned earlier the loss associated with type-
II error should be more than the loss associated with type-I
error. In other words loss incurred in classifying an abnor-
mal person as normal given by L01 should be greater than the
converse, that is, L10. In our calculations we have made use
of the following loss matrix:

L =
(

0 0.8

0.3 0

)

. (8)

The threshold τ is given as

τ = P(normal)
(

L10 − L00
)

P(abnormal)
(

L01 − L11
) . (9)

By substituting as follows: P(normal)= 0.4, P(abnormal) =
0.6, L11 = L00 = 0, L01 = 0.8, and L10 = 0.3, we get a thresh-
old value of 1.7778. Thus, if the likelihood ratio is more than
1.7778, then the feature should be classified as abnormal, and
normal otherwise. Instead of comparing the likelihood ratio
with the threshold τ, the feature value can be compared with
a threshold τ

′
which can be derived from (6). Threshold τ

′

was found to be

τ′ = μ0 + μ1

2
+
σ2 log τ
μ1 − μ0

. (10)

Thus, the detector becomes

δ(x) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, x ≥ μ0 + μ1

2
+
σ2 log τ
μ1 − μ0

,

0, x <
μ0 + μ1

2
+
σ2 log τ
μ1 − μ0

.

(11)
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Table 1: Table showing the posterior probabilities for different counts of microaneurysms and the corresponding categorization obtained
from the MAP detector.

Feature value P(normal | x) P(abnormal | x) Classification

0 8.417683e−001 1.582317e−001 Normal

1 7.605189e−001 2.394811e−001 Normal

2 6.545819e−001 3.454181e−001 Normal

3 5.306089e−001 4.693911e−001 Normal

4 4.026511e−001 5.973489e−001 Abnormal

5 2.866279e−001 7.133721e−001 Abnormal

6 1.931653e−001 8.068347e−001 Abnormal

7 1.248050e−001 8.751950e−001 Abnormal

8 7.826310e−002 9.217369e−001 Abnormal

9 4.810631e−002 9.518937e−001 Abnormal

10 2.919115e−002 9.708088e−001 Abnormal

11 1.756968e−002 9.824303e−001 Abnormal

12 1.052091e−002 9.894791e−001 Abnormal

13 6.279664e−003 9.937203e−001 Abnormal

14 3.740336e−003 9.962597e−001 Abnormal

15 2.224729e−003 9.977753e−001 Abnormal

16 1.321955e−003 9.986780e−001 Abnormal

By substituting the appropriate value in the above equation,
we get τ′ = 0.3233. Thus, if a feature value is above 0.3233,
then it can be classified as abnormal, and normal otherwise.

3.2. Maximum a posteriori detector

The posterior probability, unlike the prior probability, is the
conditional probability that a particular state of nature ex-
ists for a given feature value and is represented as P(Hk | x),
where k represents the class index. For better comprehen-
sion, we would represent the posterior probability for the
normal category as P(normal | x) and for the abnormal case
as P(abnormal | x). In general, the posterior probability is
obtained by the Bayes formula as follows:

P
(

Hk | x
) = p

(

x | Hk
)

P
(

Hk
)

∑c
l=1 p

(

x | Hl
)

P
(

Hl
) , (12)

where p(x | Hk) is the class-conditional probability or the
likelihood, P(Hk) is the prior probability, and c is the total
number of possible hypotheses. The posterior probability for
the normal case is thus given as follows:

P(normal | x) = p0(x)∗ P(normal)
p(x)

, (13)

where p0(x) = p(x | H0).
Similarly, the posterior probability for the abnormal case

is

P(abnormal | x) = p1(x)∗ P(abnormal)
p(x)

, (14)

where p1(x) = p(x | H1).

Here, p(x) is a scaling factor and is given as

p(x) = p0(x)∗ P(normal) + p1(x)∗ P(abnormal). (15)

Now, the decision rule is based on choosing that hypothe-
sis whose posterior probability is maximum and hence, it is
called maximum a posterior estimator. So, the decision rule
is represented as

Decide H1 if P(normal | x) > P(abnormal | x),

Decide H0 otherwise.
(16)

Classification using MAP detector is depicted in Table 1. It
can be deduced from the table that a retinal image that
presents four or more microaneurysms is treated as abnor-
mal by the MAP detector. The final diagnosis rests with the
physician and is shown in Section 4.

3.3. Bayes detector

The Bayes detector is based on the optimality criterion that
minimizes the Bayes risk or average risk r(δ). The Bayes risk
is the overall cost incurred by a decision rule δ and it depends
on the conditional risk or expected loss. The conditional risk
Rk(δ) is the average cost incurred by a decision rule when
hypothesis Hk is true. Suppose that a particular observed fea-
ture is classified as Hi, whereas the true hypothesis happens
to be Hj ; then the loss incurred, as shown in the previous
section, would be Li j . Because P(Hj | x) is the probability
that the true state of nature is Hj , then the expected loss in
classifying the feature as Hi would be [23]

Ri(δ) =
c
∑

j=1

Li jP
(

Hj | x
)

, (17)
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Table 2: Table showing the Bayes risk obtained for different counts of microaneurysms and the corresponding categorization.

Feature value Classification Bayes risk Physician’s diagnosis

0 Normal 1.265854e−001 Normal

1 Normal 1.915849e−001 Normal

2 Normal 2.763344e−001 Normal

3 Normal 3.755129e−001 Normal

4 Abnormal 1.207953e−001 Normal

5 Abnormal 8.598838e−002 Normal

6 Abnormal 5.794959e−002 Abnormal

7 Abnormal 3.744149e−002 Abnormal

8 Abnormal 2.347893e−002 Abnormal

9 Abnormal 1.443189e−002 Abnormal

10 Abnormal 8.757346e−003 Abnormal

11 Abnormal 5.270903e−003 Abnormal

12 Abnormal 3.156274e−003 Abnormal

13 Abnormal 1.883899e−003 Abnormal

14 Abnormal 1.122101e−003 Abnormal

15 Abnormal 6.674187e−004 Abnormal

16 Abnormal 3.965865e−004 Abnormal

where c is the total number of possible hypotheses. To min-
imize the overall risk, compute the conditional risk given as
above for each possible hypothesis and select that hypothesis
for which the risk is minimum. This minimum conditional
risk is called the Bayes risk. The average cost incurred by the
decision rule when hypothesis H0 is true, that is, the person
under consideration is normal, denoted by R0(δ), is

R0(δ) = L00P(normal | x) + L10P(abnormal | x). (18)

Similarly, average cost incurred in classifying a person as ab-
normal is

R1(δ) = L01P(normal | x) + L11P(abnormal | x). (19)

The Bayes risk is given as

r(δ) = min
[

R0(δ),R1(δ)
]

. (20)

The Bayes decision rule is

Decide H1 if R1(δ) < R0(δ),

Decide H0 otherwise.
(21)

The Bayes detector does not provide any condition at the
boundary. Therefore, the boundary feature values at which
the probability of classifying into each of the categories is the
same can be classified into any category. Specifically, at the
boundary we should be able to classify each feature as abnor-
mal so that a person for whom the true hypothesis is abnor-
mal is not misdiagnosed.

4. EXPERIMENTAL RESULTS

We have made use of 143 retinal images provided by the
Louisiana State University Eye Center. Supervised learning

was performed for training, whereas unsupervised learning
was used to test the system. The system is trained for NPDR.
In our experiments we have compared the retinal images of
the diabetic patients which do not manifest microaneurysms
with those which do. Moderate-to-severe cases were consid-
ered for the case wherein microaneurysms are present. A YES
decision (abnormal) corresponds to the presence of microa-
neurysms for the moderate and severe cases of NPDR and
a NO decision (normal) relates to the absence of microa-
neurysms. Each decision has an associated cost that is rep-
resented by the Bayes risk. The results obtained are given in
Table 2.

Feature value corresponds to the number of microa-
neurysms exhibited by the test image. The system classifies
the affected retinal image as abnormal, whereas unaffected
retinal image is classified as normal. The Bayes risk as shown
in (20) is given by the minimum of the two expected losses.
From Table 1, it can be deduced that for an image that ex-
hibits less than 3 microaneurysms, the expected loss associ-
ated with normal classification is less than that with abnor-
mal classification. Hence a feature value of less than 3 has
been categorized as normal which is rational. The threshold
provided by the likelihood ratio test, that is, τ′ = 0.3233,
corresponds to a feature value of 4. If the posterior probabil-
ity of classifying a feature as abnormal is the same as that
of normal, then the classification can be made either way.
But classifying it as abnormal would reduce the risk involved
in misclassification. Thus, if the retinal image presented ex-
hibits 4 or more microaneurysms, it is classified as abnor-
mal. The system classifies a feature value of 4 and 5 as abnor-
mal, whereas the physician’s diagnosis is otherwise. This is
because of the asymmetric costs associated with each classifi-
cation. The final decision rests with the physician; therefore,
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if the system treats a normal image as abnormal the cost in-
curred is less than that of the converse. The sensitivity of
the decision related to the classification of microaneurysms
is 100%, while its specificity is 67%. The computational time
is mainly dependent on the detection algorithm and it is ap-
proximately 10 nanoseconds.

5. CONCLUSIONS AND FUTURE WORK

This paper proposed a decision support framework for auto-
mated screening of DR for the univariate case. This model
can be extended to multiple disorders that would include
the covariance associated with all the signs of DR. The ex-
periments support the feasibility of a complete automated
screening mechanism that includes all the disorders related
to DR. The machine can be made adaptable by including
Bayesian learning mechanism that would improve the accu-
racy of the classifier as a new feature value is presented to it
by modifying the priors.
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