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INTRODUCTION

T-cell activation is a critical event in the organization of

effective cellular and humoral immune responses. Activated

T cells are essential for provision of T-cell help, promoting the

development of high-af®nity antibody production and the

generation of cytotoxic T-cell responses. Accordingly, defects

in proteins required for T-cell activation give rise to signi®cant

infectious pathology and malignancies. However, the decision

to allow T-cell activation also has potentially dangerous

consequences for the host and must therefore also be tightly

controlled. Defects in proteins involved in regulating activated

T-cell behaviour therefore tend to lead to autoimmunity. Thus,

the major challenge faced in regulating T-cell responses is how

to maintain a suf®ciently large immune repertoire capable of

recognizing all possible foreign antigens, whilst at the same

time maintaining T cells in an unresponsive state towards self-

antigens.

In recent years signi®cant progress has been made in our

understanding of the mechanisms of self-tolerance. In the

thymus it is clear that large numbers of potentially `self-reactive'

T cells are eliminated during negative selection in a process

termed central tolerance. However, paradoxically, the process of

positive selection that permits the expansion of T cells with low

avidity for self±major histocompatibility complex (MHC)

interactions must also lead to a degree of self-reactivity which

is presumably tolerable in peripheral T cells. The question is how

such T cells (albeit weakly self-reactive) can be ensured to remain

non-reactive amongst a different array of self-antigens in the

periphery. In the last few years a number of proteins have been

identi®ed that may serve the function of `quality controlling'

peripheral T-cell activation. This review focuses on two proteins,

CD28 and cytotoxic T lymphocyte antigen-4 (CTLA-4), and

explores how their interactions with their natural ligands may

regulate the outcome of T-cell receptor engagement amongst

peripheral T cells.

TAKE YOUR PARTNERS: CD28, CTLA-4 AND THEIR

LIGANDS

CD28 and CTLA-4 (CD152) are transmembrane protein

members of the immunoglobulin gene superfamily containing

a single extracellular `V-like' domain.1±3 Both proteins are

predominantly expressed by T cells and whilst CD28 is found in

substantial amounts on the cell surface of the majority of

resting T cells, in contrast CTLA-4 surface expression is much

more limited.4 The levels of CTLA-4 expression in most resting

T cells are extremely low (or probably absent), and CTLA-4

predominantly appears following T-cell activation. However,

despite maximal expression being reported at 48±72 hr post-

activation, remarkably little stable surface CTLA-4 is found,

although mRNA is equivalent to that of CD28.5,6 This lower

level of cell-surface expression results from a motif in the

cytoplasmic domain of CTLA-4 that facilitates its interaction

with the clathrin pit adaptor complex (AP-50) causing its rapid

internalization from the cell surface.7±9 Consequently the

majority of CTLA-4 is found in intracellular vesicles that

may be then targeted to the cell surface at the site of T-cell

receptor (TCR) contact.10 It has been suggested that phos-

phorylation of the CTLA-4 cytoplasmic domain results in

disengagement from the AP-50 internalization system and

therefore stabilizes cell-surface expression.8

The complexity of the CD28/CTLA-4 receptor interactions

stems from the fact that there are two natural ligands CD80

(B7-1) and CD86 (B7-2) for these receptors.11±17 Whilst these

ligands can both interact with either receptor, they are only

approximately 25% identical in sequence and it has therefore

been attractive to speculate that they may serve different

functions. Predictably, for co-stimulatory ligands, CD80 and

CD86 are found on professional antigen-presenting cells such

as dendritic cells, monocytes and activated B cells, although

they can be induced on other cell types including T cells.13,17±21

In general CD86 is the more abundant in terms of expression,

and is increased more rapidly upon activation. In contrast

CD80 is not generally found on resting antigen-presenting cells

(APCs) and is induced more slowly upon cellular activation. A

large variety of stimuli have been investigated in the control of

CD80 and CD86 expression. Most of these, such as CD40,

interferon-c (IFN-c), interferon-a (IFN-a), granulocyte±

macrophage colony-stimulating factor (GM-CSF) and lipopo-

lysaccharide (LPS) appear to result in increased expres-

sion18,22±27 whereas others such as interlekin-10 (IL-10) and

interleukin-4 (IL-4) may inhibit expression.28±30 These expres-

sion studies, together with ®ndings in CD80 and CD86 KO

mice,31±33 tend to indicate that CD86 is probably the major

initial ligand for CD28 during T-cell activation, based mainly

on its more rapid and abundant expression on APCs. However,

functional data indicate that CD80 is probably the more potent

CD28 ligand in terms of activation,34,35 which is consistent with
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af®nity measurements. Whilst af®nity estimates have varied,

the interaction of CD80 with both CD28 and CTLA-4 (4 mM

and 0.4 mM, respectively) appears substantially better than that

of CD86 (approx. 15±40 mM and 4 mM, respectively), although

overall these interactions are still relatively weak.36,37 An

additional factor in these studies may relate to the fact that

structural data indicate that CD80 is expressed as a dimer.38

Thus in summary, CD28 can be considered a highly expressed

but low-af®nity receptor, whereas CTLA-4 is a low abundance

but higher-af®nity receptor where both receptors interact with

CD80 and CD86. A diagram depicting these interactions in

general is shown in Fig. 1.

CD28: AN ENHANCER FOR T-CELL ACTIVATION

Current interest in the CD28 molecule stems from the concept

that ef®cient activation of T cells requires signals from both the

TCR and an additional co-stimulatory receptor. In the absence

of this second signal, T cells either remain unresponsive or

become actively tolerant to antigens. This concept was

stimulated experimentally in a series of experiments by Jenkins

et al., which involved the use of chemically modi®ed peptide-

pulsed APCs.39,40 These APCs were highly impaired in antigen

presentation and T cells subsequently became unresponsive

(T-cell anergy) to the same antigen. Anergy could also be

prevented by provision of a co-stimulatory signal.41,42 Similar

conclusions were reached in studies of transgenic expression of

MHC molecules on non-APCs.43,44 Thus the concept of a `co-

stimulatory signal', which could rescue from anergy if provided

at the same time as TCR engagement, began to emerge and was

consistent with the functions of the newly identi®ed CD28-

ligand, CD80.12,25 In particular CD28 was shown to be

important in enhancement of proliferation and cytokine

production by T cells, as well as in the preventing T-cell

anergy, thus identifying it as a key second signal for T-cell

activation.45±47

Whilst this two-signal model is likely to be an over-

simpli®cation (there are an increasing array of alternative co-

stimulatory molecules) these studies provided impetus for the

concept that T-cell tolerance in the periphery might be

maintained by restricting the provision of co-stimulatory

signals. This has resulted in the use of a recombinant molecule

(CTLA-4±Ig) which acts as a high-af®nity antagonist of both

CD80 and CD86 co-stimulatory ligands. Results using this

protein have demonstrated considerable potential for blocking

CD28/CTLA-4 interaction with their ligands.48±52 However,

the mechanism by which CTLA-4±Ig works is not entirely

clear, as both preventing T-cell activation and engineering

tolerance are possible. In this regard several studies have

indicated that CTLA-4 engagement may actually be necessary

for tolerance induction (see below).53±55 At ®rst sight this

appears to be at odds with data from CTLA-4±Ig treatment,

which should theoretically remove the ability of CTLA-4 to

interact with its only known ligands, CD80 and CD86. One

possibility, is that the doses of CTLA-4±Ig used do not entirely

blockade CD80/CD86 interactions, but selectively promotes

CTLA-4±ligand interactions by restricting the amount of

available ligand. Overall, in vivo studies have yielded impressive

results in transplantation models and early results in human

trials look encouraging.56 Whatever the mechanisms, these

studies have provided support for the view that one way to

maintain peripheral tolerance is to limit the provision of co-

stimulatory signals through CD80 and CD86.

Despite considerable evidence that CD28 is critical in T-cell

regulation, it is not entirely clear how its effects are mediated.

The signalling pathways emerging from CD28 ligation have

been studied in some detail, and have been reviewed else-

where.57 However, the absolute requirement for CD28 in vivo

for T-cell proliferation has been brought into question by

CD28KO mice.58±60 Here, the response of T cells to antigen is

not as severely impaired as might have been predicted.

Nonetheless, there are substantial defects in the maintenance

of responses and particularly in T-cell survival, which along

with other studies supports a role for CD28 in maintaining T-

cell responses.61±64 Perhaps the most striking defect in vivo in

CD28 KO mice is the lack of germinal centres, suggesting a

gross defect in the ability of T cells to interact with B cells. This

feature may well relate to the ability of T cells to express the

chemokine receptor CXCR5 which is strongly in¯uenced by

CD28.65 Thus CD28-de®cient T cells may fail to migrate to

appropriate sites of interaction with B cells.

APC CD80 upregulation

CD86

CTLA-4

TCR

CD28

T cell

recycling

CTLA-4 transcription

Figure 1. A schematic diagram of CD28 and CTLA-4 interactions with

their ligands is depicted. CD86 is generally expressed at higher levels on

antigen-presenting cells and is found more widely than CD80. CD80 is

induced upon activation with a number of stimuli (see text) and is

generally expressed at lower levels with later kinetics. Consequently,

CD86 is the more likely primary ligand for CD28. On T cells CD28

expression is constitutive whereas CTLA-4 is not expressed by resting

T cells. Both T-cell receptor stimulation and CD28 co-stimulation

synergize to up-regulate CTLA-4, although CD28 stimulation is not

essential. CTLA-4 expression is thought to be transient at the cell

surface and rapidly re-internalized by a clathrin pit mechanism. It

should be noted that both ligands can interact with both receptors.
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Mechanistically, there is evidence that CD28 may exert its

co-stimulatory effects by lowering the threshold for T-cell

activation, consistent with the presence of CD28 in lipid `rafts'

that are rich in signalling proteins.66,67 In addition, CD28 is

also thought to exert effects on the cytoskeleton and promote

its reorganization to the TCR contact site.68,69 One of the more

interesting recent observations has been the suggestion that

CD28 may be involved in the control of a population of

CD25+ regulatory T cells.70 Here, both CD28KO and CD80±

CD86 double knockout (KO) mice crossed on to a non-obese

diabetic (NOD) background demonstrated exacerbated dia-

betes that may be attributed to the lack of regulatory T cells.

This study would suggest that CD28 co-stimulation may well

be required for the proliferation and survival of this important

T-cell subset.

Overall, there is now an overwhelming body of data

implicating CD28 as a critical molecule in the T-cell activation

process and inhibition of CD28 functions can prevent or

substantially decrease T-cell activation. However, some of

these strategies are complicated by the fact that the same

ligands also control the functions of CTLA-4, which appears to

have opposite functions to CD28.

CTLA-4: AN INHIBITOR OF T-CELL ACTIVATION

Whilst studies on CD28 have demonstrated a co-stimulatory

role in T-cell activation, the role of CTLA-4 has been more

dif®cult to elucidate. It is now generally accepted that CTLA-4

plays a role in the inhibition of T-cell activation;71±73 although

there are some more controversial suggestions of a stimulatory

role.74 Nonetheless, several laboratories have shown that

blocking CTLA-4 enhances T-cell proliferation whereas

ligating CTLA-4 with agonistic antibodies suppresses T-cell

proliferation, consistent with the function of a negative

regulator.75 However, the most compelling evidence for a

regulatory function for CTLA-4 has come from CTLA-4

knockout mice that develop fatal lymphoproliferative disease

at 3±4 weeks of age, suggesting a critical role for CTLA-4 in

maintaining self-tolerance.76,77 This phenotype results from

polyclonal activation of peripheral T cells that then in®ltrate
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Figure 2. Three models of CTLA-4 function are shown. (a) The ligand competition model is shown. This model requires that CTLA-4

is expressed at suf®cient levels to sequester ligands away from CD28 thus preventing co-stimulatory signals from being received. This

model does not require a CTLA-4 signalling component and relies on the higher af®nity of CTLA-4 for both ligands compared with

CD28. In (b) a CTLA-4 signalling model is shown. Here CTLA-4 ligation results in signals that most likely inhibit T-cell receptor

signalling resulting in lack of activation signals. In the third (regulatory cell) model (c), a CTLA-4-expressing regulatory cell is

stimulated via CTLA-4 to exert suppression over other T cells. This mode of suppression may be either by cell contact or inhibitory

cytokines. It should be noted that none of these mechanisms is mutually exclusive of the others.
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and cause multiorgan destruction. This disease can be

effectively cured by preventing CD28 co-stimulation either

using CD80 and CD86 double KO mice, CTLA-4±Ig78,79 or by

crossing on to single TCR transgenic mice.80±82 In addition the

lymphoproliferation has been suggested to be CD4+ depen-

dent.83 Very recently, CTLA-4 blockade in normal mice has

been shown to give rise to spontaneous autoimmunity.84

Collectively, these studies suggest that one possible function of

CTLA-4 may be to `threshold out' weak TCR engagements

that may exist for large numbers of potentially autoreactive

circulating T cells. Thus in the absence of CTLA-4, B7 ligands

provide unopposed stimulatory signals through CD28 that

permit weakly self-reactive T cells to become fully activated.

Whilst the importance of CTLA-4 is unquestioned, the

nature of this inhibitory pathway is as yet poorly understood.

Data from two laboratories indicate that CTLA-4 blocks T-cell

function at a relatively early stage (within 24 hr), preventing

up-regulation of activation markers, entry into cell cycle, and

the generation of IL-2.72,73 However, most strikingly these

functional effects are seen when surface levels of CTLA-4 are

undetectable. Our own analysis of CTLA-4 expression in

humans (unpublished data) support the view that resting T cells

express little or no CTLA-4 but that CTLA-4 transcription can

rapidly up-regulate the protein within 6 hr of activation.

However, whether this up-regulation is suf®ciently rapid to

prevent activation, or whether expression is actually a

re¯ection of activation, is not yet clear. Interestingly, where

CTLA-4 protein is detected at later timepoints (24±72 hr) after

activation, it is exclusively con®ned to activated, proliferating

T cells which, by de®nition, are not those inhibited through

CTLA-4. This poses the question as to whether CTLA-4 is

highly ef®cient in extremely low amounts or whether there are

alternative explanations for this early inhibitory function (see

below and Fig. 2). When interpreting data using CTLA-4

monoclonal antibodies it is important to consider that anti-

CTLA-4 antibodies do not experience competition with CD28,

in contrast with the natural ligands, and this may lead to

inhibitory responses at signi®cantly lower levels of CTLA-4

expression.

Whilst it is clear that natural ligands stimulate CTLA-4

function in vivo, the circumstances under which CTLA-4

function predominates have yet to be clearly established. For

example, does CTLA-4 regulate all types of T-cell stimulation

or are its effects con®ned to certain `qualities' of TCR

stimulation? So far, the majority of T-cell experiments using

transfected ligands in vitro have indicated that engagement of

CD80/CD86 in the presence of anti-CD3 effectively delivers

proliferative signals via CD28 with relatively little evidence for

CTLA-4-dominated functions under these circumstances.

STOP AND GO: THE BALANCE BETWEEN CTLA-4

AND CD28

The data discussed above provide a working model in which

CD28 enhances and CTLA-4 inhibits T-cell responses yet both

interact with the same ligands. This raises the obvious question

of `How do T cells choose between using CD28 and CTLA-4?'

The answer to this question depends to a large extent on which

models of CTLA-4 function are being considered. Several

possibilities are outlined below; however, it should be noted

that none of the models is mutually exclusive and all of these

may operate under de®ned circumstances.

LIGAND COMPETITION

One of the most frequently cited models of CTLA-4 regulation

is the concept that CTLA-4 may act as a competitive inhibitor

for the ligands required for CD28 activation (Fig. 2a). Thus, by

virtue of its higher af®nity, CTLA-4 should be capable of `out-

competing' CD28 for ligand binding. An extension of this

hypothesis is that CTLAx4 interactions would be favoured

where the levels of ligands are low (for example on resting

APCs). However the concept that low levels of ligand are

relevant to control of CTLA-4 has yet to be convincingly

demonstrated. Our own experiments aimed at testing this

hypothesis (C. Ellwood et al., submitted) do not generally

support this model. Nonetheless, the competition hypothesis is

almost certainly correct given the relative af®nities of CD28

and CTLA-4 for their ligands. There are, however, some

caveats to this hypothesis. Competition is unlikely to have a

signi®cant effect in regulating the activation of resting T cells as

these express undetectable levels of CTLA-4, making competi-

tion highly unlikely at this initial stage. In contrast, activated

cells express more CTLA-4 and therefore ligand competition

becomes possible during secondary stimulation of T cells with

the directed expression of intracellular CTLA-4 at the

`immunological synapse'.10 This concept is also supported by

several studies that indicate more impressive CTLA-4 effects

on secondary responses.80,85 In addition, further support for

ligand competition comes from studies of CTLA-4 KO mice

that have been made transgenic for a CTLA-4 protein lacking a

cytoplasmic domain.86 Here, some but not all of the features of

CTLA-4 KO mice were prevented, suggesting that competition

is a distinct mechanism that accounts for only some of the

features of CTLA-4 regulation. Whilst the temporal control of

CTLA-4 expression is lost in this model, it nonetheless

indicates that competition for ligand can be an effective mode

of CTLA-4 operation. The most obvious problem with the

competition model is the fact that agonistic antibodies to

CTLA-4 act as potent inhibitors of T-cell proliferation.75

Clearly as there are no ligands present in this context,

competition alone cannot be the sole mode of CTLA-4 action.

This observation provides support for a CTLA-4 signalling

mechanism.

CTLA-4 SIGNALLING

As mentioned above, support for a CTLA-4 signalling model

(Fig. 2b) comes most clearly from studies with agonistic

monoclonal antibodies. Whilst signalling studies have been

hampered by the low level of expression of this protein,

generally these indicate that CTLA-4 can interfere with TCR-

derived signals and block early signalling events.87±90 The fact

that CTLA-4 function can be observed in the absence of CD28

expression also supports the view that CTLA-4 may regulate

TCR signals.91 One possibility is that CTLA-4 recruits a

tyrosine phosphatase SHP-2 (SYP, PTP-1D) through a

phosphorylated YVKM motif in the cytoplasmic domain.

This interaction is then thought to be involved in de-

phosphorylating the TCR signalling machinery, thereby

blocking early activation signals. However, in contrast to the
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models where phosphorylated tyrosine residues in the CTLA-4

cytoplasmic domain are required for recruitment of signalling

molecules,88,92 several recent studies have also shown that

tyrosine residues are not essential for CTLA-4 function.88,93,94

Thus at present the nature of CTLA-4 inhibitory signalling

mechanisms are still unclear. Whilst it is not strictly a part of

the signalling model, the most common interpretation of the

signalling hypothesis is that each individual T cell undergoes a

`fate' decision based on the relative in dominance of CD28

versus CTLA-4 signals (i.e. where CTLA-4 signals are

dominant a given T cell will not be activated due to inhibition

of TCR and CD28 activation signals). However, this is not the

only possible interpretation of CTLA-4 signalling as discussed

below.

REGULATORY CELL/CYTOKINE HYPOTHESES

One possible explanation of the biological effects of CTLA-4

observed when CTLA-4 expression levels are very low, is that

these effects are actually mediated by a small number of

regulatory cells that already express CTLA-4 (Fig. 2c). This

possibility is supported by a number of recent ®ndings and

overcomes some of the problems discussed above. First, a

recent study by Bachmann,95 demonstrated that CTLA-4

functions were not necessarily T-cell autonomous. Here,

CTLA-4 KO bone marrow was transferred into RAG2-/- mice

either alone or mixed with wild-type CTLA-4 expressing bone

marrow. Whilst CTLA-4-de®cient bone marrow caused fatal

T-cell in®ltration of multiple organs, wild-type bone marrow

could suppress disease, clearly demonstrating an ability of

CTLA-4-positive cells to regulate CTLA-4 negative cells. Other

studies have also suggested a link between CTLA-4 and the

cytokine transforming growth factor-b (TGF-b).96 This is

consistent with similarities between TGF-b KO mice and

CTLA-4 KO mice, although this link is still somewhat

controversial at present. Consistent with this overall concept

is the relatively recent re-emergence of regulatory T cells that

cause the development of autoimmunity when removed97,98

(for review see reefs 99,100). Two recent studies, and our own

observations, suggest that that a relatively small number of

CD4+ CD25+ T cells may also express CTLA-4 (C.Ellwood,

unpublished observations).84,101 Thus, the concept that impor-

tant CTLA-4 functions may be mediated by a rare subset of

regulatory T cell that then in¯uences the function of the

majority of other T cells is now a distinct possibility.

CD80 AND CD86: WHAT'S THE DIFFERENCE?

Given that CD28 and CTLA-4 have such contrasting functions

it is therefore somewhat perplexing that they should share

ligands. The most obvious and attractive hypothesis is that

these ligands have clearly separate and discrete functions, yet to

date this has been extremely dif®cult to demonstrate convin-

cingly. Nonetheless there are numerous studies that indicate

differences between these ligands. Initial studies using trans-

fectants revealed no obvious differences and were consistent

with the inescapable conclusion that both ligands are indeed

capable of co-stimulation via CD28.102 However, in general,

CD80 appears to be the more potent stimulatory ligand.34

Other studies that have attempted to address the differences

between ligands have exploited antibody-blocking approaches;

however, this has yielded con¯icting results. In disease studies,

blocking either molecule can exacerbate disease or inhibit

disease depending on the model studied.103±105 These and other

studies also provide evidence that CD80 or CD86 can bias

towards T helper 1 (Th1) or T helper 2 (Th2) phenotypes.106

However, whilst there is no overall consistency, there are

suf®cient reports to suggest that these pathways do play a role

in T-cell differentiation.107,108 One of the major problems in

interpreting these studies is that each uses a precise and highly

variable set of conditions, e.g. mouse strain, type of antigen,

adjuvent use, route of immunization, timing of observation,

etc., making any attempts at generalization extremely dif®cult.

It is therefore likely that in many cases, fundamentally different

immunological processes are being investigated, which then

compounds the problem of de®ning the speci®c functions of

CD80 and CD86. Given the different models outlined above

for CTLA-4 function, then any or all of these mechanisms may

be differentially regulated by CD80 or CD86, and it is therefore

necessary to know precisely which mechanism is being studied

in any given model.

Further attempts to clarify the role of CD80 and CD86

have been made using genetic approaches and in particular KO

mice.31±33 Here, the roles of CD80 and CD86 have been

con®rmed as co-stimulators and the more dominant initial

functions of CD86 have been substantiated. These studies also

rule out the concept that either CD80 or CD86 is strictly

required for Th1 or Th2 cytokine production. However, a

different problem emerges with KO approaches for CD28/

CTLA-4 ligands in that by removing a given ligand, both the

stimulatory and inhibitory functions of that ligand are

eliminated. It is therefore theoretically possible that these

two opposing effects may compensate for each other and not

truly reveal the functions of a given ligand. For example, based

on af®nity data, CD80 is both the best ligand for CD28 and

CTLA-4; therefore, it is conceivable that CD80 knockouts do

not display a CTLA-4 KO-like phenotype because the

proliferative drive via CD28±CD80 interactions has also been

eliminated. Thus, true differences between CD80 and CD86 are

an integrated function of their interactions with both CD28

and CTLA-4, and therefore requires study of both pathways

together.

Whilst it is dif®cult to speculate, clear differences have been

observed that could support a model where CD80 might be

considered a preferential (but not exclusive) inhibitory ligand

for CTLA-4. First, the predominant early expression of CD86

on APCs would generally promote the initial establishment of

T-cell responses, whereas the later and generally more

restricted expression of an inhibitory CD80 molecule could

then potentially regulate responses subsequently. Second,

blocking antibodies to CD80 clearly exacerbate diabetes in

NOD mice.103 This model of disease is also known to be

controlled by CTLA-4 regulation at an early stage and T-cell

in®ltration is exacerbated by CTLA-4 blockade.109 Third, in a

transgenic model of diabetes, CD86 expression promoted T-

cell in®ltration whilst CD80 did not. In this model, if one

accepts that CD80 is a more potent co-stimulator, this would

argue for an additional role for CD80 in T-cell regulation that

is not seen in the CD86 trangenic. Fourth, in transplant

models, CD80 has been indicated to be the preferential CTLA-

4 ligand controlling graft survival.51 An interesting feature that

links these studies is that CTLA-4 function is being studied in
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the context of spontaneous reactivity to auto- or alloantigens

and that T-cell responses are not the result of an immunization

protocol in the presence of adjuvant as in some models. One

possibility is that these studies may all involve a consistent and

distinct `mode' of CTLA-4 function that may contrast with its

role in the presence of `danger signals' or during activation of

the innate immune system. Fifth, structural data suggest that

CD80 is organized as a dimer, which has not been shown for

CD86, a factor that may in¯uence its ability to differentially

signal via CTLA-4.38 Sixth, transgenic expression of CD80 and

CD86 on T cells results in hyperproliferation only in the CD86

transgenic, but not in those expressing CD80.110 Again, this

would be consistent with a lack of regulatory ability within

CD86. Consistent with this idea, transgenic expression of

CD80 has previously been shown to provide a negative

regulatory function.111 Finally, our own recent data (C.

Ellwood et al., submitted) directly comparing CD80 and

CD86 transfectants, only reveal CTLA-4 inhibition when it is

ligated to CD80 and not CD86. Whilst these are clearly highly

selected arguments, and numerous alternative interpretations

are possible, they serve to illustrate that there is still little data

that conclusively argue against one ligand performing pre-

ferential functions in relation to CTLA-4. Whilst it is clear that

both ligands can and do interact with both receptors, their

mechanisms of action are thus not necessarily similar. Given

the likelihood that several discrete modes of CTLA-4 function

exist, it seems that without models where the mode of T

regulation by CD28 or CTLA-4 is very clearly de®ned, it will

continue to be dif®cult to effect comparisons between CD80

and CD86.

The CD28/CTLA-4 pathway offers important opportu-

nities as targets for immunomodulation and insights into our

ability to tolerate self-antigens. Whilst our understanding of

these molecules has advanced considerably in the last few years,

signi®cant questions still remain regarding why two ligands

share receptors that have opposing functions. The still

unresolved confusion in this area suggests we are in need of

more precise models of the functions of each of the participants

in order to resolve this important paradox.
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