
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2006, Article ID 80421, Pages 1–8
DOI 10.1155/IJBI/2006/80421

Analysis of Cone-Beam Artifacts in off-Centered Circular
CT for Four Reconstruction Methods
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Cone-beam (CB) acquisition is increasingly used for truly three-dimensional X-ray computerized tomography (CT). However,
tomographic reconstruction from data collected along a circular trajectory with the popular Feldkamp algorithm is known to
produce the so-called CB artifacts. These artifacts result from the incompleteness of the source trajectory and the resulting missing
data in the Radon space increasing with the distance to the plane containing the source orbit. In the context of the development of
integrated PET/CT microscanners, we introduced a novel off-centered circular CT cone-beam geometry. We proposed a general-
ized Feldkamp formula (α-FDK) adapted to this geometry, but reconstructions suffer from increased CB artifacts. In this paper, we
evaluate and compare four different reconstruction methods for correcting CB artifacts in off-centered geometry. We consider the
α-FDK algorithm, the shift-variant FBP method derived from the T-FDK, an FBP method based on the Grangeat formula, and an
iterative algebraic method (SART). The results show that the low contrast artifacts can be efficiently corrected by the shift-variant
method and the SART method to achieve good quality images at the expense of increased computation time, but the geometrical
deformations are still not compensated for by these techniques.

Copyright © 2006 S. Valton et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Tomographic reconstruction has been a very active research
field for over twenty years. Early works were rather focused
on the inverse problem of tomography [1], the theoretical
basis of which was founded on the Radon inversion for-
mula, while later contributions have mostly been devoted to
practical reconstruction methods for specific acquisition ge-
ometries. Tomographic reconstruction methods are gener-
ally classified into two classes of reconstruction algorithms
(see, e.g., [2, 3]): analytical and algebraic methods. The dis-
cretization of continuous inversion formulae leads to ana-
lytical methods while algebraic methods are based on the
resolution of a linear system modeling the projection pro-
cess. In algebraic reconstruction, the choice of the resolu-
tion technique results in a given algorithm (ART [4], SIRT
[5], SART [6], etc.) characterized by an iteration formula
which is completely independent of the acquisition geome-
try. In contrast, analytical methods are strongly dependent
on the scanner geometry. Successive generations of scanners
led to two-dimensional (2D) tomography with parallel-beam
(PB) geometry, fan-beam (FB) geometry [7, 8], and today 3D

cone-beam (CB) tomography [9–11]. 3D tomography en-
ables the reconstruction of larger (multislice) volumes with
reduced acquisition duration and irradiation.

The trajectory of the X-ray source is an important feature
in 3D CB tomography. In addition to simple circle, numer-
ous trajectories such as circle plus line [12], two circles [13],
set of lines [14], helix, and so forth, have been investigated
but currently, most contributions deal with the circular and
the helical trajectories [15, 16]. The completeness condition
on the source trajectory establishes whether or not exact re-
construction can be achieved from the projection data. Ac-
cording to the condition due to Kirillov [17] and formulated
by Tuy [18] and Smith [19], a trajectory is complete if any
plane crossing the support of the object intersects the vertex
path at least once. No exact reconstruction can be expected if
the source trajectory does not fulfill this condition owing to
the incomplete projection data set.

In regular circular CB geometry, the most commonly
used reconstruction algorithm is the FDK [20] which is a
generalization to 3D CB of the standard filtered backprojec-
tion (FBP) algorithm. It is clear that the circular trajectory
is incomplete since a plane parallel to the source path might
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Figure 1: 3D Shepp-Logan phantom with total CB angle 36◦. From left to right: horizontal mid-plane of the reference phantom, hori-
zontal mid-plane of the reconstruction with the FDK algorithm, vertical plane of the reference phantom, and vertical plane of the FDK
reconstruction.

intersect the support of the reconstructed volume while not
crossing the source vertex. Reconstruction is therefore ap-
proximate except in the mid-plane (where it is equivalent to
FB reconstruction). If reconstructions of good quality can be
obtained with FDK for limited CB angles, artifacts rapidly
increase with the distance to the mid-plane for a given focus
length. Figure 1 represents the mid-plane and a vertical slice
of a 3D Shepp-Logan phantom reconstructed with a total CB
angle equal to 36◦. The reconstruction suffers from two kinds
of CB artifacts: drop of low contrast intensity and geometri-
cal deformations which appear at contrast jumps along the
rotation axis (here: vertical axis). In order to reduce CB ar-
tifacts, different approaches have been reported in the past
few years. Grass et al. [21] proposed the T-FDK algorithm
which relies on changing the ramp filtering direction through
CB to parallel fan-beam (PFB) rebinning. Yu et al. [22] have
improved the reconstruction resolution via shift-variant fil-
tering. Another class of methods is based on the Grangeat
formula which relates the CB projections to the derivative
of the 3D Radon transform [23]. The Radon transform re-
constituted from the CB projection collected along a circular
trajectory forms a torus instead of a sphere. This difference,
referred to as the shadow zone, corresponds to the missing
data. The reconstruction obtained with zero padding of the
shadow was presumed to be equivalent to FDK and therefore
suffered from CB artifacts. Lee et al. showed that filling in the
shadow zone by interpolation could improve reconstruction
[24]. Moreover, Hu made an important contribution pro-
viding a link between the Grangeat and the FDK formulae.
He established that the FDK formula only deals with the in-
ner part of the Radon torus and proposed a method which
added the contribution of the Radon data on the torus shell
[25]. Yang et al. completed this approach with information
on the shadow zone [26]. More empirical approaches were
suggested such as a 3D weighting of the projection data be-
fore the backprojection step [23] or error-correction-based
methods [27–29] which associate analytical and algebraic ap-
proaches.

We recently introduced a novel acquisition geometry for
CT data which enables simultaneous acquisition of PET and
CT data for small animal [30]. This concept is based on pho-
ton counting pixel X-ray detectors expected to have a very
high counting rate at X-rays energy (around 50 keV) while

not stopping gamma rays (511 keV) [31]. This feature per-
mits their placement inside a full micro-PET ring, in front
of the PET crystals. However, this configuration imposes the
X-ray source to be located outside the PET ring on an inde-
pendently rotating system and focused on the center of the
PET field of view (FOV). In this design, the X-ray source
is off-centered with respect to the volume of interest (VOI)
which results in the rotation of the source and the detector in
two distinct planes. We first proposed a generalized formula
called α-FDK [30] allowing for this topology, which comes
down to standard FDK when applied to the simple circu-
lar geometry. However, the off-centered geometry is clearly
exposed to CB artifacts since the entire volume of interest
might be outside the exactly reconstructed mid-plane. The
α-FDK performs the reconstruction of a shifted (or not) VOI
defined by the angle α and partially compensates for the low-
contrast attenuation via the addition of an offset to obtain
the correct value in the central plane. Nevertheless, the for-
mula produces geometrical deformations and does not sup-
press the ramp of the reconstructed intensity. Reconstruction
results obtained on simulations with the α-FDK therefore
suffered from severe CB artifacts with large values of α and
multislice volumes.

The purpose of this paper is to evaluate four different re-
construction techniques in our specific off-centered geome-
try in terms of CB artifacts reduction. We consider three ana-
lytical reconstruction methods, the α-FDK [30], the adapta-
tion to our geometry of the shift-variant filtering (SVF) tech-
nique [22], and an FBP Grangeat-based (GB) formula [25].
We also evaluate an algebraic method, SART [6].

The paper is organized as follows. Section 2 gives a de-
tailed description of the acquisition geometry. The four re-
construction methods are presented in Section 3. The recon-
struction results obtained by computer simulations are pre-
sented and discussed in Section 4.

2. ACQUISITION GEOMETRY

The off-centered geometry parameterized by angle α is de-
picted in Figure 2. Let f (x, y, z) be a 3D attenuation function
whose support is a sphere of radius r centered on the ori-
gin O of a Cartesian coordinate system. The plane (O, x, y)
is called the central plane. The X-ray source is located at a
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Detector trajectory in a plane
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Figure 2: Off-centered geometry: the X-ray source (depicted by the
small cone) and the detector rotate in two parallel planes, the offset
of which is parameterized by angle α. The position of the source at
each projection is given by angle β.

distance R from the origin where R > r and rotates in the
plane z = c where c �= 0, called the mid-plane. The X-ray
tube is oriented so that the central ray passes through O. Its
position on the vertex path is parameterized by angle β. The
acquisition geometry is characterized by α, defined as the an-
gle between the central ray and the central plane. Detector
plane is perpendicular to the central ray and faces the source
at a distance D. For the sake of simplicity and without loss
of generality, we will consider a virtual detector whose center
is on the z axis, that is, D = R. Let (u, ν) be the coordinate
system centered on the orthogonal projection of the source
on the detector, where u refers to the lines of the detector (z
constant) and ν refers to the columns. Let pα,β(u, ν) denote
the 2D off-centered CB projection at angular position β in
the off-centered geometry defined by angle α.

3. RECONSTRUCTION METHODS

3.1. α-FDK

We derived a modified FDK expression adapted to the pa-
rameterization of the off-centered geometry. We recall the
generalized inversion α-FDK formula [30]

fα-FDK(x, y, z) =
∫ 2π

0

1
U2

p̃α,β

(
t′

U

r′

U

)
dβ, (1)

where the weight U is given by

U = D − s′

D
(2)

and (t′, s′, r′) is the coordinates system obtained by rotation
of angle β around z axis followed by rotation of angle −α

around x axis so that the s′ axis points toward the source.
Coordinates t′, s′, and r′ are given by

t′ = x cosβ + y sinβ,

s′ = −x cosα sinβ + y cosα cosβ − z sinα,

r′ = x sinα sinβ − y sinα cosβ + z cosα.

(3)

The preweighting and filtering operations are given by

p′α,β(u, ν) = D√
D2 + u2 + ν2

pα,β(u, ν),

p̃α,β(u, ν) = p′α,β(u, ν)∗ 1
2
h(u),

(4)

where h is the ramp filter.
This formula is equivalent to the standard FDK when α =

0. From a practical point of view, the α-FDK offers the same
advantages as FDK for implementation: filtering is made on
the lines of the detector, and each projection can be processed
independently making the algorithm easily parallelizable.

3.2. T-FDK with shift-variant filtration

The algorithm proposed in [22] by Yu et al. for CB recon-
struction is an FBP applied to parallel fan-beam data. The
CB-to-PFB rebinning is performed via the Fourier space. The
rebinned PFB projections are given by pr′ ϕ(u, ν) where angle
ϕ satisfies

ϕ = β − arctan
(
u

R

)
. (5)

The projections obtained after the CB-to-PFB rebinning op-
eration lie on a curved virtual detector where the native co-
ordinates are no longer equispaced. This step is thus fol-
lowed by a vertical rebinning to obtain vertically equispaced
prϕ(u, ve) projection data where

νe = ν
R2

R2 + u2
. (6)

Then, a similar horizontal rebinning is performed in [21]
while Yu et al. alternatively propose to modify the 1D ramp
filter. A shift-variant filtering of the nonrebinned data is ap-
plied instead of the ramp filtering of the equispaced data. Let
ξ be the equispaced coordinate along the detector lines given
by

ξ = uR√
u2 + R2

. (7)

Then one obtains via a changing variable the following re-
construction formula:

fSVF(x, y, z)

= 1
2

∫ 2π

0
dϕ
∫ umax

−umax

D(u) prϕ
(
u, νe0

)
G
(
u0,u

)
h
(
u0−u

)
du,

(8)
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where

νe0(x, y, z,ϕ) = z
√
R2 − ξ2

√
R2 − ξ2 + x sinϕ− y cosϕ

,

D(u) = dξ

du
=
(

R√
u2 + R2

)3

,

G
(
u0,u

) =
(

u0 − u

Ru0/
√
R2 + u0

2 − Ru/
√
R2 + u2

)
.

(9)

This formula has two drawbacks compared to the standard
FDK:

(i) the CB-to-PFB rebinning requires all the CB projec-
tions which is memory and time consuming,

(ii) the shift-variant filter kernel prevents from imple-
menting the filtering in the Fourier space.

3.3. Radon-based method (RB)

The 3D Radon transform � f (ρ,�n) of the function f corre-
sponds to its integral along the plane of normal vector �n at a
distance ρ from the origin:

� f (ρ,�n) =
∫∫

M∈P(ρ,�n)
f (M)dM. (10)

Hu showed in [25] that the function fRB reconstructed with
the Grangeat formula based on the 3D Radon inversion could
be expressed as the sum of three terms:

fRB = fM0 + fM1 + fN . (11)

The first term corresponds to the FDK formula, or the in-
version of the 3D Radon data contained into the torus. The
second term can be interpreted as the inversion of the 3D
Radon data situated on the torus shell and was expressed as a
filtered backprojection. The last term is a contribution from
the shadow zone which is set to 0 in Hu’s method.

The first term is thus given by

fM0 = fFDK. (12)

The second term is expressed as

fM1(x, y, z) = − 1
4π2

∫ 2π

0

z

R + x sinβ − y cosβ

∂σβ(ν)

∂ν
dβ,

(13)

where the Radon data on the circle which describes the radon
shell is obtained by

σβ(ν)
∫ umax

umin
p′β(u, ν)du, (14)

where the preponderate projection p′β is given by (4) with
p′β = p′α=0,β.

It is important to note that both the RB and the SVF
methods are given for standard trajectory. We therefore per-
formed reconstructions with these methods by considering a
shifted VOI to account for the off-centered geometry without
modifying the algorithms.

3.4. SART

Algebraic methods are based on a discrete modeling of the
reconstruction problem. The 3D attenuation function is rep-
resented by an N-element vector F and for each β, the projec-
tions by an M-element vector Pαβ obtained by the following
matrices product:

Pαβ = RαβF, (15)

where Rαβ is the M×N matrix describing the projection pro-
cess. The purpose is to find F, given projections Pαβ for β
describing a discrete set of angles. The solution F is then ap-
proached by iterative corrections of the volume Fk . The algo-
rithm we implemented is the SART (simultaneous algebraic
reconstruction technique) and adopts the following scheme.

For each cycle,

(i) for each projection, the following is required:

(1) estimation of the projection of the reconstructed
volume Fk,

(2) difference between real projection and estimated
projection,

(3) normalization of the error,
(4) backprojection of the error.

This algorithm is summarized by the iteration formula

Fk+1
n = Fk

n + λ

∑M
m=1

((
Pαβn − RαβmFk

)
/
∑N

n=1Rαβmn
)
Rαβmn∑M

m=1Rαβmn

,

(16)

where N is the number of voxels, M the number of pixels on
the projections, and λ is a relaxation parameter. The SART
algorithm was implemented on the basis of the α-FDK, with
minimum modifications. The projection matrices used for
the backprojection were used reversely to compute the re-
projections. A bilinear interpolation on the detector was used
both for back- and reprojection, and the relaxation parame-
ter λ was set to 1. This implementation produces numerical
artifacts which were smoothed by the application of a mean
filter to the final reconstructed volume.

4. SIMULATION RESULTS

4.1. Simulation parameters

Simulations were performed with the 3D Shepp-Logan
phantom [32]. The acquisition system was defined with the
features given in Table 1 where all distances are given in cen-
timeters.

We tested the reconstruction with six values of angle α
between 0 and 0.5 radian which corresponds to 0◦. to 28.5◦.
The resulting half-CB angle varies from 9.5◦ to 50◦ which is
very large compared to current values in standard CB geom-
etry.

The four methods developed in Section 3 were imple-
mented and results were studied on simulations. The peak-
to-peak signal-to-noise ratio (PPSNR) is used for the quan-
titative evaluation of the reconstructions. It was computed
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Table 1: Simulation parameters.

Detector Volume
Number of projections

R D Number of pixels Pixel side size Number of voxels Voxel side size

6 6 256× 256 0.0078125 256× 256× 256 0.0078125 256

α
=

0Æ

α
=

17
.2

Æ

α
=

28
.5

Æ

(a) (b) (c) (d)

Figure 3: Vertical slice of the 3D Shepp-Logan phantom reconstructed with: (a) α-FDK, (b) RB, (c) SVF, and (d) SART. From top to bottom,
the lines correspond to 3 values of α (from top to bottom): 0◦, 17.2◦, and 28.5◦. The display window is [0.98, 1.06].

using the following expression:

10∗ log10

(
recostructed image range2

MSE

)
, (17)

where MSE is the mean square error between the recon-
structed and the reference phantom volume. In the following
subsections, we present and discuss reconstruction results
obtained with the three analytical methods and the SART al-
gorithm after ten cycles.

4.2. Reconstruction results

Figure 3 displays vertical planes extracted from volumes re-
constructed with the different algorithms for three values of

α: 0◦, 17.2◦, and 28.5◦. The corresponding profiles along z-
axis for α = 28.5◦ are plotted in Figure 4.

As expected, the volumes reconstructed with α-FDK
(Figure 3(a)) show two kinds of asymmetrical artifacts when
α �= 0: vertical geometrical deformations and drop of low-
contrast intensity. The vertical profiles displayed in Figure 4
include the result obtained with the standard FDK and re-
veal an offset between the two formulae. The RB algorithm
(Figure 3(b)) partially compensates for the intensity drop but
since no offset is used, the reconstructed intensity stays below
the result of the α-FDK (Figure 4). In Figure 3, the result with
α = 28.5◦ appears dark because the same grey level window
was used for comparison between the different reconstruc-
tions. The SVF algorithm (Figure 3(c)) better compensates



6 International Journal of Biomedical Imaging

256192128640
0.8

0.9

1

1.1

1.2

1.3

Reference
α-FDK
RB

VOI FDK
SVF
SART

Figure 4: Vertical profile plot of the reconstructed Shepp-Logan at
α = 28.5◦.

for the intensity drop but the vertical elongation remains.
The results obtained with standard SART after 10 cycles dis-
played in Figure 3(d) show that the intensity drop is only
partially compensated for while the elongation is slightly cor-
rected. The PPSNRs reported in Table 2 indicate that, quanti-
tatively, the best reconstruction is obtained with the algebraic
algorithm.

4.3. Discussion

In standard circular trajectory, CB artifacts correction is al-
ready a challenge since those artifacts come from the ill-
conditioning of the inverse tomographic problem. In off-
centered geometry, this problem is worse since the CB angle
is more important and the VOI is asymmetrical with respect
to the exactly reconstructed mid-plane.

The α-FDK provides a practical formula adapted to the
parameterization by the angle α of the off-centered geometry
while preserving the rapidity and simplicity of the standard
formulation. It compensates for the low-contrast drop by
adding an offset to the reconstructed value. However, since it
does not suppress the increase of the drop with the distance
to the mid-plane, this compensation is fully valuable only for
a small volume around the central plane of the VOI.

The RB method reduces the CB artifacts in standard cir-
cular geometry but the correction is weak. In off-centered
geometry, the α-FDK outperforms the RB method when α
is large. In addition, the method presented by Hu takes 20%
more time than the α-FDK.

Concerning the SVF method, the simulation results pre-
sented above show that the intensity drop is well corrected
by this method which, however, does not deal with the geo-
metrical deformations. We can notice in Table 2 that the PP-
SNR is slightly inferior to that obtained with the α-FDK until
α = 28.5◦. We presume that this difference is due to the nu-
merical errors introduced by the different rebinning opera-
tions. Given the supplementary rebinning step and the shift-
variant filtering, this algorithm is more time and memory

consuming than the α-FDK. Besides, the rebinning step pre-
vents from starting the reconstruction before the end of the
acquisitions. To conclude, reconstructions obtained with the
SVF algorithm are better than those obtained with the α-
FDK, but the computation time is twice as long. The choice
of the optimal reconstruction method thus depends on the
constraints of the application. We have seen that the recon-
struction obtained with the α-FDK for a volume made of a
limited number of slices is acceptable. Therefore, in the per-
spective of a bimodal scanner, it might be interesting to pre-
fer this simple algorithm if the axial FOV of microPET scan-
ners is limited to few slices, depending on the number of de-
tector rings.

Our implementation of the SART algorithm produces
numerical noise resulting from the model of forward pro-
jection and the value of the relaxation factor. This high-
frequency noise appears very clearly in the picture if no
mean filtering is applied because of the narrow grey level dis-
play window. In contrast, it has minor effects on the PPSNR
thanks to its low amplitude and MSE. The high PPSNR com-
pared to the other methods is related to the algebraic nature
of the SART which minimizes a numerical error, namely, the
difference between the real and the estimated projection. The
profile plot in Figure 4 shows that the correction of intensity
drop is less efficient than with the SVF method, but a close
look at the right end of the graph points out that the elon-
gation is slightly corrected by this algebraic reconstruction.
Nevertheless, we think that this minor improvement is not
worth the additional time expense needed to perform 10 cy-
cles of the algorithm.

To our knowledge, no correction method compensates
for the geometrical deformations due to the large CB angle.
Actually, no clear mention of this kind of artifacts is made in
the literature dealing with CB artifact since they clearly ap-
pear only with very large values of the CB angle. We believe
that this aspect needs to be addressed in future works con-
cerning CB artifacts reduction and that the correction of the
elongation should, at least partially, compensate for the low-
contrast drop.

5. CONCLUSION

In this paper, a comparison between the results obtained with
four different reconstruction techniques on data simulated
with an off-centered CB circular acquisition geometry was
presented. Since this geometry increases the proportion of
missing data compared to the standard circular trajectory,
the CB artifacts correction methods developed for the stan-
dard case need to be reinvestigated. On the one hand, the α-
FDK reconstruction algorithm that we derived in a previous
work produces strong CB artifacts, but a good correction is
obtained in the planes closed to the VOI central plane, with-
out additional time expense. On the other hand, the intensity
drop is corrected by the RB algorithm, but not sufficiently
enough, by the SART and even better by the SVF algorithm
in return for a certain time expense. The preferable method
therefore depends on the application, in terms of computa-
tion time and accuracy needs. Generally speaking, the SVF is
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Table 2: Signal-to-noise ratio in dB obtained with the four reconstruction methods for increasing values of α.

Angle α 0◦ 5.7◦ 11.5◦ 17.2◦ 22.9◦ 28.5◦

α-FDK 27.03 26.83 26.34 25.53 24.40 23.06

RB 26.89 26.75 25.89 24.99 24.32 22.72

SVF 26.29 26.29 25.65 24.94 24.37 23.08

SART 30.73 30.57 30.16 29.42 28.42 27.15

preferable to the SART owing to the expensive computation
time of the algebraic method, and to the α-FDK thanks to
the attenuation correction. For limited number of slices and
important value of α, the α-FDK gives better results than the
RB method and can be used instead of SVF for its rapidity.
Nonetheless, the geometrical deformations could not be ef-
ficiently corrected. Further research is therefore necessary to
address this complicated problem inherent to CT.
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