Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Nov;17(11):6633–6644. doi: 10.1128/mcb.17.11.6633

Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling.

L Rui 1, L S Mathews 1, K Hotta 1, T A Gustafson 1, C Carter-Su 1
PMCID: PMC232517  PMID: 9343427

Abstract

Activation of the tyrosine kinase JAK2 is an essential step in cellular signaling by growth hormone (GH) and multiple other hormones and cytokines. Murine JAK2 has a total of 49 tyrosines which, if phosphorylated, could serve as docking sites for Src homology 2 (SH2) or phosphotyrosine binding domain-containing signaling molecules. Using a yeast two-hybrid screen of a rat adipocyte cDNA library, we identified a splicing variant of the SH2 domain-containing protein SH2-B, designated SH2-Bbeta, as a JAK2-interacting protein. The carboxyl terminus of SH2-Bbeta (SH2-Bbetac), which contains the SH2 domain, specifically interacts with kinase-active, tyrosyl-phosphorylated JAK2 but not kinase-inactive, unphosphorylated JAK2 in the yeast two-hybrid system. In COS cells coexpressing SH2-Bbeta or SH2-Bbetac and murine JAK2, both SH2-Bbetac and SH2-Bbeta coimmunoprecipitate to a significantly greater extent with wild-type, tyrosyl-phosphorylated JAK2 than with kinase-inactive, unphosphorylated JAK2. SH2-Bbetac also binds to immunoprecipitated wild-type but not kinase-inactive JAK2 in a far Western blot. In 3T3-F442A cells, GH stimulates the interaction of SH2-Bbeta with tyrosyl-phosphorylated JAK2 both in vitro, as assessed by binding of JAK2 in cell lysates to glutathione S-transferase (GST)-SH2-Bbetac or GST-SH2-Bbeta fusion proteins, and in vivo, as assessed by coimmunoprecipitation of JAK2 with SH2-Bbeta. GH promoted a transient and dose-dependent tyrosyl phosphorylation of SH2-Bbeta in 3T3-F442A cells, further suggesting the involvement of SH2-Bbeta in GH signaling. Consistent with SH2-Bbeta being a substrate of JAK2, SH2-Bbetac is tyrosyl phosphorylated when coexpressed with wild-type but not kinase-inactive JAK2 in both yeast and COS cells. SH2-Bbeta was also tyrosyl phosphorylated in response to gamma interferon, a cytokine that activates JAK2 and JAK1. These data suggest that GH-induced activation and phosphorylation of JAK2 recruits SH2-Bbeta and its associated signaling molecules into a GHR-JAK2 complex, thereby initiating some as yet unidentified signal transduction pathways. These pathways are likely to be shared by other cytokines that activate JAK2.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argetsinger L. S., Campbell G. S., Yang X., Witthuhn B. A., Silvennoinen O., Ihle J. N., Carter-Su C. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell. 1993 Jul 30;74(2):237–244. doi: 10.1016/0092-8674(93)90415-m. [DOI] [PubMed] [Google Scholar]
  2. Argetsinger L. S., Carter-Su C. Mechanism of signaling by growth hormone receptor. Physiol Rev. 1996 Oct;76(4):1089–1107. doi: 10.1152/physrev.1996.76.4.1089. [DOI] [PubMed] [Google Scholar]
  3. Argetsinger L. S., Hsu G. W., Myers M. G., Jr, Billestrup N., White M. F., Carter-Su C. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J Biol Chem. 1995 Jun 16;270(24):14685–14692. doi: 10.1074/jbc.270.24.14685. [DOI] [PubMed] [Google Scholar]
  4. Argetsinger L. S., Norstedt G., Billestrup N., White M. F., Carter-Su C. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling. J Biol Chem. 1996 Nov 15;271(46):29415–29421. doi: 10.1074/jbc.271.46.29415. [DOI] [PubMed] [Google Scholar]
  5. Ashcom G., Gurland G., Schwartz J. Growth hormone synergizes with serum growth factors in inducing c-fos transcription in 3T3-F442A cells. Endocrinology. 1992 Oct;131(4):1915–1921. doi: 10.1210/endo.131.4.1396336. [DOI] [PubMed] [Google Scholar]
  6. Borg J. P., Ooi J., Levy E., Margolis B. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol Cell Biol. 1996 Nov;16(11):6229–6241. doi: 10.1128/mcb.16.11.6229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Breeden L., Nasmyth K. Regulation of the yeast HO gene. Cold Spring Harb Symp Quant Biol. 1985;50:643–650. doi: 10.1101/sqb.1985.050.01.078. [DOI] [PubMed] [Google Scholar]
  8. Campbell G. S., Pang L., Miyasaka T., Saltiel A. R., Carter-Su C. Stimulation by growth hormone of MAP kinase activity in 3T3-F442A fibroblasts. J Biol Chem. 1992 Mar 25;267(9):6074–6080. [PubMed] [Google Scholar]
  9. Craparo A., O'Neill T. J., Gustafson T. A. Non-SH2 domains within insulin receptor substrate-1 and SHC mediate their phosphotyrosine-dependent interaction with the NPEY motif of the insulin-like growth factor I receptor. J Biol Chem. 1995 Jun 30;270(26):15639–15643. doi: 10.1074/jbc.270.26.15639. [DOI] [PubMed] [Google Scholar]
  10. Duhé R. J., Farrar W. L. Characterization of active and inactive forms of the JAK2 protein-tyrosine kinase produced via the baculovirus expression vector system. J Biol Chem. 1995 Sep 29;270(39):23084–23089. doi: 10.1074/jbc.270.39.23084. [DOI] [PubMed] [Google Scholar]
  11. Feng J., Witthuhn B. A., Matsuda T., Kohlhuber F., Kerr I. M., Ihle J. N. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol. 1997 May;17(5):2497–2501. doi: 10.1128/mcb.17.5.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Golemis E. A., Brent R. Fused protein domains inhibit DNA binding by LexA. Mol Cell Biol. 1992 Jul;12(7):3006–3014. doi: 10.1128/mcb.12.7.3006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gyuris J., Golemis E., Chertkov H., Brent R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell. 1993 Nov 19;75(4):791–803. doi: 10.1016/0092-8674(93)90498-f. [DOI] [PubMed] [Google Scholar]
  14. Huang X., Li Y., Tanaka K., Moore K. G., Hayashi J. I. Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C gamma 1, Grb2, and phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11618–11622. doi: 10.1073/pnas.92.25.11618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ihle J. N. Janus kinases in cytokine signalling. Philos Trans R Soc Lond B Biol Sci. 1996 Feb 29;351(1336):159–166. doi: 10.1098/rstb.1996.0012. [DOI] [PubMed] [Google Scholar]
  16. Jiao H., Berrada K., Yang W., Tabrizi M., Platanias L. C., Yi T. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol. 1996 Dec;16(12):6985–6992. doi: 10.1128/mcb.16.12.6985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nakamura N., Chin H., Miyasaka N., Miura O. An epidermal growth factor receptor/Jak2 tyrosine kinase domain chimera induces tyrosine phosphorylation of Stat5 and transduces a growth signal in hematopoietic cells. J Biol Chem. 1996 Aug 9;271(32):19483–19488. doi: 10.1074/jbc.271.32.19483. [DOI] [PubMed] [Google Scholar]
  18. O'Neill T. J., Craparo A., Gustafson T. A. Characterization of an interaction between insulin receptor substrate 1 and the insulin receptor by using the two-hybrid system. Mol Cell Biol. 1994 Oct;14(10):6433–6442. doi: 10.1128/mcb.14.10.6433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. O'Neill T. J., Rose D. W., Pillay T. S., Hotta K., Olefsky J. M., Gustafson T. A. Interaction of a GRB-IR splice variant (a human GRB10 homolog) with the insulin and insulin-like growth factor I receptors. Evidence for a role in mitogenic signaling. J Biol Chem. 1996 Sep 13;271(37):22506–22513. doi: 10.1074/jbc.271.37.22506. [DOI] [PubMed] [Google Scholar]
  20. Osborne M. A., Dalton S., Kochan J. P. The yeast tribrid system--genetic detection of trans-phosphorylated ITAM-SH2-interactions. Biotechnology (N Y) 1995 Dec;13(13):1474–1478. doi: 10.1038/nbt1295-1474. [DOI] [PubMed] [Google Scholar]
  21. Sakai I., Kraft A. S. The kinase domain of Jak2 mediates induction of bcl-2 and delays cell death in hematopoietic cells. J Biol Chem. 1997 May 9;272(19):12350–12358. doi: 10.1074/jbc.272.19.12350. [DOI] [PubMed] [Google Scholar]
  22. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  23. Schwartz J., Carter-Su C. Effects of growth hormone on glucose metabolism and glucose transport in 3T3-F442A cells: dependence on cell differentiation. Endocrinology. 1988 May;122(5):2247–2256. doi: 10.1210/endo-122-5-2247. [DOI] [PubMed] [Google Scholar]
  24. Silvennoinen O., Witthuhn B. A., Quelle F. W., Cleveland J. L., Yi T., Ihle J. N. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8429–8433. doi: 10.1073/pnas.90.18.8429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smit L. S., Meyer D. J., Billestrup N., Norstedt G., Schwartz J., Carter-Su C. The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. Mol Endocrinol. 1996 May;10(5):519–533. doi: 10.1210/mend.10.5.8732683. [DOI] [PubMed] [Google Scholar]
  26. Tai P. K., Liao J. F., Chen E. H., Dietz J., Schwartz J., Carter-Su C. Differential regulation of two glucose transporters by chronic growth hormone treatment of cultured 3T3-F442A adipose cells. J Biol Chem. 1990 Dec 15;265(35):21828–21834. [PubMed] [Google Scholar]
  27. VanderKuur J., Allevato G., Billestrup N., Norstedt G., Carter-Su C. Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2. J Biol Chem. 1995 Mar 31;270(13):7587–7593. doi: 10.1074/jbc.270.13.7587. [DOI] [PubMed] [Google Scholar]
  28. Wang Y., Morella K. K., Ripperger J., Lai C. F., Gearing D. P., Fey G. H., Campos S. P., Baumann H. Receptors for interleukin-3 (IL-3) and growth hormone mediate an IL-6-type transcriptional induction in the presence of JAK2 or STAT3. Blood. 1995 Sep 1;86(5):1671–1679. [PubMed] [Google Scholar]
  29. Zervos A. S., Gyuris J., Brent R. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell. 1993 Jan 29;72(2):223–232. doi: 10.1016/0092-8674(93)90662-a. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES