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Total Variation Wavelet-Based Medical Image Denoising
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We propose a denoising algorithm for medical images based on a combination of the total variation minimization scheme and the
wavelet scheme. We show that our scheme offers effective noise removal in real noisy medical images while maintaining sharpness
of objects. More importantly, this scheme allows us to implement an effective automatic stopping time criterion.
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1. INTRODUCTION

The advent of digital imaging technologies such as MRI has
revolutionized modern medicine. Today, many patients no
longer need to go through invasive and often dangerous pro-
cedures to diagnose a wide variety of illnesses. With the wide-
spread use of digital imaging in medicine today, the qual-
ity of digital medical images becomes an important issue. To
achieve the best possible diagnoses it is important that med-
ical images be sharp, clear, and free of noise and artifacts.
While the technologies for acquiring digital medical images
continue to improve, resulting in images of higher and higher
resolution and quality, noise remains an issue for many med-
ical images. Removing noise in these digital images remains
one of the major challenges in the study of medical imaging.

While noise in medical images present a problem be-
cause they could mask and blur important but subtle fea-
tures in the images, many proposed denoising techniques
have their own problems. One of the widely discussed tech-
niques is the wavelet thresholding scheme, which recognizes
that by performing a wavelet transform of a noisy image,
random noise will be represented principally as small coef-
ficients in the high frequencies. Thus in theory a threshold-
ing, by setting these small coefficients to zero, will eliminate
much of the noise in the image. The wavelet hard thresholding
scheme, which sets wavelet coefficients below certain thresh-
old in magnitude to 0, is easy to implement and fast to per-
form, and depending on the threshold, it removes noise ade-
quately. However, at the same time it also introduces artifacts
as a result of the Gibbs oscillation near discontinuities. Since
artifacts in medical images may lead to wrong diagnoses, the
wavelet hard thresholding scheme is not practical for use in

medical imaging without being combined with other tech-
niques. An improvement over the wavelet hard threshold-
ing is the wavelet soft thresholding scheme [1, 2], which sig-
nificantly reduces the Gibbs oscillation but does not elimi-
nate it. The effectiveness of wavelet thresholding schemes in
general are limited with combining them with other tech-
niques. These other more complex techniques often try to
take account of geometric informations by using wavelet-
like bases that better characterize discontinuities, such as
curvelets [3, 4]. Nevertheless, they do not completely elim-
inate the Gibbs phenomenon. Other methods with varying
success have also been studied by different authors, for ex-
ample, [5–7].

Another approach employs variational principles and
PDE-based techniques. In this approach, a noisy image is
modeled as z(x) = u0(x) + n(x) where u0 denotes the un-
contaminated underlying image and n denotes the noise. To
reconstruct u0 one considers the problem of minimizing

E(u) = λ

2
�u� z�2

L2(ω) + R(u), (1)

where λ > 0, Ω is the domain on which z is defined, and
the term R(u) is a regularization functional. Earlier efforts
focused on least square-based functionals R(u)’s such as
�Δ�2

L2(ω), ��u�
2
L2(ω), and others. While noise can be effec-

tively removed, these regularization functionals penalize dis-
continuity, resulting in soft and smooth reconstructed im-
ages, with subtle details lost. Again, for medical imaging this
is not practical, as subtle details could very well yield crucial
information about the patients.
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A better choice for R(u) was proposed in [8], in which
R(u) is the total variation (TV) of u given by

R(u) = TV(u) :=
∫
Ω
��u�dx. (2)

Intensive studies have shown that the total variation bet-
ter preserves edges in u, thus it allows for sharper recon-
structions, for example, [9–12]. Among all the PDE-based
techniques, the TV minimization scheme is a candidate that
offers the best combination of noise removal and feature
preservation.

Solving the minimizers for the TV minimization (2), or
(1) in general, amounts to solving certain PDEs, which is very
similar to the anisotropic diffusion scheme proposed first in
[13]. For the TV minimization it is easy to show that the PDE
is given by

� �

(
�u

��u�

)
� λ(u� z) = 0. (3)

But in practice, one introduces the time variable t and solves
for u(x, t) by time-marching the equation

ut = � �

(
�u

��u�

)
� λ(u� z), u(x, 0) = z(x). (4)

The end result u(x,T), if T is large enough, will have all
noise removed. An important attribute of the TV minimiza-
tion scheme is that it takes the geometric information of the
original images into account, in that it preserves significant
edges. In fact significant edges are sharpened. This is similar
to the anisotropic diffusion methods see [13, 14] and refer-
ences therein.

The time-marching of (4) is in essence solving for the
minimizer of E(u) by gradient flow. Two approaches are used
for achieving the best combination of noise removal and fea-
ture preservation. The straighforward approach is to tune the
parameter λ. Obviously if λ is too large we may not remove
enough noise. On the other hand, if λ is too small it is well
known that the scheme will remove too many features and
end up with a cartoon-like piecewise constant image [15, 16].
But tuning the parameter λ is time consuming. Since in prac-
tice there is no original image to compare to, and the as-
sumption of i.i.d. Gaussian noise is not always realistic, tun-
ing λ often relies on experience and visual inspection. There
is no automatic way for it as far as we know. A more widely
used approach is to choose λ in a reasonable range without
being precise about the choice. Instead, we try to stop the
time-marching before it reaches the ground state at a point
that offers a good combination of noise removal and feature
preservation. But again here we face the problem of decid-
ing when to stop. There have been efforts in this direction,
see, for example, [17, 18]. These proposed criteria are typi-
cally cumbersome and are based on some a priori knowledge
about the noise such as the variance and type, which may not
be realistic. With the explosion in volumes of medical images,
this is a very significant issue.

In this paper we propose a wavelet TV denoising scheme.
In our scheme, the wavelet coefficients are selected and

modified subjecting to minimizing the TV norm of the re-
constructed images. We demonstrate that while being as ef-
fective as the TV scheme in removing noise, the wavelet TV
scheme allows us to modify the wavelet coefficients primar-
ily in the high frequency domain, something that the regular
TV scheme cannot do. Experiments show that the wavelet
TV scheme preserves details like the regular TV scheme but
offers a slightly higher PSNR in the reconstruction. It is also
significantly faster in that far fewer iterations are needed for
noise removal. The details of these improvements will be pre-
sented in a separate paper [19]. And unlike the traditional
wavelet thresholding scheme, it does not introduce Gibbs’
oscillations near discontinuities. These properties are consis-
tent with other investigations that combine variational ap-
proaches with wavelet framework [20–24]. But more impor-
tantly, this scheme allows for an effective automatic stop-
ping time criterion based on a certain statistical property of
wavelet coefficients. An added advantage for our approach is
that it leads to superior JPEG2000 compression for denoised
images [21]. Given the increased use of JPEG2000 standard
in medical imaging, this is a significant bonus.

2. THE WAVELET TOTAL VARIATION
DENOISING METHOD

In this section, we describe our image denoising algorithm
based on wavelet and TV minimization.

We start with a standard noisy monochromatic image
model

z(x) = u0(x) + n(x), (5)

where z(x), u0(x), and n(x) are real valued functions defined
on R2, and they are compactly supported since they repre-
sent images in our study. The function u0(x) denotes the un-
derlying noise-free image, z(x) the observed image, and n(x)
the noise. In our general model, we assume that z(x), u0(x),
and n(x) are in some space of functions F , such as L2(Ω) for
some domain Ω. Let �ψj : j � I� be a basis for F . This basis
can be an orthonormal basis, such as wavelets [25, 26] if F is
a Hilbert space, or any other type of bases in general. So for
any f (x) � F we have

f (x) =
∑
j�I

c jψj(x), (6)

for some real (cj).
In [21] a wavelet TV minimization model is proposed, in

which �ψj� is taken to be a wavelet basis for F = L2(Ω). In
that model, the wavelet coefficients are selected and modified
to achieve the goals of image processing such as denoising
and compression. In this paper, we refine the above model.
Key to our innovation is an automatic stopping criterion, a
feature we believe to be very important for medical appli-
cations. Another improvement is the multiscale fitting pa-
rameters targeting denoising in the high frequency domain,
which yields a significant reduction in number of iterations
needed to achieve the desired denoising as well as a small per-
formance improvement in terms of PSNR on simulated noisy
images.
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We first describe the denoising part in the general setting.
Let

z(x) =
∑
j�I

αjψj(x) (7)

and denote

u(x,β) :=
∑
j�I

β jψj(x), (8)

where β = (βj). Define the total variation functional by

F(u) :=
∫
R2

∣∣�xu(x,β)
∣∣dx +

1
2

∑
j�I

λ j
(
βj � αj

)2
, (9)

where u = u(x,β), λj > 0. In practice we often replace
��xu(x,β)� by

∣∣�xu
∣∣
ε =

√∣∣�xu
∣∣2

+ ε, with 0 < ε	 1. (10)

The small parameter ε is used to prevent denominators from
vanishing in numerical implementations. The goal of de-
noising is to minimize F(u) and find the minimizer u� :=
u(x,β�) such that

F(u�) = min
β
F(u). (11)

The objective functional in (9) differs somewhat from the
one used in [21], where all λj ’s are uniformly set to a single
parameter λ. With uniform parameter λ and an orthonormal
basis �ψj� the objective functional F(u) is the same as the ob-
jective functional E(u) in (1). Hence the minimizer of F(u)
would be the same as that of E(u) for the regular TV scheme.
By taking a basis that is not an orthonormal basis, such as a
biorthogonal wavelet basis as we do in our implementation,
F(u) is typically not the same as E(u), even with uniform pa-
rameter λj . With nonuniform λj ’s the objective functional
F(u) can be significantly different from E(u) in the origi-
nal TV scheme. Like the regular TV denoising scheme, the
wavelet TV scheme proposed here retain sharp edges with-
out creating Gibbs’ phenomenon.

One can use simple calculus of variation to obtain the
derivative of the objective functional (9). For u = u(x,β)
where β = (βj),

∂F(u)
∂βj

=
∫
R2

�xu∣∣�xu
∣∣ � �xψjdx + λj

(
βj � αj

)

= �

∫
R2
�x �

[
�xu∣∣�xu

∣∣
]
ψjdx + λj

(
βj � αj

)
.

(12)

Then the Euler-Lagrange equation for the model is

�

∫
R2
�x �

(
�xu∣∣�xu

∣∣
)
ψj(x)dx + λj

(
βj � αj

) = 0. (13)

In practice, rather than solving the Euler-Lagrange equa-
tion (13) directly to denoise an image, we introduce an artifi-
cial time parameter t and time-march the image using gradi-
ent flow. More precisely, we set β = β(t) = (βj(t)) and solve

the following time evolution equation:

∂βj
∂t
=
∫
R2
�x �

(
�xu∣∣�xu

∣∣
)
ψj(x)dx�λj

(
βj�αj

)
, βj(0) = αj .

(14)

The minimizer of the TV wavelet model is the steady state of
the above equation.

However, it is well known that TV minimization often
leads to images with cartoonish features. More precisely, the
denoising algorithm will remove noise as well as fine struc-
tures, such as textures and subtle details, from an image. The
consequence is that unless the parameter λ in (1) is carefully
calibrated, if one evolves (14) for an extended time, the de-
noised image is often over-smoothed to the point that it is al-
most piecewise constant. The wavelet TV denoising scheme
has the same issue. This is often unacceptable for most medi-
cal applications. In the original TV minimization scheme in-
troduced in [8] or similar schemes such as anisotropic diffu-
sion, there was no mechanism for stopping the time evolu-
tion. In fact, since the objective functionals do not measure
information pertaining to noise in the processes, a mecha-
nism to stop the time evolution automatically is virtually im-
possible. But in our wavelet TV denoising scheme this can be
naturally done. The reason is that high frequency wavelet co-
efficients are well known to encode information about noise
in images. This property of high frequency wavelet coeffi-
cients has served as the basis for virtually all wavelet denois-
ing methods, such as the widely used hard or soft threshold-
ings, or wavelet shrinkage. Now, by choosing �ψj� to be a
wavelet basis, the same principle allows us to design a nat-
ural automatic stopping criterion for the wavelet TV mini-
mization method, making it an extremely viable scheme for
medical applications.

We now describe our automatic stopping criterion with
the basis �ψj : j � I� being a wavelet basis—in our case
we usually take the biorthogonal wavelet basis generated by
the well-known 7–9 biorthogonal wavelets. (We remark that
the conventional notation for wavelet bases use two or more
indices, such as �ψjk�. In this paper we only use one index
for conciseness, and there should not be any confusion). Like
in the wavelet hard thresholding scheme, we first choose a
threshold ρ > 0. Let Jρ = � j � ID : �βj(0)� = �αj� 
 ρ�,
where ID � I is the index set corresponding to the diagonial
portion of the highest frequency wavelet coefficients. Intu-
itively speaking, as in the wavelet hard thresholding scheme,
the coefficients �βj(0) : j � Jρ� will indicate how noisy the
image is. In a noise-free image these wavelet coefficients will
mostly be very close to 0. But in a noisy image they will be
more substantial. Define μ(t) = (1/�Jρ�)

∑
j�Jρ �βj(t)�. So μ(t)

measures the noise in the image at time t. The key idea is that
an automatic stopping criterion of the time evolution can be
designed by measuring the reduction in the value μ(t) from
the original value μ(0).

We can use two different approaches in setting the au-
tomatic stopping criterion. The first approach is the relative
criterion. In the relative criterion, we consider μ(t)/μ(0). We
will stop the time evolution whenever this value goes below a
threshold b. For example, we may set b = 0.1. This threshold
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(a) (b)

Figure 1: (a) Original image. (b) Image with artificial additive
Gaussian white noise, with PSNR = 2.55 (dB).

intuitively says that we stop the time evolution when we have
reduced noise by 90%. The second approach is the absolute
criterion. In the absolute criterion, we stop the time evolution
if μ(t) drops below a threshold c. Since in a noise-free image
we expect μ(t) to be very close to zero, it is reasonable to set
an absolute threshold for μ(t) to achieve a desired denoising
effect.

In the actual implementation the value ρ does not seem
to affect the automatic stopping time sensitively. We usually
take ρ = (2/�ID�)

∑
j�ID �αj�. Both the relative criterion and

the absolute criterion work well, although we typically use
the relative criterion. For an image with moderate noise we
set the threshold b to be between 0.05 and 0.1. In the more
noisy cases such as the images shown in this paper, we use
smaller threshold b around 0.03. We tested the automatic
stopping time criterion on a number of MRI images for one
lab. The thresholds for optimal performance stayed remark-
ably consistent. This is an important property for batch pro-
cessing of medical images.

3. EXAMPLES

In this section we provide some examples to illustrate the
performance of our algorithm. The first example is for test-
ing. Artificial noise is added to an otherwise rather clean
brain scan shown in Figure 1(a). The standard peak signal-
to-noise ratio (PSNR) is employed to quantify the perfor-
mance of denoising, where

PSNR = 10 log10

⎛
⎝ 2552

∥∥u� u0
∥∥2

2

⎞
⎠ (dB), (15)

where 255 is the maximum intensity value of the gray-scale
images, u0 the noise-free original image, u the noise added
image, and � � �2 the standard L2 norm. A conventional cri-
terion is that larger PSNR signifies better performance. In
addition, we use visual inspection to compare the perfor-
mance in preservation of edges and other geometric features,
which is not reflected through the PSNR measurement. In all

(a) (b)

Figure 2: (a) Denoised image by wavelet hard thresholding PSNR =
8.65 (dB), with the selected threshold that returns the best PSNR
performance. (b) Denoised image by wavelet soft thresholding
PSNR = 8.36 (dB); the threshold is selected to reach the best PSNR
improvement. We note that the hard thresholding gives better PSNR
performance because it is optimal in the L2 norm sense, but the soft
thresholding gives better visual quality because its Gibbs’ oscilla-
tions are less severe.

(a) (b)

Figure 3: (a) Denoised image by TV wavelet with fixed fitting pa-
rameter λj , the PSNR = 10.05 (dB). This image and the PSNR mea-
surement are very similar to those of the regular TV scheme with
the same parameter. (b) Denoised image by TV wavelet with vari-
able fitting parameter λj on different wavelet scales, the PSNR =
10.28 (dB).

examples shown here, we use Daubechies 7–9 biorthogonal
wavelets with symmetric extensions at the boundaries.

We performed denoising on the noise-added brain scan
image using the standard wavelet thresholding schemes
(Figure 2) and our wavelet TV schemes (Figure 3). The
thresholds in the wavelet hard and soft thresholding were
chosen after some trials to ensure the best performance (in
terms of PSNR) for fairness. This actually exemplifies the
problem we try to solve: the only way to get optimal result
is through trial and error experiments with the threshold.
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Figure 4: (a) Original image. (b) Denoised image using the TV
wavelet algorithm.

For our wavelet TV scheme we use the relative approach and
have set the autostopping threshold b = 0.03. We show re-
sults for two different choices of the parameters λj . In the
first one we choose uniform λj = 5. In the second, the fitting
parameters λj for the coarsest level wavelet coefficients (in-
cluding low frequencies) are all set to λj = 400. Afterwards
with each finer level we decrease λj ’s by a factor of 4. Similar
idea of choosing the parameters has appeared in [27] for a
different purpose. As one can see, the wavelet TV scheme in
both examples outperforms the wavelet thresholding signif-
icantly. But more importantly, the wavelet TV image main-
tained sharpness and many fine details, while the wavelet
thresholding image looks soft with details lost. The uniform
fitting parameter example performed similarly to the regu-
lar TV scheme with the same parameter. The multiscale fit-
ting parameters wavelet TV scheme has a small advantage in
PSNR, and in our opinion is visually better. However, the
number of iterations is significantly smaller than either the
uniform λj wavelet TV scheme or the regular TV scheme.

In the next example (Figure 4), we apply the algorithms
with uniform λj = 5 to a real image without artificial noise.
The original image appears quite noisy. We cannot judge the
performance by examining the PSNR as we do not have a
noise-free image with which we can compare. However, by
visual inspection it is evident that the denoised image, while
removing a substantial amount of noise, suffers virtually no
degradation in sharpness and details.
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