
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2006, Article ID 10427, Pages 1–9
DOI 10.1155/IJBI/2006/10427

A General Formula for Fan-Beam Lambda Tomography
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Lambda tomography (LT) is to reconstruct a gradient-like image of an object only from local projection data. It is potentially
an important technology for medical X-ray computed tomography (CT) at a reduced radiation dose. In this paper, we prove the
first general formula for exact and efficient fan-beam LT from data collected along any smooth curve based on even and odd data
extensions. As a result, an LT image can be reconstructed without involving any data extension. This implies that structures outside
a scanning trajectory do not affect the exact reconstruction of points inside the trajectory even if the data may be measured through
the outside features. The algorithm is simulated in a collinear coordinate system. The results support our theoretical analysis.
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1. INTRODUCTION

Since the ionizing radiation may induce cancers and genetic
damages in the patient, it is highly desirable to minimize
the X-ray dose during a CT scan. For that purpose, region-
of-interest- (ROI-) based tomography has been extensively
studied, which reconstructs a local image from truncated
projection data but suffers from image cupping and inten-
sity shifting artifacts since such a CT problem does not have
a unique solution [1]. Lambda tomography (LT) was pro-
posed as a novel alternative [2–9]. Let x and ξ represent
two-dimensional (2D) vectors, f (x) a 2D bounded function

with a compact support, and ̂f (ξ) the corresponding Fourier
transform, we have

̂f (ξ) =
∫

R2
f (x)e−ix·ξdx,

f (x) = 1
(2π)2

∫

R2

̂f (ξ)eix·ξdξ,

(1)

where R2 denotes the 2D space. Let Λ be the so-called
Calderon operator defined as

̂Λ f (ξ) = ‖ξ‖ ̂f (ξ). (2)

LT is to reconstruct such a gradient-like function Λ f (x) only
from directly involved projection data.

Traditionally, LT is performed in the framework of the
Radon transform [8]. In that context, an LT image can be
easily reconstructed from Radon data. However, in practi-
cal applications, we typically obtain fan-beam or cone-beam
projections with a source moving along a scanning curve. In
1993, Louis and Maass proposed an algorithm [7] to recon-
struct an LT image approximately from cone-beam data. The
main idea is to perform a 3D Laplace transform on weighted
backprojection data [6, 7]. The accuracy of their algorithm
depends on the scanning curve. If the trajectory is a circle, it
was proved that the reconstructed image becomes exact when
the scanning radius approaches infinity. Also, Anastasio et al.
developed an approximate local fan-beam FBP algorithm for
megavoltage imaging [2]. However, up till now, there are no
exact and efficient general algorithms for fan-beam or cone-
beam LT. On the other hand, recently there are some remark-
able results on exact CT reconstruction from data acquired
along any smooth scanning curve [10–20]. Therefore, we are
motivated to design theoretically exact, computationally ef-
ficient, and practically flexible LT algorithms to reconstruct
Λ f (x) from fan-beam or cone-beam data.

In this paper, we derive the first general formula for ex-
act and efficient fan-beam LT from data collected along any
smooth curve. In Section 2, we present our main result and
prove it based on even and odd data extensions. In Section 3,
we describe the implementation details for collinear detec-
tor geometry. In Section 4, we present numerical simulation
results. In Section 5, we discuss relevant issues and make a
conclusion.
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Figure 1: Global coordinate system and variables for fan-beam
lambda tomography.

2. LT FORMULA AND ITS PROOF

2.1. Main result

Let S represent the unit circle in R2. Assume that Γ ⊂ R2 is
a differentiable curve parameterized by a(t), t ∈ R, and f
a bounded function with a compact support Ω ⊂ R2 \ Γ. A
fan-beam projection of f along a scanning trajectory Γ is

Df (a, θ) =
∫∞

0
ds f (a + sθ), (a, θ) ∈ Γ× S. (3)

As shown in Figure 1, a chord L is defined as a line segment
with two endpoints a(t1) and a(t2) on Γ, and the unit vector
along L is

e
(

t1, t2
) = a

(

t2
)− a

(

t1
)

∥

∥a
(

t2
)− a

(

t1
)∥

∥

. (4)

For any point x ∈ L and a(t) ∈ Γ, let us introduce the unit
vector

θ(x, t) = x − a(t)
∥

∥x − a(t)
∥

∥

. (5)

Let (·) represent the inner product, and let θ⊥(x, t) be a vec-
tor perpendicular to θ(x, t). Clearly, θ⊥(x, t) is uniquely de-
termined by θ(x, t) in the 2D space up to a directional flip.
Our main contribution is summarized in the following theo-
rem.

Theorem 1. Let L be a chord from a(t1) to a(t2) along a dif-
ferentiable general curve Γ, x ∈ L, and x /∈ Γ. Considering a
smooth function f (x) with a compact support,

Λ f (x) = − 1
2π

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x− a(t)
∥

∥ · (a′(t) · θ⊥)

×
⎛

⎝

∂2

∂q2

(

Df
(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

−
(

a′′(t) · θ⊥)
(

a′(t) · θ⊥)
∂

∂q

(

Df
(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

⎞

⎠,

(6)

where e = e(t1, t2), θ = θ(x, t), θ⊥ = θ⊥(x, t), a′(t) =
da(t)/dt, a′′(t) = d2a(t)/dt2, and “PV” represents the prin-
ciple value integral.

To prove Theorem 1, let us define the even and odd ex-
tensions of fan-beam data as

D±f (a, θ) = Df (a, θ)±Df (a,−θ). (7)

Since Df (a, θ) = (1/2)(D+
f (a, θ) + D−f (a, θ)), we can prove

Theorem 1 by showing that

Λ f (x) = − 1
2π

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x − a(t)
∥

∥ · (a′(t) · θ⊥)

×
⎛

⎝

∂2

∂q2

(

D+
f

(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

−
(

a′′(t) · θ⊥)
(

a′(t) · θ⊥)
∂

∂q

(

D+
f

(

a(q), θ
)

)

∣

∣

∣

∣

∣

q=t

⎞

⎠,

(8)

Λ f (x) = − 1
2π

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x − a(t)
∥

∥ · (a′(t) · θ⊥)

×
⎛

⎝

∂2

∂q2

(

D−f
(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

−
(

a′′(t) · θ⊥)
(

a′(t) · θ⊥)
∂

∂q

(

D−f
(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

⎞

⎠.

(9)

2.2. Preliminaries

We would need the following results from [18]. First, let us
extend the fan-beam transform Df (a, θ) to Df (a, z),

Df (a, z) =
∫∞

0
ds f (a + sz), (a, z) ∈ Γ×R2, (10)

which is homogeneous of degree−1 in the second argument;
that is,

Df (a, rθ) =
∫∞

0
ds f (a + rsθ)

= r−1
∫∞

0
ds f (a, sθ) = r−1Df (a, θ), r > 0.

(11)

For a fixed a ∈ R2, let us define a Fourier transform as
�Da f (v) = ∫R2 dzDf (a, z)e−iz·v. This Fourier transform is also
homogeneous of degree −1, since

�Da f (sσ) =
∫

R2
dzDf (a, z)e−isz·σ

=
∫

R2
dys−2Df

(

a, s−1y
)

e−iy·σ

=
∫

R2
dys−1Df (a, y)e−iy·σ = s−1

�Da f (σ).

(12)
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Hence, we have

�D−a f (σ) =
∫

R2
dzD−f (a, z)e−iz·σ

=
∫

R2
dzDf (a, z)e−iz·σ −

∫

R2
dzDf (a,−z)e−iz·σ

=
∫

R2
dz
∫∞

0
ds f

(

a(t) + sz
)

e−iz·σ

−
∫

R2
dz
∫∞

0
ds f

(

a(t)− sz
)

e−iz·σ

=
∫∞

0
dseis

−1a(t)·σ s−2
∫

R2
dy f (y)e−is

−1y·σ

−
∫∞

0
dse−is

−1a(t)·σ s−2
∫

R2
dy f (y)eis

−1y·σ

=
∫∞

0
dseis

−1a(t)·σ s−2
̂f
(

s−1σ
)

−
∫∞

0
dse−is

−1a(t)·σ s−2
̂f
(− s−1σ

)

=
∫∞

0
dreira(t)·σ

̂f (rσ)−
∫ 0

−∞
dreira(t)·σ

̂f (rσ)

=
∫∞

−∞
dr sgn(r)eira(t)·σ

̂f (rσ).

(13)

Also, �D−a f (σ) is an odd function with respect to σ , that is,

�D−a f (−σ) =
∫∞

−∞
dr sgn(r)e−ira(t)·σ

̂f (−rσ)

=
∫∞

−∞
d(−r) sgn(−r)ei(−r)a(t)·σ

̂f
(

(−r)σ
)

=
∫ −∞

∞
dr sgn(r)eira(t)·σ

̂f (rσ)

= −
∫∞

−∞
dr sgn(r)eira(t)·σ

̂f (rσ)

= −�D−a f (σ).
(14)

2.3. Proof of (8)

Let us reexpress D+
f (a, θ) as

D+
f (a, θ) = Df (a, θ) + Df (a,−θ) =

∫∞

−∞
ds f (a + sθ)

= 1
(2π)2

∫∞

−∞
ds
∫

R2
dξ ̂f (ξ)eiξ·(a+sθ).

(15)

Therefore, we have

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x − a(t)
∥

∥ · (a′(t) · θ⊥)
⎛

⎝

∂2

∂q2

(

D+
f

(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

⎞

⎠

= PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x − a(t)
∥

∥ · (a′(t) · θ⊥)

×
⎛

⎝

∂2

∂q2

(

1
(2π)2

∫∞

−∞
ds
∫

R2
dξ ̂f (ξ)eiξ·(a(q)+sθ)

)∣

∣

∣

∣

∣

q=t

⎞

⎠

= 1
(2π)2

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x − a(t)
∥

∥ · (a′(t) · θ⊥)
∫∞

−∞
ds

×
∫

R2
dξ
(

iξ · a′′(t)− (ξ · a′(t)
)2
)

̂f (ξ)eiξ·(a(t)+sθ)

= 1
(2π)2

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x − a(t)
∥

∥ · (a′(t) · θ⊥)

×
∫

R2
dξ
(

iξ · a′′(t)− (ξ · a′(t)
)2
)

̂f (ξ)eiξ·a(t)

×
∫∞

−∞
eisξ·θds

= 1
(2π)2

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x − a(t)
∥

∥ · (a′(t) · θ⊥)

×
∫

R2
dξ
(

iξ · a′′(t)− (ξ · a′(t)
)2
)

× ̂f (ξ)eiξ·a(t)2πδ(ξ · θ)

= 2π
(2π)2

∫

R2
dξ ̂f (ξ)PV

∫ t2

t1
dt

sgn
(

e · θ⊥)
(

a′(t) · θ⊥)

×
(

iξ · a′′(t)− (ξ · a′(t)
)2
)

eiξ·a(t)

× δ
(

ξ · (x − a(t)
))

.

(16)

Due to the factor δ(ξ · (x− a(t))), we set ξ · x = ξ · a(t) and
θ⊥ = ±ξ/‖ξ‖. Hence, (16) can be simplified as follows:

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x − a(t)
∥

∥ · (a′(t) · θ⊥)
⎛

⎝

∂2

∂q2

(

D+
f

(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

⎞

⎠

= 2π
(2π)2

∫

R2
dξ ̂f (ξ)PV

∫ t2

t1
dt
‖ξ‖ sgn(e · ξ)

(a′(t) · ξ)

×
(

iξ · a′′(t)− (ξ · a′(t)
)2
)

eiξ·xδ
(

ξ · (x − a(t)
))

= 2π
(2π)2

∫

R2
dξ ̂f (ξ)‖ξ‖ sgn(e · ξ)eiξ·xPV

∫ t2

t1
dt

×
⎛

⎝

(

iξ · a′′(t)
)

(

a′(t) · ξ) −
(

ξ · a′(t)
)

⎞

⎠δ
(

ξ · (x − a(t)
))

.

(17)
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On the other hand, we have

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x − a(t)
∥

∥ · (a′(t) · θ⊥)

×
⎛

⎝

(

a′′(t) · θ⊥)
(

a′(t) · θ⊥)
∂

∂q

(

D+
f

(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

⎞

⎠

= 2π
(2π)2

∫

R2
dξ ̂f (ξ)‖ξ‖ sgn(e · ξ)eiξ·x

× PV
∫ t2

t1
dt

(

iξ · a′′(t)
)

(

a′(t) · ξ) δ
(

ξ · (x − a(t)
))

.

(18)

Utilizing the following relationship:
∫ t2

t1
dt
(

ξ · a′(t)
)

δ
(

ξ · (x − a(t)
))

= 1
2π

∫ t2

t1
dt
(

ξ · a′(t)
)

∫∞

−∞
dseisξ·(x−a(t))

= 1
2π

∫∞

−∞
ds
∫ t2

t1
dt
(

ξ · a′(t)
)

eisξ·(x−a(t))

= − 1
2π

∫∞

−∞

∫ (x−a(t2))·ξ

(x−a(t1))·ξ
eisudu ds

= i

2π

∫∞

−∞
eis(x−a(t2))·ξ − eis(x−a(t1))·ξ

s
ds

= sgn
((

x− a(t1)
) · ξ)− sgn

((

x − a(t2)
) · ξ)

2

= sgn
((

a(t2)− a(t1)
) · ξ) = sgn(e · ξ),

(19)

and subtracting (18) from (17), we obtain

PV
∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x− a(t)
∥

∥ · (a′(t) · θ⊥)

×
⎛

⎝

∂2

∂q2

(

D+
f

(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

−
(

a′′(t) · θ⊥)
(

a′(t) · θ⊥)
∂

∂q

(

D+
f

(

a(q), θ
))

∣

∣

∣

∣

∣

q=t

⎞

⎠

= − 2π
(2π)2

∫

R2
dξ ̂f (ξ)‖ξ‖ sgn(e · ξ)eiξ·x

×
∫ t2

t1
dt
(

ξ · a′(t)
)

δ
(

ξ · (x − a(t)
))

= − 2π
(2π)2

∫

R2
dξ ̂f (ξ)‖ξ‖ sgn(e · ξ)eiξ·x sgn(e · ξ)

= − 2π
(2π)2

∫

R2
dξ ̂f (ξ)‖ξ‖eiξ·x = −2πΛ f (x).

(20)

2.4. Proof of (9)

For a fixed point x0 on the chord L from a(t1) to a(t2), let us
define

g(y) = g1(y)− g2(y), (21)

where

g1(y) = PV
∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

∥

∥y − a(t)
∥

∥ · (a′(t) · θ⊥(x0, t
))

× ∂2

∂q2

(

D−f
(

a(q), θ(y, t)
))

∣

∣

∣

∣

∣

q=t
,

g2(y) = PV
∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))(

a′′(t) · θ⊥(x0, t
))

∥

∥y − a(t)
∥

∥ · (a′(t) · θ⊥(x0, t
))2

× ∂

∂q

(

D−f
(

a(q), θ(y, t)
))

∣

∣

∣

∣

∣

q=t
.

(22)

Also, we define an auxiliary 2D Hilbert transform along the
direction e of the chord L as

Hg(x) = 1
(2π)2i

∫

R2
dξ sgn(e · ξ)ĝ(ξ)eix·ξ , (23)

where ĝ(ξ) is the Fourier transform of g(y). Now, let us eval-
uate

Hg
(

x0
) = 1

(2π)2i

∫

R2
dξ sgn(e · ξ)ĝ(ξ)eix0·ξ

= 1
(2π)2i

∫

R2
dξ sgn(e · ξ)

(

ĝ1(ξ)− ĝ2(ξ)
)

eix0·ξ ,

(24)

where ĝ1(ξ) and ĝ2(ξ) are the Fourier transforms of g1(y) and
g2(y), respectively. Note that

ĝ1(ξ) =
∫

R2
dye−iy·ξPV

∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

∥

∥y − a(t)
∥

∥ · (a′(t) · θ⊥(x0, t
))

× ∂2

∂q2

(

D−f
(

a(q), θ(y, t)
))

∣

∣

∣

∣

∣

q=t

= PV
∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
))

× ∂2

∂q2

∫

R2
dye−iy·ξ

(

D−f
(

a(q), y − a(t)
))

∣

∣

∣

∣

∣

q=t

= PV
∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
)) e−ia(t)·ξ

× ∂2

∂q2

∫

R2
dze−iz·ξ

(

D−f
(

a(q), z
))

∣

∣

∣

∣

∣

q=t

= PV
∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
)) e−ia(t)·ξ ∂

2

∂t2
̂D−a(t) f (ξ).

(25)
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Letting ξ = sσ , we have

1
(2π)2i

∫

R2
dξ sgn(e · ξ)ĝ1(ξ)eix0·ξ

= 1
(2π)2i

∫

R2
dξ sgn(e · ξ)eix0·ξ

× PV
∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
)) e−ia(t)·ξ ∂

2

∂t2
̂D−a(t) f (ξ)

= 1
(2π)2i

∫

S
dσ
∫∞

0
s ds sgn(e · σ)eisx0·σ ∂2

∂t2
̂D−a(t) f (sσ)

× PV
∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
)) e−isa(t)·σ

= 1
(2π)2i

∫

S
dσ
∫∞

0
ds sgn(e · σ)eisx0·σ

× PV
∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
)) e−isa(t)·σ ∂2

∂t2
̂D−a(t) f (σ)

= 1
(2π)2i

∫

S
dσ sgn(e · σ)PV

∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
))

× ∂2

∂t2
̂D−a(t) f (σ)

∫∞

0
dseis(x0−a(t))·σ .

(26)

Since
∫

S dσh(σ) = 0, if h(σ) is an odd function with respect
to σ , (26) can be simplified as

1
(2π)2i

∫

S
dσ sgn(e · σ)PV

∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
))

× ∂2

∂t2
̂D−a(t) f (σ)

∫∞

0
dseis(x0−a(t))·σ

= 1
(2π)2i

∫

S
dσ sgn(e · σ)PV

∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
))

× ∂2

∂t2
̂D−a(t) f (σ)

∫∞

−∞

(

1 + sgn(s)
2

)

dseis(x0−a(t))·σ

= 1
2(2π)2i

∫

S
dσ sgn(e · σ)PV

∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
))

× ∂2

∂t2
̂D−a(t) f (σ)

∫∞

−∞
dseis(x0−a(t))·σ

= 2π
2(2π)2i

∫

S
dσ sgn(e · σ)PV

∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
))

× ∂2

∂t2
̂D−a(t) f (σ)δ

((

x0 − a(t)
) · σ)

= 2π
2(2π)2i

∫

S
dσ sgn(e · σ)PV

∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
))

× ∂2

∂t2

(∫∞

−∞
dr sgn(r)eira(t)·σ

̂f (rσ)
)

δ
((

x0 − a(t)
) · σ)

= 2π
2(2π)2i

∫

S
dσ sgn(e · σ)PV

∫ t2

t1
dt

sgn
(

e · θ⊥(x0, t
))

(

a′(t) · θ⊥(x0, t
))

×
(∫∞

−∞
dr sgn(r)

(

ira′′(t) · σ − (ra′(t) · σ)2
)

× eira(t)·σ
̂f (rσ)

)

δ
((

x0 − a(t)
) · σ)

= 2π
2(2π)2i

∫

S
dσ sgn(e · σ)PV

∫ t2

t1
dt

sgn(e · σ)
(a′(t) · σ)

×
(∫∞

−∞
dr sgn(r)

(

ira′′(t) · σ − (ra′(t) · σ)2
)

× eirx0·σ ̂f (rσ)
)

δ
((

x0 − a(t)
) · σ)

= 2π
2(2π)2i

∫

S
dσPV

∫ t2

t1
dt

×
(∫∞

−∞
dr sgn(r)eirx0·σ

×
(

ira′′(t) · σ
a′(t) · σ − r2(a′(t) · σ)

)

̂f (rσ)
)

× δ
((

x0 − a(t)
) · σ).

(27)

Again, due to the factor δ((x0−a(t))·σ), we set a(t)·σ = x0·σ
and θ⊥(x0, t) = ±σ in (27). On the other hand, we have

1
(2π)2i

∫

R2
dξ sgn(e · ξ)ĝ2(ξ)eix0·ξ

= 2π
2(2π)2i

∫

S
dσPV

∫ t2

t1
dt

×
(
∫∞

−∞
dr sgn(r)eirx0·σ

(

ira′′(t) · σ
a′(t) · σ

)

̂f (rσ)

)

× δ
((

x0 − a(t)
) · σ).

(28)

Combining (27) and (28), we obtain

Hg
(

x0
) = 1

(2π)2i

∫

R2
dξ sgn(e · ξ)ĝ(ξ)eix0·ξ

= 2π
2(2π)2i

∫

S
dσ
∫ t2

t1
dt

×
(
∫∞

−∞
dr sgn(r)eirx0·σ(− r2(a′(t) · σ)) ̂f (rσ)

)

× δ
((

x0 − a(t) · σ))

= − 2π
2(2π)2i

∫

S
dσ
∫∞

−∞
dr sgn(r)eirx0·σr2

̂f (rσ)
∫ t2

t1
dt

× (a′(t) · σ)δ((x0 − a(t)
) · σ)

= − 2π
2(2π)2i

∫

S
dσ
∫∞

−∞
dr sgn(r)r2

̂f (rσ)eirx0·σ

× sgn(e · σ),
(29)

where the last step is based on the result from (19).
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Noting that
∫

S dσh(−σ) = ∫

S dσh(σ) for any function
h(σ), we have

− 2π
2(2π)2i

∫

S
dσ
∫ 0

−∞
dr sgn(r)r2

̂f (rσ)eirx0·σ sgn(e · σ)

= − 2π
2(2π)2i

∫

S
dσ
∫ 0

−∞
dr sgn(r)r2

̂f (−rσ)e−irx0·σ

× sgn(−e · σ)

= − 2π
2(2π)2i

∫

S
dσ
∫∞

0
dr sgn(r)r2

̂f (rσ)eirx0·σ

× sgn(e · σ),

(30)

Hg
(

x0
) = 1

(2π)2i

∫

R2
dξ sgn(e · ξ)ĝ(ξ)eix0·ξ

= − 2π
(2π)2i

∫

S
dσ
∫∞

0
dr sgn(r)r2

̂f (rσ)eirx0·σ

× sgn(e · σ)

= − 2π
(2π)2i

∫

R2
dξ sgn(e · ξ)‖ξ‖ ̂f (ξ)eix0·ξ

= 1
(2π)2i

∫

R2
dξ sgn(e · ξ)

(− 2π‖ξ‖ ̂f (ξ)
)

eix0·ξ .

(31)

From (31), we can conclude that

ĝ(ξ) = −2π ̂f (ξ)‖ξ‖. (32)

By the inverse Fourier transform, we obtain

g
(

x0
) = − 2π

(2π)2

∫

R2
dξ‖ξ‖ ̂f (ξ)eix0·ξ = −2πΛ f

(

x0
)

. (33)

3. IMPLEMENTATION

Without loss of generality, we describe a scanning locus as
follows:

a(t) = (R(t) sin(t),R(t) cos(t)
)

, (34)

where t is the rotational angle about the natural coordinate
system origin, and R(t) the variable radius. As shown in
Figure 2, equispatial data are collected in our simulation. De-
noting Eu = (− sin(t), cos(t)) and Ew = (− cos(t),− sin(t)),
we can form a local coordinate system with fan-beam data
measured on a collinear detector array along Eu at a distance
Dd(t) = R(t) + Dc, where Dc is a constant. Letting a signed
distance u along the direction Eu be the detector coordinate,
and letting u = 0 correspond to the orthogonal projection of
a(t) for any fixed θ, we can compute the projection position
as

u = Dd(t)θ · Eu

θ · Ew
. (35)

Locus Γ Eu

a(t)

Ew

R(t)

Dc
Dd(t)

x

Op(t, u)

p(t, 0)

Figure 2: Local coordinate system for a collinear detection along a
general planar scanning trajectory.

Finally, let p(t,u) ≡ Df (a(t), θ) represent the measured pro-
jection data. Using the derivative chain rules, we have

dp(t,u)
dt

∣

∣

∣

∣

θ fixed
=
(

∂

∂t
+
∂u

∂t

∂

∂u

)

p(t,u), (36)

d2p(t,u)
dt2

∣

∣

∣

∣

θ fixed

=
(

∂2

∂2t
+
(

∂u

∂t

)2 ∂2

∂u2
+

2∂u
∂t

∂2

∂t∂u
+
∂2u

∂t2

∂

∂u

)

p(t,u),

(37)

∂u

∂t
= D′d(t)u + u2 + D2

d(t)

Dd(t)
, (38)

∂2u

∂t2
= Dd(t)D′′d (t)u + 2

(

D2
d(t) + u2

)(

D′d(t) + u
)

D2
d(t)

, (39)

where D′d(t) = dDd(t)/dt = dR(t)/dt and D′′d (t) = d2Dd(t)/
dt2 = d2R(t)/dt2.

Noting that θ⊥(x, t) = (−θ2, θ1) or (θ2,−θ1) if θ(x, t) =
(θ1, θ2), we can implement our LT algorithm in the steps
shown in Algorithm 1.

4. SIMULATION

To test the proposed formula, we implemented it in Mat-
lab on a PC (1.0 Gagabyte memory, 2.8 GHz CPU), with
all the computationally intensive parts coded in C. In our
simulation, we selected an elliptical scanning locus with

R(t) = RaRb/
√

Rb cos2(t) + Ra sin2(t), where Ra = 40 and
Rb = 50 cm. We set the distance Dc to 45 cm, and the de-
tector aperture length 0.1 cm. For a complete scanning turn,
we equiangularly collected 720 projections. Also, we assumed
that the detector was always centered at the system origin.
Since there were numerous chords through any fixed point
x, as shown in Figure 3, we selected the one through the ori-
gin o and x.
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Table 1: Parameters of the DSLP.

No. a b c x01 x02 x03 ϕ μ m n κ

1 6.900 9.00 9.00 0 0 0 0 2.0 20 40 0.98
2 6.792 8.82 8.82 0 0 0 0 −0.98 20 40 0.98
3 4.100 1.60 2.10 −2.2 0 −2.5 108 −0.02 3 6 0.90
4 3.100 1.10 2.20 2.2 0 −2.5 72 −0.02 3 6 0.90
5 2.100 2.50 5.00 0 3.5 −2.5 0 0.02 3 6 0.90
6 0.460 0.46 0.46 0 1.0 −2.5 0 0.02 2 4 0.80
7 0.460 0.23 0.20 −0.8 −6.5 −2.5 0 0.01 2 4 0.80
8 0.460 0.23 0.20 0.6 −6.5 −2.5 90 0.01 2 4 0.80
9 0.560 0.40 1.00 0.6 −1.05 6.25 90 0.02 2 4 0.80

10 0.560 0.56 1.00 0 1.0 6.25 0 −0.02 2 4 0.80
11 20.00 15.0 500 50.0 40.0 0 0 0.5 1 2 0.10

Step 1. For every t, compute dp(t,u)/dt and d2p(t,u)/dt2 ac-
cording to (36) and (37).

Step 2. For every x inside an ROI.
Step 2.1. Determine a pair of parameters (t1, t2) such that x,
a(t1) and a(t2) are collinear.
Step 2.2. Reconstruct Λ f (x) as follows:

Λ f (x) = 1
2π

∫ t2

t1
dt

sgn
(

e · θ⊥)
∥

∥x− a(t)
∥

∥ · (a′(t) · θ⊥)

×
(

d2p(t,u∗)
dt2

− (a′′(t) · θ⊥)
(

a′(t) · θ⊥)
dp(t,u∗)

dt

)

dt,

where

u∗ = Dd(t)
(

x − a(t)
) · Eu

(

x − a(t)
) · Ew

.

Algorithm 1: Implementation of LT algorithm.

Locus

eC
hord

x

O

Figure 3: Selection of a chord through both x and the system origin.

The reconstructed object is the 2D slice at x03 = −2.5 cm
of the 3D differentiable Shepp-Logan phantom (DSLP) [21].
Here the DSLP includes a set of smooth ellipsoids whose
parameters are listed in Table 1, where a, b, c represent the
x1, x2, x3 semiaxes, (x01, x02, x03) the center of the ellipsoid,
ϕ denotes the rotation angle (about x3-axis), μ the relative
attenuation coefficient, m, n, and κ are unsharpening param-
eters defined in [21]. The unit for a, b, c, and (x01, x02, x03) is
cm.

Locus Γ

ROI

Figure 4: Exact fan-beam lambda tomography with an object out-
side the scanning trajectory.

(a) (b)

Figure 5: Sinograms formed with a 50 cm length detector by or-
biting the source for one elliptical turn as shown in Figure 2. (a)
Sinogram without the outside ellipsoid, (b) the counterpart sino-
gram with the outside ellipsoid. The oblique strip pointed by the
white arrow was due to the outside ellipsoid.

Theorem 1 implies that structures outside a scanning tra-
jectory do not affect the exact reconstruction of points in-
side the trajectory even if the data may be measured through
the outside features. To illustrate this property, we simulated
with the phantom in two variants. In the first case, the phan-
tom only included the first ten ellipsoids all strictly inside the
scanning locus. In the second case, we used all the 11 ellip-
soids with the 11th ellipsoid outside the scanning locus, as
shown in Figure 4. As a result, the 11th ellipsoid exhibited
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(a)

(b)

(c)

0.4

0.3

0.2

0.1

0 −6 −3 0 3 6

FFT method
10 ellipsoids

11 ellipsoids

(d)

Figure 6: Reconstructed LT images assuming a 15 cm length de-
tector with a display window [−0.3, 0.5]. (a) The ground truth re-
constructed using the FFT directly from the ideal phantom slice, (b)
and (c) the LT images reconstructed from the data without and with
the 11th ellipsoid outside the scanning locus, respectively, and (d)
representative profiles along the white lines in (a), (b), and (c).

itself as an oblique strip in the sinogram when the X-ray
source was orbited for one turn, as shown in Figure 5.

For different detector sizes, various ROI images can be re-
constructed. In our simulation, a 15 cm length detector was

used. The reconstructed images of Λ f (x) with and without
the 11th ellipsoid are in Figure 6. As the ground truth, we
computed the ideal image Λ f (x) from the phantom image
f (x) by its definition (2) using FFT. Compared to the ideal
image, it was observed that the LT images in the ROI were in-
deed accurately recovered whether or not there was the 11th
ellipsoid in the imaging process.

5. DISCUSSION AND CONCLUSION

While the object to be reconstructed is usually restricted
within the scanning trajectory, this restriction cannot be
always satisfied in the field of biomedical imaging, such as
in some PET/SPECT studies, and so on. As demonstrated in
Figure 4, Theorem 1 allows that an LT image can be exactly
reconstructed even if there are other components outside the
trajectory. This property gives us some freedom in designing
the imaging geometry and protocols.

In conclusion, we have proved the first exact and efficient
general fan-beam LT formula based on the even and odd data
extensions. The numerical simulation has verified the cor-
rectness of the formulation. The same idea can be extended
to the cone-beam geometry with a general scanning trajec-
tory, on which we are actively working. Relevant results will
be published in the future.
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