Role of β_1 and β_2 subunits of the interleukin-12 receptor in determining T helper 1/T helper 2 responses *in vivo* in the rat

K. M. GILLESPIE, C.-C. SZETO, V. M. BETIN* & P. W. MATHIESON Academic Renal Unit, and *Diabetes and Metabolism Unit, University of Bristol, Southmead Hospital, Bristol, UK

SUMMARY

Interleukin-12 (IL-12) responsiveness, and hence capacity to mount a T helper type 1(Th1) immune response, may be regulated via differential expression of the IL-12 receptor β_2 subunit at least *in* vitro in human and murine cells. To test whether a similar phenomenon operates in vivo in the rat we cloned and sequenced partial cDNAs for rat IL-12R β_1 and IL-12R β_2 subunits and analysed expression of these genes in vivo in two rat strains with different Th1/Th2 bias. After treatment with mercuric chloride (HgCl₂), Brown–Norway rats develop Th2-biased autoimmunity whereas Lewis rats do not develop autoimmunity, instead becoming resistant to Th1-biased diseases to which they are normally susceptible. We report close sequence homology between the segments of the rat IL-12R genes sequenced and corresponding mouse genes (95.6% and 92% for IL-12R β_1 and IL-12R β_2 , respectively). Both Brown–Norway and Lewis rats express both β_1 and β_2 subunits of IL-12 receptor *in vivo* in spleen; Brown–Norway rats express the β_2 subunit at a lower level than Lewis rats. After HgCl₂ treatment, IL-12R β_1 expression was not altered but there was down-regulation of IL-12R β_2 expression in both strains. We conclude that relative under-expression of IL-12R β_2 by Brown–Norway rats contributes to their Th2 bias, and that down-regulation of IL-12R β_2 after HgCl₂ administration in Lewis rats underlies subsequent resistance to induction of Th1-biased diseases.

INTRODUCTION

The CD4⁺ subset of T cells, the T 'helper' (Th) cells can be subdivided according to their cytokine profile. This compartmentalization of Th cells is becoming increasingly complex but at its simplest level there are at least two subsets, Th1 and Th2, that reciprocally regulate one another. Interferon- γ (IFN- γ) production characterizes the Th1 subset while Th2 cells produce interleukin-4 (IL-4).¹ Dominance of either subset may result in disease, for instance Th1 responses are associated with some autoimmune diseases while Th2 responses are associated with allergy and atopy.²

IL-12, a heterodimeric cytokine produced mainly by antigen-presenting cells, is essential for the development of Th1 responses.³ IL-12 acts through specific receptors on both T and natural killer (NK) cells to induce IFN- γ secretion.⁴ Two subunits, IL-12 receptor β_1 (IL-12R β_1) and IL-12R β_2 , have been cloned for both human and mouse IL-12R.^{5,6} Both subunits belong to the cytokine receptor superfamily. IL-12R β_2 by itself binds IL-12 with low affinity but when co-expressed

Received 23 June 1999; accepted 13 August 1999.

Correspondence: Dr K. Gillespie, Medical School Unit, Southmead Hospital, Bristol BS10 5NB, UK.

with IL-12R β_1 it confers high-affinity binding and IL-12 responsiveness.⁷

Recently it has become clear from in vitro studies that human and murine CD4⁺ T helper cells biased towards a Th2 response are IL-12 'unresponsive' due to selective loss of expression of the β_2 subunit of the IL-12R.^{8,9} Expression of the IL-12 β_1 subunit remained unaffected. We were interested to test whether this regulatory mechanism operates in vivo in the rat, since it could explain many of our observations on the response of different rat strains to mercuric chloride (HgCl₂).¹⁰ Certain rat and mouse strains are susceptible to autoimmunity after treatment with low-dose HgCl₂, gold, or D-penicillamine. For instance, Brown–Norway (BN) rats treated with low-dose HgCl₂ develop an autoimmune syndrome characterized by polyclonal B-cell activation, high circulating immunoglobulin E (IgE) levels, the appearance of IgG1 autoantibodies and widespread tissue injury.¹¹ In contrast, Lewis rats treated with the same regimen do not develop autoimmunity, instead becoming resistant to diseases to which they are normally susceptible, e.g. experimental autoimmune encephalomyelitis (EAE).¹² The autoimmune syndrome in the BN rat resolves approximately 2 weeks after the first HgCl₂ injection and surviving rats are resistant to further induction of disease.¹³ The polyclonal B-cell activation and high IgE levels induced in the BN rat by HgCl₂ suggested a role for the Th2 compartment

 $\label{eq:constraint} \textbf{Table 1. Cytokine gene expression in HgCl_2-treated BN and Lewis rats^*}$

	BN	Lewis
IL-2	↑	_
IL-4	$\uparrow \uparrow \uparrow \uparrow \uparrow$	_
IL-6	$\uparrow \uparrow \uparrow$	_
IL-10	\uparrow \uparrow \uparrow	\uparrow \uparrow
IL-12	· · · · ↑	high expression at baseline
IL-13	ND	ND
IFN-γ	↑	_
TGF-β	_	-

Data from ref. 18. \uparrow , an increase; –, no change; ND, not detected; TGF- β , transforming growth factor- β .

of CD4⁺ T cells,¹⁴ and this has been confirmed by cytokine gene expression studies. Fully quantitative and semi-quantitative reverse transcription–polymerase chain reaction (RT-PCR) clearly demonstrated that the immune response in HgCl₂-treated BN rats is biased towards the Th2 subset with IL-4, IL-6 and IL-10 dramatically up-regulated¹⁵ (Table 1). Previous studies in our laboratory demonstrated that IL-12 gene expression was increased in the BN rat at the time when the HgCl₂-induced autoimmune syndrome autoregulates, and that while baseline levels of IL-12 in the Lewis rat are high, they are not further increased by HgCl₂.¹⁶

We wished to test the hypothesis that IL-12 unresponsiveness explained the bias towards a Th2 response in the BN rat. Since the IL-12R had not been cloned in the rat, we cloned partial cDNAs for both the β_1 and β_2 subunits of the rat IL-12R. We then studied IL-12R expression *in vivo* in BN and Lewis rats before and after treatment with HgCl₂.

MATERIALS AND METHODS

Rats

BN and Lewis rats were obtained from Harlan UK Ltd (Bicester, UK) and maintained under standard conditions. Splenic RNA was extracted following standard methods.¹⁷

Cloning and sequencing of partial cDNAs for rat IL-12R β_1 and β_2 subunits

Oligonucleotide primers (Cruachem, Glasgow, UK) for IL-12R β_1 and β_2 subunits were designed based on the sequence of the mouse genes. One microgram of rat splenic RNA was reverse transcribed according to the manufacturer's instructions (Promega, Madison, WI). PCR reactions were performed on a Hybaid thermal cycler, total volume 25 µl, with 3 µl cDNA, 2·5 µl 10*times* PCR buffer, 200 µM dG/T/A/CTP, 0·4 µM each of the forward and reverse primers and 1 unit of Taq polymerase (Bioline, London, UK). PCR conditions were 95° for 5 min (once); 95° for 30 seconds, 53° for 30 seconds, 72° for 30 seconds (30 times); 72° for 5 min for IL-12 β_1 . The same conditions were used for IL- $12\beta_2$ but the primers were annealed at 54°. In the case of both receptor subunits, a band of appropriate size was identified. This band was ligated into pGEM T vector (Promega) and transformed into competent TOP 10F *Escherichia coli* (Invitrogen, Groningen, the Netherlands). Positive colonies were selected by M13 PCR screening and sequenced on an ABI 377 sequencer. Rat-specific IL- $12R\beta_2$ primers were designed.

Analysis of IL-12R expression in vivo after HgCl₂

BN and Lewis rats were given $HgCl_2$ (five injections over 10 days, each of 1 mg/kg) by subcutaneous injection. Spleens were removed at various time-points. Total RNA was isolated as above. Expression of IL-12R β_1 and IL-12R β_2 in HgCl₂-treated BN and Lewis rats was analysed using the house-keeping gene β -actin as a control. PCR cycles were kept to a minimum to ensure that the PCR products were analysed within the exponential range of amplification. To further confirm our results serial 1 : 3 dilutions of RT reactions were PCR amplified (data not shown). All primer sequences used are shown in Table 2.

RESULTS

The cDNAs for rat IL-12 β_1 and β_2 show extensive sequence homology with the corresponding mouse genes

The sequences of the partial cDNAs of rat IL-12R β_1 and IL-12R β_2 are shown below. These sequences have been submitted to the Genebank and have acquired accession numbers as follows: IL-12R β_1 , AF083328; IL-12R β_2 , AF083329. The sequence homology with the mouse gene is 95.6% for IL-12R β_1 and 92% for IL-12R β_2 .

IL-12R_{β1}

- Rat : tttegegtetetgggaagettecceagegteeteetegtgggeagteteggatacattgg
- Mouse : tttcgcgtctctgggaagcttcgccagcgtcctcctcgtgggcagtctcggatacattgg
- Rat : cttaaacagggc/gcctggcacttgtgcccacc/ctgcctacgccctgtggcagcactgc
- Mouse : cttaaacagggccgcctggcacttgtgcccacccctgcctacaccctgtggcagcactgc
- Rat : tgtggagttccctggcagccaggacaagcaggcttggcaatggcgcaaccctgaggac
- Mouse : cgtggagttccctggcagccagggcaagcaggcttggcagtggtgcaaccctgaggac
- Rat : ttcccggaggtgttgta
- Mouse : ttcccggaggtgttgta

Table 2. Primer sequences used in this study and PCR product sizes

Primer	Sense	Antisense	Size
Mouse IL-12R β_1	5' ccatcattttcgcacactggg	5' tacaacacctccgggaagteet	202 bp
Mouse IL-12R β_2	5' tgacagctgctggtgaaagt	5' atgttggagggtaaatagcc	602 bp
Rat IL-12R β_2	5' ttgcatcgctatcatcgtgg	5' cctcttttgaagcaataggg	288 bp
Rat β-actin	5' atgecatectgegtetggacetgge	5' agcatttgcggtgcacgatggaggg	607 bp

© 2000 Blackwell Science Ltd, Immunology, 99, 109-112

IL-12R β_2

- Rat : tgacagctgctggtgaaagtccccaaggaaatgaaagggaattttgtccacagggcaa
- Mouse : tgacagctgctggtgaaagtccccaaggaaatgaaagggaattttgtccacagggcaa
- Rat : agccaactggaaa*a*cattcgtgatatcaagcatttgcatcgctatcatcgtggtgggcac
- Mouse : agccaactggaaagcattcgtgatatcaagcatttgcatcgctatcatcacggtgggcac
- Rat : *t*ttetcaattegttaette*a*ggcaaaaggeatttaettetettetaettetcaaace*c*eaatgg
- Mouse : gtteteaattegttaetteeggeaaaaggeatttaeteetgetaeteet caaaceteaatgg
- Rat : tat/gcagaac/attccagatccagcaaa/agcacttgggtaaagaagtaccccattatg
- Mouse : tatagcagaaccattccagatccagcaaacagcacttgggtaaagaagtatcccattctg
- Rat : gaggagaagatccagccacctatggacaatctcctgatggcctggtccgctcctgaag
- Mouse : gaggagaagatccagctacctacggataatctcctgatggcatggcccactcctgaag
- Rat : ageetgageeeetgateateaatgaagteetetaeeaaatgateeeagtaggeagaeaae
- Mouse : agectgagecectgateatecatgaagteetetaceacatgateecagttgteagaeaae
- Rat : cctattgcttcaaaagaggacaagggttccaaggttactc
- Mouse : catattacttcaaaagaggccaaggattccaaggctactc

$IL\text{-}12R\beta_1$ and $IL\text{-}12R\beta_2$ gene expression in $HgCl_2\text{-}treated$ BN and Lewis rats

Both BN and Lewis rats showed readily detectable expression of both β_1 and β_2 subunits of the IL-12R *in vivo* in the spleen (Figs 1 and 2, day 0, i.e. naive animals). Expression of IL-12R β_1 was comparable in the two rat strains (Fig. 1). Expression of IL-12R β_2 was markedly greater in Lewis rats compared to BN rats (Fig. 2). After HgCl₂ administration, expression of IL-12R β_2 was down-regulated in both strains (Fig. 2); expression of IL-12R β_1 was not affected by HgCl₂ (Fig. 1). In each case, RNA quantity has been corrected for the house-keeping gene β -actin but these data are not shown as IL-12R β_1 acts as a control for IL-12 β_2 expression.

DISCUSSION

We provide evidence that differential expression of the IL-12R β_2 subunit occurs *in vivo* in different rat strains, with the Th2-biased BN rat expressing lower levels than the Th1-biased Lewis rat, and that treatment with HgCl₂ leads to selective down-regulation of the IL-12R β_2 subunit. The changes in IL-12R β_2 subunit expression segregate with susceptibility to Th1/Th2 autoimmunity and may play a role in determining the susceptibility/resistance of the two rat strains to different phenotypes of immune response.

We report that the partial cDNAs which we have isolated for the rat IL-12R β_1 and β_2 subunits show extensive sequence homology with the corresponding mouse genes (95.6% and 92% for IL-12R β_1 and IL-12R β_2 , respectively). Homology between mouse and human IL-12R β_1 has been shown to be

Figure 1. IL-12R β_1 expression in BN rats (top panel) and Lewis rats (bottom panel) at days 0, 5, 10, 15 and 20 after the first HgCl₂ injection. This figure is representative of three experiments.

only 54% at the amino acid level while for IL-12R β_2 the human/mouse homology is 68%.⁷

Naive BN and Lewis rat strains both express IL-12R β_1 and IL-12R β_2 in the spleen, so that the preferential Th2 phenotype of immune responses in the BN strain cannot be accounted for by absolute deficiency of IL-12R β_2 expression. However, the level of IL-12R β_2 gene expression in the spleen was lower in naive BN rats compared to naive Lewis rats, and relative deficiency of IL-12R β_2 expression may contribute to the Th2 bias of this strain. Susceptibility to chemically induced autoimmunity is subject to major genetic influences, with loci within the major histocompatibility complex (MHC) and in the cytokine gene cluster on chromosome 10 being strongly linked to susceptibility.¹⁸ Whether these, or other susceptibility loci, exert their effects by regulation of IL-12R expression remains to be determined.

After treatment with HgCl₂, IL-12R β_2 expression was down-regulated in both rat strains, but IL-12R β_1 gene expression was not affected. In BN rats, treatment with HgCl₂ leads to massive induction of IL-4 gene expression¹⁵ and this could lead to down-regulation of IL-12R β_2 . This is compatible with recent data demonstrating that the burst of IL-4 production in BALB/c mice following infection with *Leishmania major* results in down-regulation of IL-12R β_2 , leading to IL-12 unresponsiveness.¹⁹ However, since a similar degree of down-regulation of IL-12R β_2 was seen in Lewis rats, which do not show significant up-regulation of IL-4 in response to HgCl₂.¹⁵ other mechanisms may be operating.

The down-regulation of IL-12R β_2 expression in Lewis rats treated with HgCl₂ is of interest because this treatment is known to render these rats resistant to the induction of EAE, a Th1-biased autoimmune syndrome to which Lewis rats are normally fully susceptible.¹¹ Loss of IL-12 responsiveness due to down-regulation of IL-12R β_2 would provide a plausible mechanism for this resistance. We have previously analysed cytokine gene expression in HgCl₂-treated Lewis rats and

Figure 2. IL-12R β_2 expression in BN rats (top panel) and Lewis rats (bottom panel) at days 0, 5, 10, 15 and 20 after the first HgCl₂ injection. This figure is representative of three experiments.

^{© 2000} Blackwell Science Ltd, Immunology, 99, 109-112

shown up-regulation of IL-10.¹⁵ It remains to be seen which of these changes is primary but both may contribute to the induction of a state of resistance to Th1-biased autoimmunity. Further experiments are planned to dissect these regulatory mechanisms.

In conclusion, our results add to the evidence that differential expression and regulation of the β_2 subunit of the IL-12R is an important mechanism whereby the cytokine phenotype of an immune response is determined. Selective means of increasing or decreasing expression of this molecule would have considerable potential for the therapeutic manipulation of desired or undesired immune responses.

REFERENCES

- MOSMANN T.R. & COFFMANN R.L. (1989) Heterogeneity of cytokine secretion patterns and functions of helper T cells. *Adv Immunol* 46, 111.
- 2. ROMAGNANI S. (1994) Lymphokine production by human T cells in disease states. *Annu Rev Immunol* **12**, 227.
- HSIEH C.-S., MACATONIA S.E., TRIPP C.S., WOLF S.F., O'GARRA A. & MURPHY K.M. (1993) Development of CD4 T helper 1 T cells through IL12 produced by Listeria-induced macrophages. *Science* 260, 547.
- SEDER R.A., GAZZINELLI R., SHER A. & PAUL W.E. (1993) IL12 acts directly on CD4+ T cells to enhance priming for IFNγ production and diminishes interleukin 4 inhibition of such priming. *Proc Natl Acad Sci USA* 90, 10188.
- CHUA A.O., CHIZZONITE R., DESAI B.B. *et al.* (1994) Expression cloning of a human IL12 receptor component: a new member of the cytokine receptor superfamily with strong homology to gp130. *J Immunol* 153, 128.
- CHUA A.O., WILKINSON V.L., PRESKY D.H. & GUBLER U. (1995) Cloning and characterisation of a mouse IL12 receptor -β component. J Immunol 155, 4826.
- PRESKY D.H., YANG H., MINETTI L.J. *et al.* (1996) A functional interleukin 12 receptor complex is composed of two β-type cytokine receptor subunits. *Proc Natl Acad Sci USA* 93, 14002.

- SZABO S.J., DIGNE A.S., GUBLER U. & MURPHY K.M. (1997) Regulation of the Interleukin (IL) -12Rβ2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 185, 817.
- Rogge L., BARBERIS-MAINO L., BIFFI M. *et al.* (1997) Selective expression of an interleukin 12 receptor component by human T helper 1 cells. *J Exp Med* 185, 825.
- MATHIESON P.W. (1992) Mercuric chloride-induced autoimmunity. Autoimmunity 13, 243.
- MATHIESON P.W., THIRU S. & OLIVEIRA D.B.G. (1992) Mercuric chloride-treated BN rats develop widespread tissue injury including necrotizing vasculitis. *Lab Invest* 67, 121.
- PELLETIER L., ROSSERT J., PASQUIER R. et al. (1988) Effect of HgCl₂ on experimental allergic encephalomyelitis in Lewis rats. HgCl₂induced down-modulation of the disease. Eur J Immunol 18, 243.
- BOWMAN C., MASON D.W., PUSEY C.D. & LOCKWOOD C.M. (1984) Autoregulation of antibody synthesis in mercuric chloride nephritis in the Brown Norway rat. I. A role for T suppressor cells. *Eur J Immunol* 14, 464.
- GOLDMAN M., DRUET P. & GLEICHMANN E. (1991) Th2 cells in systemic autoimmunity: insights from allogeneic diseases and chemically-induced autoimmunity. *Immunol Today* 12, 223.
- GILLESPIE K.M., SAOUDI A., KUHN J., DRUET P., BELLON B. & MATHIESON P.W. (1996) Th1/Th2 cytokine gene expression after mercuric chloride in susceptible and resistant rat strains. *Eur J Immunol* 26, 2388.
- MATHIESON P.W. & GILLESPIE K.M. (1996) Cloning of a partial cDNA for rat interleukin12 (IL12) and analysis of IL12 expression *in vivo*. *Scand J Immunol* 44, 11.
- 17. CHOMCZYNSKI P. & SACCHI N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. *Anal Biochem* **162**, 156.
- KERMARREC N., DUBAY C., DE GOUYON B. *et al.* (1996) Serum IgE concentration and other immune manifestations of treatment with gold salts are linked to the MHC and IL4 regions in the rat. *Genomics* 31, 111.
- HIMMELRICH H., PARRA-LOPEZ C., TACCHINI-COTTIER F., LOUIS J.A. & LAUNIOS P. (1998) The IL4 rapidly produced in BALB/c mice after infection with Leishmania major downregulates IL12 receptor beta 2-chain expression on CD4+ T cells resulting in a state of unresponsiveness to IL12. *J Immunol* 161, 6156.