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1 Introduction

The structural and morphological aspects of heart develop-

ment have been well-described over the past years.

Continuing research is performed on the genetic pathways,

transcription factors and growth factors important for

determination and specification of the various components

and segments of the cardiovascular system during embryo-

genesis. It is necessary to realize that the intricate expression

patterns and cellular and molecular interactions take place in

a growing embryo with an increasing oxygen and fuel

consumption. This is accompanied by an expanding car-

diovascular system that is continuously adapting to the

changing needs of the embryo. As the cardiovascular system

is the first to function in an embryo we have to incorporate in

our scientific thinking the forces generated by the heart with

the local effects on the various components and segments as

early as the heart is present. The cyclic activity of the heart

generates both pressure and flow, both dampened and

transmitted by the physico-chemical characteristics of the

wall of the system and of the blood, incorporating their

changing composition during development.

Here, we will concentrate on the influence of the blood

flow and the ensuing shear stress [5] in the rapidly changing

geometry of the developing cardiovascular system. The

forces exerted on the wall will activate intracellular sig-

naling pathways inducing alterations in gene expression

patterns that are at the basis of differentiation steps. As a

consequence, abnormal flow patterns and the origin of

congenital malformations are closely interlinked. The same

holds for disease processes such as plaque formation after

birth and during aging.

2 Geometrical changes during development

At the time of the first contractions, the heart is an almost

straight tube with only a light curvature. The blood becomes

pumped regularly from the caudally located venous pole

towards the cranially located arterial pole. Here, the heart is

connected to the aortic sac that divides in a bilateral set of

pharyngeal (or branchial) arteries. The latter expands from

only one left and right artery towards as many as five sets in a

tightly controlled pattern of, e.g., adding the fourth set,

whereas the first set disappears. The pharyngeal arch arterial

system in whatever constellation in an early embryo, will

aggregate towards the partly bilateral dorsal aorta (Fig. 1).

Finally, the pharyngeal arterial system and dorsal aorta will

become asymmetric because several segments disappear on

one side, but persist on the contralateral side. Remnants of

the disappearing vessels, however, can still be found as they

remain connected to microcirculatory networks in, e.g., the

craniofacial region. Flow dividers and complex 3D curves

are inherent to the changing geometry of the arterial system

and are, therefore, players in the shear stress theatre.

Meanwhile, the heart tube is looping three-dimension-

ally, while keeping the arterial and venous poles close

together. The complex loop results in a tight inner curve

and a wider outer curve (Fig. 1) with foreseeable differ-

ences in flow and shear profiles. The next step will be local

expansion of the outer curve resulting in chamber forma-

tion, including atrium and ventricles. Separation of these

chambers by septation and valve formation is very complex

and beyond the scope of this paper. Nevertheless, this is

R. E. Poelmann (&) � A. C. Gittenberger-de Groot �
B. P. Hierck

Department of Anatomy and Embryology,

LUMC, Leiden, The Netherlands

e-mail: r.e.poelmann@lumc.nl

123

Med Biol Eng Comput (2008) 46:479–484

DOI 10.1007/s11517-008-0304-4



important to understand the changes in flow in relatively

late phases of cardiac development.

The rendering of correct and accurate 3D images of the

growing and remodeling cardio-vascular system is far from

trivial. Several approaches have been used to ascertain

lumen boundaries and wall dimensions including optical

[24, 54], echo-Doppler ultrasound [6, 24, 35] and even

micro-MRI [21, 22, 42]. Casting techniques have provided

solid lumen models of specific stages of development [39]

that have been confirmed by computational fluid dynamics

[7]. The combination of these approaches is needed to

assess the reciprocal effects of wall movement by con-

traction and of fluid flow to generate frictional forces. The

ensuing shear stress on the endothelial and endocardial

inner lining of the vascular system will be transmitted

either intracellularly to result in gene expression changes,

e.g., Krüppel-like factor-2 [8], intra-epithelially as, e.g.,

calcium fluxes [36], or even trans-epithelially as signals

towards underlying mesenchyme or myocardium [14].

The venous system connects to the sinus venosus and

drains the various parts of the embryo and the extra-

embryonic membranes, including the yolk sac and in

mammals also the placenta. Although most of the blood is

stored in the extra-embryonic membranes, forces are gen-

erally low here, and this part of the circulation is mostly

ignored. Experimentally, however, it is used as an easily

accessible gateway to change the inflow of the blood by,

e.g., ligating yolk sac vessels in chicken embryos [13, 20].

3 Flow patterns in the embryo

It is evident that flow patterns and wall geometry are intri-

cately linked. A linear heart tube with sequential chambers as

Fig. 1 Computerized reconstructions after serial histological sections

of embryos represent three subsequent stages of the developing chick

heart. First row (a–d), left lateral view of Hamburger Hamilton (HH)

stage18. Second row (e–h), left ventrolateral view HH24. Third row

(i–l), ventral view HH27. The cardiac and vascular compartments are

annotated in d, h and l, respectively. Note the disappearance of the

second pharyngeal arch artery PAA (compare d, h) and the

emergence of the sixth one in h. The asterisk denotes the inner

curvature of the looping heart that becomes tighter during develop-

ment. The outflow tract (OFT) is connected to the pharyngeal arch

arteries (PAA). The OFT is located right sided in HH18, subsequently

it becomes wedged between both atria and centrally localized in the

cardiac contour in HH27. The stained parts in the columns represent

the expression of the respective shear stress-induced genes, KLF2
(blue), ET1 (yellow) and NOS3 (green). Note that KLF2 is restricted

to the narrow zones (AVC, OFT, PAA 2, 3, 4), whereas ET1 is

preferentially localized in the wider segments. NOS3 is mainly absent

from the wider atrial segments. Abbreviations: 2/3/4/6th 2nd, 3rd, 4th

and 6th pharyngeal arch arteries, * inner curvature of the heart,

A primitive Atrium, AVC Atrioventricular canal, DAo Dorsal aorta,

LA left atrium, LV left ventricle, OFT Outflow tract, RA right atrium,

RV right ventricle, SV sinus venosus, V primitive ventricle. Figure

modified after [12 ]
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in fish [24, 31] will show similar patterns as the embryonic

heart tube in mammals and birds [12, 40]. It is challenging to

model and quantify 3D changes during further development of

cardiac looping. This step is essential to combine computa-

tional fluid dynamics [7, 24] and (micro-) particle velocimetry

[23, 26, 54] with vascular wall characteristics, even serving

the construction of artificial valves [48] in adult life.

Not only flow patterns are important but also the type of

flow, being laminar, oscillatory or pulsatile. Furthermore,

in vitro experiments demonstrate that KLF2 expression is

time dependent [55]. In a continuously growing and

remodeling embryonic vascular bed we have to realize that

these aspects lead to temporal profiles of changes in shear

and concurrent cellular reactions. For this reason reactions

evoked under steady flow conditions in vitro are not easily

transferable to in embryo situations.

4 Shear stress and gene expression

As blood flow is an aspect of the vascular system, which is

lined with endothelium and endocardium, these cells are

mostly influenced by shear stress. In isolated HUVEC an

estimated 3% of the investigated genes are up- or down

regulated by laminar shear stress [37] whereas in intact

umbilical vein segments even 17% of the genes is affected

by mechanical forces, nearly half of these being shear-

related [1]. Most of the shear related genes, approximately

900 [1], are not changed by stretch from which it is con-

cluded that endothelial cells are able to discriminate

between shear and stretch forces.

Laminar shear stress activates integrins and thereby

induces changes in gene expression such as MMP9,

includes metabolic steps, such as MAPK phosphorylation

and results in increased NFjB DNA binding [47]. NFjB is

indeed an important intermediary between shear stress and

changes in cellular function [16, 38], although the path-

ways may start differently, e.g., by activating integrins

[47], TNFa [38], KLF2 [10, 29], TGFb-SMAD2 [11],

E-selectin [9] and many others. Many of these studies have

been performed in vitro and in adult atherosclerosis set-

tings [41]. Vascular remodeling has been linked to

hemodynamic forces as well [32, 33], whereas the control

of arterial branching has been ascribed to flow-driven

regulation of genes such as VEGF and ephrin-B2 [28], The

differentiation of the early vascular bed into arterial and

venous conduits is likewise flow dependent.

5 Shear stress in the embryo

In embryonic stages few reports have demonstrated the

involvement of laminar flow on changing gene expression

patterns [12, 13, 29]. It is becoming increasingly important

to discriminate between various types of flow as it has been

demonstrated in adult vessels that laminar, oscillatory and

pulsatile flow patterns exert different reactions with respect

to the emergence of atherosclerotic events [4, 8, 52, 53].

Patterns of flow responsive genes such as ET1, KLF2 and

NOS3 have been analyzed [12] in the early chicken embryo

during looping of the cardiac tube (Fig. 1). These genes are

differentially expressed in the endocardium and confine to

areas with low (ET1) and high shear (KLF2 and NOS3).

Low shear areas are found in the wide parts of the heart,

whereas high shear is found in the narrow parts, i.e. the

atrioventricular canal and the outflow tract. This is nicely

illustrated when a computational fluid dynamical model

[54] is superimposed on the geometry of the looping heart

tube [13, 17] demonstrating low shear in the inner curve

and high shear in the outer curve [18], co-localizing with

the mentioned gene products.

6 Shear stress sensing

Endothelial cells are able to discriminate between cyclic

stretch and shear stress [1]. The sensing mechanisms

involves, e.g., integrins and caveolae, but also cell junc-

tions and adhesion molecules [30, 49, 56]. The primary

cilium also referred to as the cell’s antenna [34, 43] can be

added as they are also present on endothelial and endo-

cardial cells [25, 36, 53], even during embryonic

development [52]. These cilia dissociate under high and

under laminar flow showing their sensitivity to changing

flow conditions. Central to these diverse ‘‘receptors’’ is

the cytoskeleton, integrating both the microtubular and

microfilamentous elements with the primary cilium

(unpublished). Cytoskeletal deformation by blood flow,

amplified by the primary cilium, activates the membrane

linked effector molecules, which then signal to the nucleus

to activate gene expression. After induced breakdown of

the microtubules or the microfilaments in cells under var-

ious flow conditions, the expression of shear dependent

genes changes, demonstrating the direct link between flow

changes, cytoskeleton and differentiation. Essential in

immediate primary cilium-mediated response appears to be

a calcium signal as demonstrated in polaris-deficient mice

[3] and in polycystic kidney disease, a mutant lacking cilia

[36].

7 Changing hemodynamics results in cardiovascular

malformations

About a decade ago, the venous clip model was introduced

to analyze the effects of venous return to the heart [19, 20]
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by temporal or permanent ligation of a yolk sac vein,

forcing the blood to make a deviation and return to the

sinus venosus via a different route. Marking with minute

amounts of dyes the return paths (or streamlines) from

various veins, they showed that the complete venous flow

pattern through the heart was changed. This situation was

maintained over prolonged time. It was also evident that

the various streamlines hardly mixed, even so in the con-

tracting heart, and remained separate from each other after

fusion of small veins into larger collecting vessels. After

survival many of these embryos presented with major

cardiovascular defects, including ventricular septal defects

and outflow tract anomalies [2, 20]. From these results the

conclusion seemed warranted that hemodynamic altera-

tions are at the base of congenital cardiovascular defects

[18]. The next step was to investigate gene expression

patterns in the venous clipped embryos and they changed

accordingly [13] providing a direct link between altered

hemodynamics, changed gene expression patterns and

congenital malformations.

Cardiac function has been assayed in these embryos [51]

using Doppler-frequency detection methods. Combined

with the heart rate, various parameters could be calculated

including peak systolic, time averaged, and end diastolic

velocities, mean blood flow and stroke volume. The

increase of these parameters during normal development is

used as golden standard for the interpretation of results

after clipping [45, 50]. A combination with pressure-vol-

ume loop assessment [44] confirmed an increase in

stiffness of the cardiac tube and reduced contractility by the

changed mechanical load [46].

The pathways involved are also under investigation with

pharmacological approaches using, e.g., epinephrin [27].

This causes a significant increase in heart rate, peak and

mean velocities, peak and mean blood flows, stroke volume

and aortic diameter. Endothelin receptor blockade resulted

in diminished endothelin signaling that is different for the

embryonic and the extra-embryonic part of the circulation.

This is mainly due to the absence of the ETA receptor in

the vitelline vascular system, while both the ETA and ETB

receptors are present and apparently functioning in the

embryo proper [15].

8 Summary

It is evident that hemodynamic factors have a dominant

function already during early cardiogenesis. Flow and

ensuing shear stress are sensed by endothelial cells by,

ciliary modified, cytoskeletal deformation which then

activates a number of subcellular structures and molecules.

Shear stress dependent changes mostly converge towards

NFjB signaling and DNA binding, thereby altering

metabolic paths and influencing differentiation of the cells.

Geometry of the vascular system heavily affects the flow

and shear patterns, as is the case in the adult vasculature

where atheroprone areas nicely coincide with the frequency

of the primary cilium as shear stress sensor.
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