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Abstract

Despite extensive study of heterochromatin, relatively little is known about the mechanisms by which such a structure
forms. We show that the Drosophila homologue of the human a-thalassemia and mental retardation X-linked protein
(dATRX), is important in the formation or maintenance of heterochromatin through modification of position effect
variegation. We further show that there are two isoforms of the dATRX protein, the longer of which interacts directly with
heterochromatin protein 1 (dHP-1) through a CxVxL motif both in vitro and in vivo. These two proteins co-localise at
heterochromatin in a manner dependent on this motif. Consistent with this observation, the long isoform of the dATRX
protein localises primarily to the heterochromatin at the chromocentre on salivary gland polytene chromosomes, whereas
the short isoform binds to many sites along the chromosome arms. We suggest that the establishment of a regular
nucleosomal organisation may be common to heterochromatin and transcriptionally repressed chromatin in other
locations, and may require the action of ATP dependent chromatin remodelling factors.
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Introduction

Pericentric heterochromatin is a well studied example of a stable

condensed chromatin structure that can be inherited from one cell to

its daughters, and provides a model system of epigenetic inheritance

of a chromatin state. Its occurance correlates with methylation of

both DNA at CpG dinucleotides, and histones, particularly tri-

methylation of histone H3 on lysine 9 and H4 on lysine 20. One

effector of this code is the heterochromatin protein HP-1, which

binds preferentially to histone H3 methylated on lysine 9 [1]. We

suggest that formation of this condensed state involves the chromatin

remodelling factor dATRX and that this protein may act as an

effector of the epigenetic code at the pericentric heterochromatin.

Chromatin remodelling enzymes are ATP-driven motor proteins

that act to alter chromatin structure and accessibility. They fall into

four broad categories – the switch independent / sucrose non-

fermenting (SWI/SNF), imitation switch (ISWI), chromodomain

(CHD) and INO80-like proteins. The human ATRX protein bears

closest homology to the Rad54 class of remodelling enzymes

involved in recombination-based DNA repair but has been shown to

have chromatin remodelling activity [2] and to be involved in DNA

methylation [3] and a-globin gene expression [4]. Indeed, it interacts

with the methylated DNA binding protein MeCP2 [5] which is

important for its recruitment to methylated DNA.

The human ATRX protein has been linked to heterochromatin

function through its direct interaction [6] and colocalisation [7]

with the HP-1 protein. It localises to both heterochromatin and

promyelocytic leukaemia (PML) bodies in a cell cycle and

phosphorylation dependent manner [8]. The homologue of

hATRX, xnp-1, in C. elegans also shows a genetic interaction with

the corresponding HP-1 homologue. Recent studies show that PML

bodies contain the HP-1 protein, and implicate them in heterochro-

matin formation in the juxtacentromeric satellite DNA [9].

Several other chromatin remodelling complexes have been

implicated in heterochromatin function. A complex containing

human Mi-2 has been shown to be recruited to heterochromatin

by the Ikaros protein on T-cell activation [10]. Another chromatin

remodelling factor (CRF), Brahma related gene 1 (BRG1), has

been shown to interact both with HP-1a [11] and the N-terminal

region of the human Mi-2 protein [12]. Human ACF has been

implicated in replication of heterochromatin during S-phase, and

RNAi-mediated depletion causes a delay in cell cycle progression

through late S-phase [13]. ACF has also been shown to bind

directly to the Drosophila HP-1 variant dHP-1a, and aid its loading

to chromatin [14]. A recent report shows a physical interaction of

the NuRF complex with the heterochromatin protein dHP-2,

although the NURF301 subunit failed to show any genetic effect

on heterochromatin formation [15]. Finally, purification of a

complex containing the methyltransferase Clr3 from Schizosacchar-

omyces pombe revealed the presence of the Mit1 protein, whose

chromatin remodelling activity was necessary for heterochromatin

formation [16]. Taken together, these results imply a more general

role for chromatin remodelling during heterochromatin formation.

A highly sensitive and selective screen for proteins involved in

heterochromatin formation is the phenomenon of position effect

variegation (PEV). This results from insertion of a gene near to a

region of heterochromatin and causes inactivation of the gene in

some cells, and activation in others due to variability in the extent

of heterochromatin ‘‘spreading’’. Screens for dominant suppres-

sors of the variegated phenotype have resulted in identification of
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components involved in establishment or maintenance of hetero-

chromatin, including HP-1 [17].

In this work, we identify novel mutations in the dATRX gene, and

show that this gene is involved in heterochromatin formation or

maintenance in vivo through modification of PEV. We further show

that the dATRX protein exists in two isoforms, the longer of which

interacts strongly with the Drosophila HP-1a protein both in vitro and in

vivo. This interaction is mediated by a CxVxL motif, a variant of a

PxVxL motif shown previously to be important for the binding to the

chromoshadow domain of HP-1 [6]. The long isoform of dATRX

specifically localises to heterochromatin with HP-1a and a mutation

in the CxVxL motif abolishes this. Analysis of dATRX distribution

on polytene chromosomes shows that the long isoform localises to

pericentric heterochromatin at the chromocentre, consistent with its

binding to HP-1a, whereas the short isoform is localised to numerous

sites along the chromosome arms.

Results

The dATRX protein is expressed in two isoforms
The dATRX gene encodes a protein of 148 kDa (1308 amino

acids). This is about half the length of the human protein

(283 kDa, 2493 amino acids), and is homologous over the C-

terminal SWI/SNF-like domain (36% identity), but lacks the N-

terminal sequences including the PHD domain found in the

human protein.

When cDNA was expressed with a C-terminal HA tag in S2

cells, the protein was exclusively nuclear (Figure 1A). Western

blotting of such extracts from S2 cells or fly embryos expressing the

same construct showed two isoforms (Figure 1B). The same

pattern was observed in in vitro translation of the cDNA. Mass

spectrometry of tryptic peptides identified the shorter form as an

N-terminal truncation. There is a second methionine start codon

Figure 1. Expression of Drosophila dATRX protein. A. dATRX is a nuclear protein excluded from the nucleolus. dATRX with a C-terminal HA tag
was transfected into S2 cells, and immunostained (green), and distribution compared to DAPI staining of DNA (purple). B. dATRX is expressed in two
isoforms. C-terminally tagged dATRX protein was expressed in S2 cells (S2 cells) or in fly embryos (Flies), and expression analysed by Western blotting.
A construct with a mutation in the second start codon at amino acid 266 (dATRXDATG) lacks expression of the short isoform. dATRX was also
expressed by in vitro translation (IVT), and showed translation of the two isoforms. C. dATRX-Long is expressed throughout development. When
overexpressed in S2 cells, the two isoforms of dATRX were visible on a Western blot probed with anti-HA antibody. When probed with an antibody
generated to the first 233 amino acids of the long isoform, only dATRX-Long was detectable in these extracts. Endogenous protein was detected with
the same a-dATRX-Long antibody in various tissues. Asterisks (*) indicate non-specific binding. Anti-histone H3 was used as a loading control.
doi:10.1371/journal.pone.0002099.g001
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in the protein at amino acid 266, and when this was mutated to an

alanine, the short isoform was no longer visible (Figure 1B).

A rabbit polyclonal antibody was raised against the unique N-

terminal region of the dATRX-Long isoform. This gave a strong,

specific signal corresponding to the long isoform on overexpressed

protein in S2 cells (Figure 1C). After affinity purification,

endogenous protein was detectable on Western blots of extracts

from S2 cells, Drosophila embryos and certain larval tissues, but

gave significant cross-reactivity when used to detect such low levels

of dATRX protein.

Identification of novel alleles of the dATRX gene
A EP-element (EP(3)635) present at the beginning of the

mRNA, 470 bp from the start of the open reading frame, was used

to perform an excision screen for mutants in dATRX. Three semi-

lethal lines and one lethal line were isolated. The lethal line,

termed dATRX1, results from a large deletion of 7.5 kb of DNA

including the entire dATRX ORF, the two neighbouring genes,

Med28 and CG4553, and some of the 39 untranslated region of

CG5127 (Figure 2A). dATRX2 and dATRX4 were semi-lethal

and removed 238 bp or 246 bp of the promoter region

respectively including the beginning of the dATRX mRNA.

dATRX3 was also semi-lethal, but removed 786 bp including the

start codon of the dATRX gene and the first 105 amino acids of

the coding region. RT-PCR analysis of the mutants using primers

specific to the long isoform or both isoforms showed that dATRX2

and dATRX4 still expressed coding sequences corresponding to

both isoforms, dATRX3 lacked expression of the long isoform, but

maintained expression of the short isoform, and dATRX1 lacked

expression of both (Figure 2B). In embryonic extracts from

dATRX3 flies, the long isoform was no longer detectable at the

protein level on Western blots (Figure 1C). This further verifies the

specificity of the antibody. In summary, dATRX2 and dATRX4

are probably hypomorphic alleles resulting from a promoter

deletion, dATRX3 removes the long isoform specifically, and

dATRX1 is a small deficiency covering the dATRX gene and the

two neighbouring genes.

Further analysis of dATRX3 homozygous flies showed signif-

icant reduction in viability at both pupal and adult stages when

compared to a precise excision of the P-element (Figure 2C). This

suggests that removal of the long isoform causes lethality at many

stages during development. Attempts to find specific phenotypes

associated with the loss of dATRX-Long have not been successful,

perhaps suggesting mild, pleiotropic phenotypes. After several

generations, the effect of dATRX2 and dATRX4 mutations on

viability was less evident, so these were not able to be analysed in

such a manner.

dATRX is involved in heterochromatin function
We analysed whether dATRX is involved in heterochromatin

formation using an inversion of the first chromosome that places

the white gene into pericentric heterochromatin (In(1)wm4h), which

causes variegated expression in the eye. A strong dominant

suppression of variegation was observed for all four dATRX alleles

(Figure 3) in comparison to both yellow-white flies (wt) and a

precise excision of the P-element used to generate the mutants.

dATRX2 and dATRX4 mutations had a weaker effect than the

other mutants, consistent with the hypomorphic nature of these

alleles. Since the deficiency (dATRX1) had a similar effect in this

assay to the dATRX3 mutation, this may implicate the long

isoform in the heterochromatic function of this protein.

A second line showing variegated expression of the white+ gene

due to insertion into the medial part of the heterochromatic

chromosome IV (39C12) [18] was analysed. A dominant suppression

of variegation was observed with dATRX1 and a mild suppression

with dATRX3 (39C12, Figure 3), consistent with the above result.

No significant effect was seen with dATRX2 or dATRX4, again

suggesting that these are probably hypomorphic alleles.

dATRX interacts strongly with the heterochromatin
protein dHP-1a

Given the interaction of human ATRX with heterochromatin

protein 1, we asked whether the Drosophila protein could also

interact biochemically with dHP-1 using a GST-pulldown assay

with dHP-1a. Bacterially expressed dHP-1a protein bound

strongly to full length in vitro translated dATRX (Figure 4B).

Analysis of deletion constructs mapped the interaction to amino

acids 233–332 (Figure 4B). This region contains a CxVxL motif

that is divergent from a consensus PxVxL motif, but which has

been shown to mediate interactions between SP100 and the

chromoshadow domain of HP-1 [6]. Disruption of this motif in

dATRX by mutation of the central valine to a glutamic acid

(CxExL) abolished binding to dHP-1a in vitro (Figure 4C).

We then sought to analyse interaction of dATRX with dHP1a in

vivo. Co-transfection of tagged dATRX and dHP-1a constructs into

S2 cells showed a strong interaction between the two proteins when

immunoprecipitated with anti-FLAG agarose (Figure 5, asterisks). As

expected, this was specific for the long isoform of dATRX, since

dHP-1a-FLAG specifically enriched for the long isoform of dATRX

when immunoprecipitated from cell extracts (Figure 5, asterisk,

upper panel). Mutation of the CxVxL motif in the long isoform of

dATRX also abolished the interaction with dHP-1a (Figure 5).

These results are consistent with the ability of the dATRX3

allele to strongly suppress PEV, since it removes specifically the

long isoform of the protein, which contains the dHP-1a interaction

domain.

dATRX colocalises with dHP-1
Since dATRX is involved in formation or maintenance of

pericentric heterochromatin, and interacts with dHP-1a, we

expressed tagged constructs of dATRX and dHP-1a in 3T3 cells

to analyse colocalisation of these proteins at heterochromatin

during interphase. Expression of the long isoform of dATRX

showed localisation to DAPI dense regions of the nucleus

(Figure 6A), and upon expression with dHP-1a, showed co-

localisation with this protein (Figure 6B). As expected, the short

isoform did not localise to the heterochromatin (Figure 6A) or co-

localise with dHP-1a (Figure 6B). Indeed, this protein appeared to

be excluded from the heterochromatin, and its localisation was

non-overlapping with the long isoform (Figure 6C). Upon

mutation of the CxVxL motif, the long isoform of dATRX failed

to localise to heterochromatin (Figure 6A, B) and showed a similar

staining pattern to the short isoform (Figure 6C), showing that the

interaction with dHP-1a, or its mouse homologue, is necessary for

localisation of the long isoform of dATRX to heterochromatin.

dATRX staining on polytene chromosomes
We analysed distribution of dATRX on salivary gland polytene

chromosomes to see whether it was present at the chromocentre,

where centromeric heterochromatin is clustered in these nuclei.

The protein was overexpressed in salivary glands with a C-

terminal HA tag. Detection of both isoforms was performed by

immunostaining against this tag (Figure 7A). Staining patterns

were compared to those of dHP-1, which stains strongly at the

chromocentre. dATRX protein was detected on the partially

heterochromatic 4th chromosome (arrowhead, Figure 7A) but

predominantly localised to many sites on the chromosome arms.

dATRX and Heterochromatin
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This implies other roles at chromosomal locations other than the

pericentric heterochromatin, such as in neuronal specification

[19]. Since the protein is overexpressed, we were also able to use

the dATRX-Long antibody to specifically detect this isoform

(Figure 7B). This showed that the two isoforms differed

significantly in their localisation, with an enrichment of the long

Figure 2. Mutations in the dATRX gene. A. dATRX genomic region showing extent of deletions. The position of the EP element insertion used to
generate the deletions is shown (EP(3)635). The extent of the deletions in dATRX1–4 are indicated by red bars. Genes are shown as arrows and the start
point of the mRNA and protein are indicated (mRNA, start codon). The start codon at amino acid 266 is also marked (2nd start). B. RT-PCR analysis of RNA
expression. Homozygous embryos of wild type (wt) or dATRX1–4 mutants were analysed for dATRX mRNA expression using oligonucleotides specific for
the long isoform (dATRX-Long) or a common region to both isoforms (dATRX-Both). Analysis of RNA polymerase II RNA (RNA pol II) was used as a positive
control. Molecular weight markers are indicated. C. dATRX3 shows reduced viability. % viability is shown at pupal and adult stages from 100 embryos for
both a precise excision (Preciseexc) and the dATRX3 mutation. Error bars indicate standard deviation from two independent experiments.
doi:10.1371/journal.pone.0002099.g002
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isoform in the pericentric heterochromatin, colocalising with the

HP-1a protein. This is consistent with the binding of dATRX-

Long to dHP-1a, and their colocalisation in 3T3 cells.

Discussion

We have identified novel mutations in the putative chromatin

remodelling factor dATRX, and shown that these suppress PEV,

using two independent variegating alleles on chromosome I and

IV. This implicates the dATRX gene in the process of

heterochromatin formation or maintenance in vivo.

We further show that the dATRX protein is expressed in two

isoforms, the longer of which shows a strong interaction with the

dHP1a protein in both GST pulldown and co-immunoprecipita-

tion assays. This interaction is necessary for localisation of the long

isoform to heterochromatin in 3T3 cells, and colocalisation with

dHP-1a. This interaction is mediated by a CxVxL motif specific to

the long isoform, mutation of which abolishes interaction and

colocalisation with dHP-1a. Additionally, the long isoform

specifically localises to the chromocentre in Drosophila polytene

chromosomes, providing further evidence for a role of the long

isoform in heterochromatin formation. The observed suppression

of PEV by the dATRX3 allele that removes this isoform

specifically suggests that the interaction is relevant in vivo. It is

also consistent with an observed interaction between human

ATRX and HP-1a [6], and genetic interactions between the two

homologues in C. elegans [20]. These studies combined with the

results of the PEV assay strongly imply a role of ATRX in

heterochromatin formation in a variety of organisms, and may

provide a mechanism of recruitment to such regions.

The exclusion of the short isoform from heterochromatin in

3T3 cells suggests that this has a distinct function at non-

heterochromatic sites throughout the genome, and is consistent

with its lack of interaction with dHP-1a, and the staining observed

in the chromosome arms on polytene chromosomes. Indeed, this

staining largely associates with the interbands, representative of

less dense chromatin. One role of the short isoform may be during

central nervous system formation during embryogenesis, in

controlling glial and neuronal patterning [19].

Analysis of the dATRX3 mutation that removes the long isoform

shows no visible phenotype, aside from reduced viability of the flies.

Studies of the chromatin structure in these mutants have failed to

show any difference in the nucleosome spacing as judged by

micrococcal nuclease digestion (data not shown). This could simply

be a consequence of the limitations of this assay or alternatively could

suggest a different role in higher order structure formation, or

redundancy with other chromatin remodelling factors such as dMi-2.

In order to form a condensed, heterochromatic structure,

nucleosome positions must be optimised such that the relative

orientations of two nucleosomes are consistent along the fibre. This

would allow a regular, ordered structure to form, essential for the

formation of a compact fibre and subsequent further folding into a

higher order structure such as heterochromatin [21]. Drosophila ACF

has been shown to act to alter nucleosome repeat lengths both in vitro

[22] and in vivo [23], suggesting a role in ‘‘shuffling’’ of nucleosome

positions to generate a more uniform array. One role of the dATRX

remodelling factor may be to achieve this. A second mechanism may

be by inducing twist, which would aid or antagonise compaction of

the chromatin fibre depending on its direction.

We suggest that chromatin remodellers are the end effectors of

histone modifications. Consistent with this view, many remodelling

complexes contain components that recognise specific modifica-

tion states of histone tails. For instance, the SANT domain of

dISWI may bind to unmodified tails [24], while one of the PHD

domains from human Mi-2 binds preferentially to trimethylated

lysine 36 of histone H3, which marks the end of active

transcription units [25]. ATRX may be recruited by its interaction

with HP-1 or MeCP2 [5] to heterochromatin, or the PHD domain

in the human protein may play a role in methylated histone

binding. In this manner, the epigenetic code present on histones

may be translated by chromatin remodelling factors into

alterations in folding of the chromatin fibre. Consistent with this

idea, the chromatin remodelling activity of Mit1 has been shown

to be important for heterochromatin formation in S. pombe [16].

We propose that dATRX plays such a role at heterochromatin.

Materials and Methods

Immunostaining of S2 cells
Cells were grown on glass coverslips and transfected with

FuGENE 6 (Roche). Cells were rinsed in ice cold PBS, fixed in

3.7% formaldehyde in phosphate buffered saline (PBS), for 20 min

Figure 3. dATRX is involved in heterochromatin formation or
maintenance. Flies with the indicated heterozygous mutations were
combined with variegating lines on the X chromosome (In(1)wm4h) or
on chromosome IV (39C12). A cross to wild type flies (wt) and a precise
excision of the P-element (Preciseexc) are shown for comparison of the
variegation.
doi:10.1371/journal.pone.0002099.g003
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and washed again. Cells were incubated in 1 ml 0.1% Triton X-

100 in PBS for 10 min and non-specific binding blocked by

incubation for 2615 min in PBS+0.5% bovine serum albumin

(BSA, Sigma). Primary antibodies were added in the same buffer,

and incubated overnight at 4uC. Cells were then washed in 46
PBS+0.5% BSA over 10 min and fluorescently conjugated

secondary antibodies were added (Molecular Probes AlexoFluor),

and incubated for 2 hours at room temperature. Cells were

washed again, stained with 1 mg/ml 49,6-diamidino-2-phenylin-

dole dihydrochloride (DAPI, Sigma) for 5 min, and mounted in

Fluoromount G (Southern Biotechnology). Analysis of staining was

performed by confocal microscopy on a BioRad Radiance

microscope and images processed using Adobe Photoshop

software.

Figure 4. dATRX interacts with dHP-1a directly via a CxVxL motif. A. Domain structure of Drosophila dATRX. The Snf2 N-terminal (white box)
and C-terminal helicase (HelicC, shaded box) domains are shown. The region interacting with dHP-1a (dHP-1 CxVxL) is also indicated. Numbers show
amino acids in the protein. B. Deletion analysis of dATRX binding to dHP-1a. GST pulldowns with GST-dHP-1a and the indicated in vitro translated
dATRX fragments. Left panel shows expression of the constructs (10% input), and right panel shows GST-dHP-1a pulldown. DN and DC constructs
indicate deletions of amino acids from the N- and C-termini respectively. C. dATRX interacts directly with dHP-1a through a CxVxL motif. Full length in
vitro translated dATRX proteins containing a wild type CxVxL or a mutant CxExL motif (V247E) were pulled down with GST or GST-HP-1a (HP-1).
Strong binding was abolished by the single point mutation.
doi:10.1371/journal.pone.0002099.g004

dATRX and Heterochromatin

PLoS ONE | www.plosone.org 6 May 2008 | Volume 3 | Issue 5 | e2099



Polyclonal anti-dATRX-Long antibody production
The N terminal dATRX fragment, 1–233 amino acids

(dATRX-N), was cloned into pGEX-4T1 vector (GE Healthcare)

to create a GST fusion protein. This was expressed in BL21-DE3

cells for 3 h at 30uC following induction. Protein purification was

performed as manufacturer’s instructions and the GST tag was

cleaved from dATRX-N protein using thrombin. Aliquots of

approximately 1 mg/ml dATRX-N protein in PBS were used for

injection into rabbits according to standard procedures (Euro-

gentec). The antibody was affinity purified against GST-dATRX-

N protein and used at 1:1000 for Western Blot and 1:10 for

polytenes.

Fly stocks and crosses
P-element excision of the EP(3)635 insertion (marked with a w+

gene) was performed by crossing homozygous flies to flies

containing the transposase P[D2–3], and crossing the resulting

EP(3)635/P[D2–3] males to w-; TM3/TM6. Stocks were made

from the resulting w- males and analysed by genomic PCR across

the region around the P-element.

RT-PCR
mRNA was extracted using Dynabeads mRNA DIRECT kit

(Dynal Biotechology) and RT-PCR was performed using the

SuperScript III One-Step RT-PCR System (Invitrogen). A PCR

Figure 5. dATRX and dHP-1a interact in vivo. A. Co-immunoprecipitation of dATRX and dHP-1a from S2 cells. Cells were transfected with the
indicated constructs, and extracts (input) or anti-FLAG immunoprecipitates (a-FLAG IP) were analysed by western blotting for FLAG or HA tags. Co-
immunoprecipitating bands are indicated with asterisks.
doi:10.1371/journal.pone.0002099.g005

dATRX and Heterochromatin
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reaction lacking reverse transcriptase controlled for DNA

contamination.

Viability test
100 Preciseexc and dATRX3 embryos (between 0 and 16 h) were

allowed to develop at 25uC and the surviving pupae and adults were

counted. Two independent experiments were performed.

Figure 6. Colocalisation of the long isoform of dATRX and dHP-
1a. 3T3 cells were transfected with the indicated constructs, and
immunostained with anti-FLAG or anti-HA antibodies. A. Localisation of
short (dATRX-s) and long (dATRX-l) isoform of dATRX and a point
mutant of the long form removing the CxVxL motif (V247E). DNA
staining was performed with DAPI (blue). dATRX localisation was
visualised by immunostaining against N-terminal HA tags on the short
and long isoforms (green). Right panels show merged images. B.
Colocalisation of dATRX with dHP-1a. Cells were co-transfected with
HA-dATRX constructs (green) and FLAG-dHP-1a (red), and counter-
stained with DAPI (blue). Right panels show merged images. C.
Localisation of dATRX isoforms. Cells were transfected with the short
form of dATRX (dATRX-s) and either the long isoform (dATRX-l) or the
CxVxL mutant (V247E, green). Right panels show merged images.
doi:10.1371/journal.pone.0002099.g006

Figure 7. Polytene chromosomes show overlap of dATRX and
dHP-1a on chromosome IV and pericentric heterochromatin. A.
Polytene chromosome squashes showing double immunostaining for
the indicated proteins show overlap between the dATRX-HA protein
(green) and dHP-1 staining (red) on the partially heterochromatic
chromosome IV (arrowheads). The chromocentre is shown in the
enlargements (inset panels). DAPI = DNA staining. B. As (A) but
immunostained for the HA tag (green, dATRX-Long and dATRX-Short)
and with a-dATRX-Long antibody (blue). Colocalisation of dATRX-Long
and dHP-1a is observed at the chromocentre, which is indicated by
arrowheads and shown in the enlargements (inset panels).
doi:10.1371/journal.pone.0002099.g007

dATRX and Heterochromatin
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PEV
The inversion In(1)wm4h and the white+ insertion in the medial

region of chromosome IV, 39C12 (a kind gift of S. Elgin) were

used to monitor PEV. Yellow2 white2 (wt) flies and a precise

excision of EP(3)635 (Preciseexc) were used as negative controls. 5–

7 day old male flies were used to assess PEV in all experiments.

GST pulldowns
Radiolabelled proteins were produced using the TnTQuick

system (Promega) using plasmid DNA template in the pLinkT7b
vector (R. Treisman). Glutathione beads containing 5 mg of the

appropriate GST-fusion protein were mixed with 20 ml radiola-

belled proteins and 80 ml RIPA buffer, and incubated at 4uC for

1.5 h. The beads were collected by centrifugation at 20006 g for

1 min, and washed 46 in 200 ml RIPA buffer. Bound proteins

were eluted by addition of 20 ml 36 SDS-PAGE loading buffer

and analysed by SDS-PAGE. NuPAGE gels (Invitrogen) were

stained and soaked in 30% methanol, 10% acetic acid for

265 min before drying. Radiolabelled proteins were analysed by

exposure to a phosphorimager cassette (Amersham) overnight,

recorded on a Typhoon scanner and manipulated using

ImageQuant software (Amersham).

Co-Immunoprecipiation
S2 cells were transfected with 2.5 mg each of plasmids

containing a FLAG-tagged partner and an HA-tagged partner.

Expression from the pRmHA3 plasmid (Drosophila Genomic

Resource Centre) was induced with 0.7 mM CuSO4, and cells

incubated for 1 day prior to extract preparation. Cells were

collected at 5006 g for 4 min and washed in 2 ml ice-cold PBS

prior to lysis in 200 ml RIPA buffer (100 mM Tris-HCl pH 8,

1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% sodium

deoxycholate, 0.1% sodium dodecyl sulphate (SDS), 140 mM

NaCl, 1 mM PMSF, Complete protease inhibitors (Roche)) for

15 min at 4uC. Lysates were cleared by centrifugation at 20 0006
g for 15 min. Immunoprecipitation was performed by addition of

25 ml of a 1:1 slurry of anti-FLAG agarose (M2, Sigma), and

incubation at 4uC for 2 h. Immunoprecipitates were collected by

centrifugation at 20006 g for 1 min, and washed five times in

0.2 ml RIPA buffer. Proteins were recovered with 1 mg/ml FLAG

peptide (Sigma) and samples analysed by Western blotting.

Immunostaining of NIH 3T3 cells
NIH 3T3 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) (Invitrogen) supplemented with 5% fetal calf

serum in a 10% CO2 atmosphere at 37uC. Constructs were cloned

into pcDNA 3.1 with N-terminal (dATRX long isoform) HA tag

or C-terminal (dATRX short isoform) HA or Myc tags or

untagged (dHP-1a). For transfection, cells were plated at a density

of 16106 cells per well of a 6 well plate and incubated for 16 h.

Cells were transfected with 4 mg DNA, diluted in Optimem

(Invitrogen) using lipofectamine 2000 (Invitrogen) according to the

manufacturer’s instructions. After 5 h the medium was exchanged,

and after 2 h recovery, the cells were split onto coverslips. After

16 h cells were fixed and stained as described above for S2 cells.

Antibodies used were rat anti-HA (Roche) 1:500, mouse anti-myc

(Sigma) 1:500 and anti-HP1 (DSHB) 1:300.

Polytene staining
Larvae from flies using either heat shock GAL4 (at 25 uC) or a

salivary gland specific GAL4 line (at 18 uC) to drive expression of

a UAS-dATRX-HA transgene were used. Salivary glands were

dissected in 0.1% Triton X-100 in PBS, then transferred to a drop

of 1% Triton X-100, 1.85% formaldehyde in PBS for 10 s. They

were then moved to a 40 ml drop of 50% acetic acid, 1.85%

formaldehyde in water on a siliconized coverslip for 2 min, and

squashed. Slides were washed 2615 min in PBS and blocked in

10% foetal calf serum, 0.1% Triton X-100 in PBS for 1 h at room

temperature. 20 ml of primary antibody solution was added and

slides incubated overnight at 4uC. They were washed twice for

15 min in wash buffer 1 (300 mM NaCl, 0.1 Triton X-100 in PBS)

and once in wash buffer 2 (1% Triton X-100 in PBS). 20 ml

fluorescent secondary antibodies (Molecular Probes) were added

for 2 h at room temperature. Washing was repeated, and DNA

stained in 1 mg/ml DAPI before mounting in Fluoromount G

(Southern Biotechnology) and analysis on a BioRad Radiance

confocal microscope. Antibodies used were rat anti-HA (Roche)

1:50, mouse anti-HP-1a (DSHB) 1:20 and anti-dATRX-Long

1:10.
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