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We develop a probabilistic method for analyzing global features of a
cellular network under intrinsic statistical fluctuations, which is im-
portant when there are finite numbers of molecules. By making a
self-consistent mean field approximation of splitting the variables in
order to reduce the large number of degrees of freedom, which is
reasonable for a not very strongly interacting network, we discovered
that the underlying energy landscape of the mitogen-activated pro-
tein kinases (MAPKs) signal transduction network (with experimen-
tally measured or inferred parameters such as chemical reaction rate
coefficients in the network) is funneled toward a global minimum
characterized by the nonequilibrium steady-state fixed point of the
system at the end of the signal transduction process. For this system,
we also show that the energy landscape is robust against intrinsic
fluctuations and random perturbation to the inherent chemical reac-
tion rates. The ratio of the slope versus the roughness of the energy
landscape becomes a quantitative measure of robustness and stabil-
ity of the network. Furthermore, we quantify the dissipation cost of
this nonequilibrium system through entropy production, caused by
the nonequilibrium flux in the system. We found that a lower
dissipation cost corresponds to a more robust network. This least
dissipation property might provide a design principle for robust and
functional networks. Finally, we find the possibility of bistable and
oscillatory-like solutions, which are important for cell fate decisions,
upon perturbations. The method described here can be used in a
variety of biological networks.

funnel � stability � potential landscape � function

The ultimate goal of biology is to understand the function of
specific systems. At the cell level, the function of the system is

realized through the network of interactions between molecules.
Unraveling the underlying mechanisms and global principles of the
cellular network is the current challenge in systems biology.

There has been some experimental investigation of these net-
works. The experimental progress has been made through large-
scale genetic mutations and screenings, gene expressions, yeast
two-hybrids, pull-down, and immunoprecipitation (1–4). These
experiments find that cellular networks, in general, are quite robust
and perform their biological functions in the midst of environmen-
tal perturbations. Synthetic biology is aiming to follow in the
footsteps of electronic design by piecing together small modular
components to build a much larger network and, by doing this, study
the network from a bottom-up perspective (5). This approach is just
at the beginning stage and seems to have a promising future.

On the theoretical side, the topological structures of the
networks have been investigated recently (6). The scale-free
properties and hierarchical architectures for the networks have
been shown (7–9). The highly connected nodes in the network,
called hubs, might play an important role in the robustness of the
network. From the engineering perspective, efforts have been
made to understand the network from control perspectives with
robust yet fragile natures (10). There have been a number of
studies attempting to determine why networks are robust in their
biological function among perturbations (11–24).

The most common way of modeling these systems is through
chemical rate equations. From this, deterministic trajectories can be
found, and from these trajectories inference can be drawn to the
possible biological function. These trajectories can only span a small
piece of the whole phase space. To determine more of the phase
space and global features of this space under a set of parameters,
one would need to examine all of the initial conditions, a hopeless
task in most systems. To understand the network’s global nature
under different external conditions, one must change the inherent
parameters, thus further complicating the task. Because this will
generally introduce a high dimensionality into the phase space, the
issues of stability, robustness, and other global properties become
very hard to address and examine.

A major problem is that the typical chemical rate equations
ignore inherent statistical f luctuations in the number of particles,
N. This is not a problem when N �� 1 because fluctuations go
as �N. There are only a finite number of molecules in the cell,
typically on the order of 103 or less. The intrinsic statistical
f luctuations, which are negligibly small in the bulk, become very
important. Thus, it is necessary to move from a deterministic
model to a statistical model. The study of the influence under
external noise from the cellular environments for the MAPK
system was carried out in an earlier article (19). Here, we will
focus on the intrinsic noise from number fluctuation.

We can begin this statistical description by noticing that the
chemical rate equations are only approximations up to the average
concentration level. In the cell, there are statistical fluctuations
around this concentration, coming from internal and external
sources. The internal noise comes from the finite number of
molecules, as we mentioned above, whereas the external noise
comes from the highly dynamical and inhomogeneous environ-
ments of the interior of the cell (25–30). Both of these sources of
noise are important in determining properties of the network.

Although there are huge number of states in the phase space
that are hard to explore globally, the probability of each state is
not uniformly distributed. It might be that most of the states only
have small probabilities, but only a finite number of states have
larger probabilities. The states with higher probabilities are
biologically more relevant and should be the focus rather than
the states with lower weights. Thus, an approach to determining
the probability of each state will allow us to identify the
important states for biological function and furthermore study
their stability and robustness.
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Noisy conditions thus play a very important role in these
chemical reaction networks and are much more realistic than the
average mean concentrations. To describe the system under
noisy conditions, we will define a potential energy function that
is derived from the steady-state probability of the network. After
this landscape is determined, the probability of each state is
known and we can begin to analyze global features (19, 22, 23).
This is reminiscent of equilibrium systems, where one can
analyze the phase diagram and other global features. Once the
network problem is put into terms of the generalized potential
energy function or potential energy landscape, the issue of the
global stability or robustness is much easier to address. The
purpose of this article was to study the global robustness or
stability against intrinsic f luctuations and random perturbation
to the inherent chemical reaction rates directly from the prop-
erties of the potential energy landscape of the network. We will

focus on the network landscape under the intrinsic statistical
f luctuations due to the finite number of molecules in the cell.

Because the cell is an open system, the network is a far-from-
equilibrium system. The dynamics is not only determined by the
underlying landscape but also by nonzero flux due to the lack of
detailed balance. This can lead to a more complete description
with potential and the flux for the network system in analogy to
the electronic circuit with voltage and current. As an open
nonequilibrium system, there will be heat dissipation and en-
tropy production in analogy from the electric circuit with voltage
and current generating heat losses (23, 31, 32). This entropy
production can be used to characterize the global features of the
system.

To explore the nature of the underlying potential energy
landscape of the cellular networks, we will study the relatively
simple yet important MAPK signal transduction network (Fig.
1). Mitogen-activated protein kinases (MAPKs) belong to a
family of serine/threonine protein kinases widely conserved
among eukaryotes and are involved in many cellular programs
such as proliferation, differentiation, movement, and cell death.
MAPK signaling cascades are organized hierarchically into the
three-tiered modules. MAPKs are phosphorylated and activated
by MAPK kinases (MAPKKs), which in turn are phosphorylated
and activated by MAPKK kinases (MAPKKKs). The MAPKKK
is in turn activated by interaction with a family of small GTPases
and/or other protein kinases connecting the MAPK module to
the cell-surface receptor or external stimuli (2, 3) (Fig. 1). We
will examine the MAPK network by uncovering the underlying
energy landscape under intrinsic statistical f luctuations through
the master equations of the system.

Results and Discussions
Once the probability distribution function, P(x, t), for the state
variable x (x represents the protein concentrations in the MAPK
signal transduction network case) is solved, the corresponding

Fig. 1. MAPK cascade.

Fig. 2. Projection of energy landscape. (A) Zero-dimensional projection: Energy histogram of network. (B) Energy spectrum of network. (C) One-dimensional
projection: Energy projected across inner product Q. (D) One-dimensional projection: Energy projection across RMSD.
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steady-state probability PSS(x) can be obtained by taking the long
time limit. The potential energy function U(x) (14, 18–23, 33)
can be related to steady-state probability:

PSS�x� �
1
Z

exp��U�x�� , [1]

with the partition function Z � 	ddx exp{�U(x)}. From this, we can
recognize U as a potential energy function for the network system.
Once the potential energy landscape is determined, we can examine
the global properties of the protein cellular networks.

The potential energy is a multidimensional function in concen-
tration vector x space with each component of which representing
the concentration of each type of proteins. For certain configura-
tions of concentrations, the network adopts a certain potential
energy (or the corresponding probability). The dimensionality of
the configurational state space is huge. We are interested, first of
all, in the most probable configuration that corresponds to the
lowest energy state. We found that the lowest energy state or the
most probable configuration is the one at the end stage (ground
state) of the MAPK signal transduction, which corresponds to the
fixed-point steady-state solution of the averaged chemical rate
equations for the MAPK network. However, this distribution is
22-dimensional and thus very difficult to visualize or analyze
directly. Because of this, we will have to consider lower dimensional
projections of this free energy distribution.

First, let us consider the 0th-dimension projection, the histogram
(Fig. 2A). The minimum of this projection corresponds to the steady
state of the system, which also corresponds to the traditional
solution of the chemical rate equations. This correspondence comes
about because all reactions only involve single reactants. Fig. 2B
shows the potential energy spectrum for our system. Notice that the
global minimum of the potential energy is significantly separated
from the rest of the spectrum.

However, we need a quantifiable measure for this projection.
To arrive at this, we will consider a dimensionless quantity, which
we call the robustness ratio of the distribution, 
 � �U/�U,
where �U � �U � Umin, and �U is the half spread of the
histogram. The �U is a measure of the forcing and bias toward
the global minimum of the potential energy, whereas �U is a
measure of the roughness and possibility of being locally trapped
in the potential energy landscape. When 
 is significantly larger
than 1, the bias toward the minimum is much stronger than the
probability of local trapping; thus, the global minimum is well
separated and distinct from the rest of the network potential
energy spectrum. The robustness ratio for this network is 2.45.
This signifies that the MAPK network is robust under intrinsic
statistical f luctuations, which is not surprising because the
network is required by evolutionary concerns to be robust.

Now, let us consider one-dimensional projections. The two
one-dimensional coordinates we will consider are the RMS
distance from global minimum, that is xRMS � ��i(xi � xmin)2

and a normalized inner product Q � (xmin�x)/�xmin��x�, where xmin
is the minimum energy state of the system. Because this inner
product is defined in the normal way for Rn, the Q value is
equivalent to cos �, where � is the angle between these two state
phase space vectors. Thus, a value of Q � 0 describes orthogonal
vectors with no overlap and Q � 1 describes parallel vectors with
complete overlap. From Fig. 2C, we see a downhill trend toward
Q � 1, implying a tendency to align with the global minimum of
the potential energy landscape. This tendency shows that there
does exist a funnel in the potential energy landscape. Another
coordinate, the RMS distance (RMSD), shows the overall phase
space distance separation of the two states. Fig. 2D shows a
similar downhill slope and overall funneled landscape toward the
global minima for the RMSD projection.

It is also important to examine the parameter space. To do
this, we varied the reaction rates of the system. Specifically, the
reaction rates were taken from a probability distribution with a
mean of the unperturbed rate, c�, and a standard deviation given
by � � lp � c�, where lp is the level of perturbation applied to
the system. From this, we examine what happens to the system
at a different location in the parameter space.

Fig. 3A shows the robustness ratio 
 of the MAPK network
versus the energy of the ground state. There is a monotonic
relationship between the ground state energy and the robustness
ratio 
. When 
 is larger (smaller), the landscape is more (less)
robust, and the network is more (less) stable with ground state
dominating (less significant). Therefore, 
 is indeed a robustness
measure for the network. We observe that the system is stable
under most of the perturbations through changing the rates. There
are rare events that cause big changes that could significantly
destabilize the system and lower both 
 and the probability of the
ground state.

Fig. 3B shows the robustness ratio 
 versus the perturbation level
lp. We see again that with small variances of perturbations of the
chemical reaction rates, the network is with a large 
 characterizing
the funneled landscape and stability of the system. With larger
variances of perturbations of chemical reaction rates, the networks
typically have smaller 
 and smaller probability of ground state
compared with the biological one. This means that large pertur-
bative states are less stable than the biological one. The biological
functioning network is quite different from the random ones in
terms of the underlying energy landscape and stability. This shows
that as the variance of the chemical rate increases, the likelihood of
these rare events that cause disruption of the system becomes
greater.

Fig. 3C shows the standard deviation in the robustness ratio 

versus the perturbation level lp. We observe that the standard

Fig. 3. Landscape robustness versus perturbation levels of chemical rate constants. (A) �
 relationship with ground state energy. (B) �
 variation with change
in perturbation level. (C) Standard variation versus changes in perturbation level.
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deviation of 
 increases with the amount of perturbation. This
indicates that not only does the higher perturbation make
degradation of the system more likely, but that these events
become possibly more severe. This greater severity causes lower

 to occur and thus increases the variance in the robustness ratio.

We can also examine a measure of the characteristic kinetic time
� it takes to reach steady state. We will do this by considering the
same initial conditions while perturbing the rates at different
variance levels of the system. From Fig. 4A, the average � does
increase with an increase in the perturbation level. This is also
matched by an increase in the energy spread of the system, ��U
(Fig. 4B). This increase in ��U indicates that there is more local
trapping in the system, which indicates a longer time being ‘‘stuck’’
in the local roughness of the system and thus the increase in �.

The MAPK system is open and reaches a nonequilibrium
state. The steady-state solution of the system is not an equilib-
rium state. This come about because the flux (Fijsteady-state �
�TijPisteady-state � TjiPjsteady-state), where Tij is the transition
probability from state i to state j, of the system at steady state is
not zero. In an equilibrium state, the flux would reach zero.
Therefore, to describe a nonequilibrium network system, we
need the steady-state probability or the underlying landscape as
well as the flux. Because of this f lux, the nonequilibrium steady
state will dissipate energy, resulting in heat loss. This dissipation
will be equal to the entropy production rate (23, 31, 32) in steady
state. The entropy production rate for the whole network (Ṡ)
includes the contribution from the system (Ṡsys) (equal to zero in
steady state) and the dissipation from environments (Ṡdis):

Ṡ � Ṡsys � Ṡdis � �
ij

TjiPj ln� TjiPj

TijPi
� . [2]

Because this entropy production is a feature of the global
properties of the network, we can use it to analyze global features
of the network, such as stability and robustness.

In Fig. 5A, we plotted the entropy production (per unit time) or
the dissipation cost of the network in steady state, Ṡ, versus 
 for
certain variance of the chemical reaction rates. We can see the
entropy production rate decreases as 
 increases. Thus, we can
suggest that the most robust systems produce the least amount of
entropy. The fact that robustness is linked with the entropy pro-
duction rate may reflect the fact that fewer fluctuations and
perturbations in rates lead to a more robust and stable network—
and more energy saving—and therefore fewer costs in the mean
time. This might provide us with a design principle of optimizing the
connections of the network with minimum dissipation cost for the
network.

In Fig. 5B, we can see that the entropy production rate
increases as the variances of the inherent chemical reaction rates
increase. This implies that the lesser the variation in the under-
lying chemical reactions rates, the more robust the network and
the less entropy production or heat loss for the network. This can
be very important for the network design. This implies that
nature might evolve such that the network is robust against
internal (intrinsic) and environmental perturbations, and per-
forms specific biological functions with minimum dissipation
cost. In our study, this is also the equivalent of optimizing the
robustness or stability of the network.

For most of the perturbations, we observed the strong funnel
unchanging and thus a monostable solution. However, under some
of the perturbations there did arise bistable or oscillatory solutions.
For the bistable solutions, there was generally a strong minima and
a weak minima, with the weak minima being at a higher energy and
the weak minima occupying a much smaller region in phase space.

Fig. 4. Characteristic time and landscape roughness versus perturbation level of chemical rate constant. (A) Variation of characteristic time to reach steady state
with perturbation level. (B) �U versus perturbation level. This indicates an increase in local trapping of the system.

Fig. 5. Normalized entropy production versus robustness ratio (A) or perturbation level (B). Entropy production was normalized so that the unperturbed system
has an entropy production value of 1.
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(See Fig. 6 for a two-dimensional projection of a bistable state.) We
speculate that this bistability is formed by the different rates being
such values as to form a feed-forward-like connection between the
middle of the cascade and the end. Under the set of perturbations
that we ran, we found that monostability occurred 84% of the time,
whereas bistability and oscillatory-like solutions occurred 12% and
4% of the time. Most of the perturbations that cause the change to
the global features are related to sections of the network that
connect different subsections of the network. Notice also that that
these important nodes, which connect different subsections, are
also the hubs of the network. We must be careful in calling some
of these solutions oscillatory; because we are working in a high-
dimensional space, it is possible that these oscillatory-looking
solutions are actually strange attractors. This is why we classify the
solutions as oscillatory-like. Thus, under most perturbations, the
system is in a strong robust format. The possible bistability is
important toward making cell fate decisions (34). This bistability is
especially important because it occurs without imposing an artificial
feedback loop on the system.

Conclusions
We used the experimentally inferred rate parameters to prove that
the network is funneled in configurational space of protein con-
centrations toward the ground nonequilibrium steady-state fixed
point under the intrinsic statistical fluctuations. As already men-
tioned, the parameter space of the cellular network is huge, in fact
exponential (MN, where M is the number of specific type of proteins
and N is the number of different protein types). It is impossible to
search all of the parameter space to explore the global stability or
robustness with dynamical equations. Our study provides a self-
consistent mean field method to reduce the dimensionality to
polynomial (M � N) so that large networks can be studied.

We show that natural evolution might only select certain
parameter space with the funneled underlying energy landscape.
The other part of the parameter space that generates the rough

potential landscape cannot guarantee the global robustness and
therefore is not able to appropriately perform the specific
biological function required for efficient transformation of the
information signals. They are more likely to phase out from
evolution. The funneled landscape, therefore, may be a realiza-
tion of the Darwinian principle of natural selection at the cellular
network level for efficient transformation of the information
(signal transduction). As we see, the funneled landscape pro-
vides an optimal criterion to select the suitable parameter
subspace of cellular networks, guarantee the robustness, cost the
least dissipations, and perform specific biological functions. This
will lead to an algorithm for the network connections that is
potentially useful for network design.

Under perturbations, the system can be made into a bistable
system. It is also important to note that this is done without
directly introducing a feed-back or feed-forward interaction into
the network. This bistability will be important in the determi-
nation of the cell fate decisions important for this network.

It is worth pointing out that the approach described here is
general and can be applied to many cellular networks such as
signaling transduction networks (2), metabolic networks (35), cell
cycle networks (11), and gene regulatory networks (12, 15, 21, 22).

Methods
Most theoretical models of chemical networks involve the use of chemical rate
equations. As mentioned before, there are problems with this approach.

We will first start with a description of the MAPK cascade (see Fig. 1). In the
first step, the activation of MKKK is catalyzed by an enzyme E1. In the second
step, the reverse is catalyzed by an enzyme E2. The third and fourth steps
represent the two-collision, nonprocessive mechanism for the double phos-
phorylation of MKK; these steps are catalyzed by MKKK-P, whereas their
reverses are catalyzed by a phosphatase KKPase. Likewise, the seventh and
eighth steps represent the double phosphorylation of MAPK catalyzed by the
active MKK-PP, and the reverse steps are catalyzed by a phosphatase KPase.

Based on the Michaelis–Menten enzyme kinetic equation, one can
derive a set of differential equations that describe the average rate process
for concentrations in the cascade (2, 3). The associated chemical reaction
rate coefficients are measured or inferred from the experiments in Xenopus
oocyte (2, 3).

The probabilistic evolution of this network due to the intrinsic fluctuations
from a finite number of molecules follows the master equation in high
dimensional protein concentration space. Thus, the basic equations of model
become dP(xi)/dt � ��a�(xi � �xi,�)P(xi � �xi,�) � a�(xi)P(xi), where a� is the
reaction rate for reaction �, and �xi,� is the change of xi during the reaction.
There are some basic assumptions with this model, primarily that the system
is made of Markov processes.

This is still very difficult if there are many different types of particles, since
the number of equations of this form will grow as n1 � n2 � n3 � . . . We will
be making a self-consistent mean field approximation (12, 21, 22), that is P(xi,
xj, . . . ) � �iPi(xi). This reduces the number of equations to n1 � n2 � . . .

Because the individual probability distributions are now independent, we
can describe each Pi(xi) by a series of moments: �xi, �xi

2, . . . , �xi
n, . . . Thus, we

can convert from a series of differential equations describing the probability
to a series of moment differential equations. For example, we can calculate
the first moment to infer the approximate Poisson distribution, we can
calculate the second moment to infer the approximate Gaussian distribution
for individual probability P(Xi). The moment equations are listed in supporting
information (SI) Appendix. We notice that these moment equations are
themselves closed (they do not depend on higher order moments) for MAPK,
so they can be solved exactly. We did so numerically up to second order
moment to infer the underlying distribution. We only present the results in the
main text.
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