Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Jan;125(1):205–210. doi: 10.1128/jb.125.1.205-210.1976

Inhibition of nucleoside Q formation in transfer ribonucleic acid during methionine starvation of relaxed-control Escherichia coli.

J R Katze, R D Mosteller
PMCID: PMC233353  PMID: 1107305

Abstract

The elution profiles of Asp-tRNA from unstarved and starved cultures of a relaxed-control (Rel-) strain of Escherichia coli were compared by reversed-phase chromatography. Methionine starvation results in the appearance of several additional species of Asp-tRNA which are not observed with starvation for leucine or histidine. By the criterion of cyanogen bromide-effected shifts in chromatographic elution position, a large portion of the tRNAAsp synthesized in methionine-starved cells lacks the normal Q nucleoside. By the same criterion, virtually all of the tRNAAsp from unstarved, leucine-starved, and histidine-starved cells contain Q. We conclude that methionine starvation prevents the formation of the norma Q nucleoside in Rel- E. coli.

Full text

PDF
207

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Armstrong D. J., Schäfer K. P., Söll D. Maturation of a hypermodified nucleoside in transfer RNA. Nucleic Acids Res. 1975 May;2(5):691–698. doi: 10.1093/nar/2.5.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartz J., Söll D., Burrows W. J., Skoog F. Identification of the cytokinin-active ribonucleosides in pure Escherichia coli tRNA species. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1448–1453. doi: 10.1073/pnas.67.3.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chase R., Tener G. M., Gillam I. C. Changes in levels of amino acid acceptors in tRNA from Escherichia coli grown under various conditions. Arch Biochem Biophys. 1974 Jul;163(1):306–317. doi: 10.1016/0003-9861(74)90481-0. [DOI] [PubMed] [Google Scholar]
  4. FLEISSNER E., BOREK E. STUDIES ON THE ENZYMATIC METHYLATION OF SOLUBLE RNA. I. METHYLATION OF THE S-RNA POLYMER. Biochemistry. 1963 Sep-Oct;2:1093–1100. doi: 10.1021/bi00905a032. [DOI] [PubMed] [Google Scholar]
  5. Fournier M. J., Peterkofsky A. Formation of chromatographically unique species of transfer ribonucleic acid during amino acid starvation of relaxed-control Escherichia coli. J Bacteriol. 1975 May;122(2):538–548. doi: 10.1128/jb.122.2.538-548.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goodman H. M., Abelson J. N., Landy A., Zadrazil S., Smith J. D. The nucleotide sequences of tyrosine transfer RNAs of Escherichia coli. Eur J Biochem. 1970 Apr;13(3):461–483. doi: 10.1111/j.1432-1033.1970.tb00950.x. [DOI] [PubMed] [Google Scholar]
  7. Gross H. J., Raab C. In vivo synthesis of tRNA Tyr 1 and tRNA Tyr 2 : differences in "early" and "late log" E. coli MRE 600. Biochem Biophys Res Commun. 1972 Mar 24;46(6):2006–2011. doi: 10.1016/0006-291x(72)90751-6. [DOI] [PubMed] [Google Scholar]
  8. Harada F., Nishimura S. Possible anticodon sequences of tRNA His , tRNA Asm , and tRNA Asp from Escherichia coli B. Universal presence of nucleoside Q in the first postion of the anticondons of these transfer ribonucleic acids. Biochemistry. 1972 Jan 18;11(2):301–308. doi: 10.1021/bi00752a024. [DOI] [PubMed] [Google Scholar]
  9. Harada F., Yamaizumi K., Nishimura S. Oligonucleotide sequences of RNase T 1 and pancreatic RNase digests of E. coli aspartic acid tRNA. Biochem Biophys Res Commun. 1972 Dec 18;49(6):1605–1609. doi: 10.1016/0006-291x(72)90525-6. [DOI] [PubMed] [Google Scholar]
  10. Harris C. L., Titchener E. B. Sulfur-deficient transfer ribonucleic acid. The natural substrate for ribonucleic acid sulfurtransferase from Escherichia coli. Biochemistry. 1971 Nov;10(23):4207–4212. doi: 10.1021/bi00799a008. [DOI] [PubMed] [Google Scholar]
  11. Huang P. C., Mann M. B. Comparative fingerprint and composition analysis of the three forms of 32P-labeled phenylalanine tRNA from chloramphenicol-treated Escherichia coli. Biochemistry. 1974 Nov 5;13(23):4704–4710. doi: 10.1021/bi00720a004. [DOI] [PubMed] [Google Scholar]
  12. Isham K. R., Stulberg M. P. Modified nucleosides in undermethylated phenylalanine transfer RNA from Escherichia coli. Biochim Biophys Acta. 1974 Mar 8;340(2):177–182. doi: 10.1016/0005-2787(74)90110-5. [DOI] [PubMed] [Google Scholar]
  13. Jacobson M., Hedgcoth C. Levels of 5,6-dihydrouridine in relaxed and chloramphenicol transfer ribonucleic acid. Biochemistry. 1970 Jun 9;9(12):2513–2519. doi: 10.1021/bi00814a018. [DOI] [PubMed] [Google Scholar]
  14. Juarez H., Skjold A. C., Hedgcoth C. Precursor relationship of phenylalanine transfer ribonucleic acid from Escherichia coli treated with chloramphenicol or starved for iron, methionine, or cysteine. J Bacteriol. 1975 Jan;121(1):44–54. doi: 10.1128/jb.121.1.44-54.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kasai H., Oashi Z., Harada F., Nishimura S., Oppenheimer N. J., Crain P. F., Liehr J. G., von Minden D. L., McCloskey J. A. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. Biochemistry. 1975 Sep 23;14(19):4198–4208. doi: 10.1021/bi00690a008. [DOI] [PubMed] [Google Scholar]
  16. Katze J. R. Alterations in SVT2 cell transfer RNAs in response to cell density and serum type. Biochim Biophys Acta. 1975 Mar 10;383(2):131–139. doi: 10.1016/0005-2787(75)90254-3. [DOI] [PubMed] [Google Scholar]
  17. Katze J. R., Mason K. H. Comparison of the acceptance activity of the ribosome-bound and the total cellular transfer ribonucleic acids from SV40-transformed mouse fibroblasts. Biochim Biophys Acta. 1973 Dec 21;331(3):369–381. doi: 10.1016/0005-2787(73)90023-3. [DOI] [PubMed] [Google Scholar]
  18. Kelmers A. D., Heatherly D. E. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal Biochem. 1971 Dec;44(2):486–495. doi: 10.1016/0003-2697(71)90236-3. [DOI] [PubMed] [Google Scholar]
  19. Kitchingman G. R., Fournier M. J. Inhibition of post-transcriptional modification of E. coli tRNA. Brookhaven Symp Biol. 1975 Jul;(26):44–52. [PubMed] [Google Scholar]
  20. Kivity-Vogel T., Elson D. On the metabolic inactivation of messenger RNA in Escherichia coli: ribonuclease I and polynucleotide phosphorylase. Biochim Biophys Acta. 1967 Mar 29;138(1):66–75. doi: 10.1016/0005-2787(67)90586-2. [DOI] [PubMed] [Google Scholar]
  21. Mann M. B., Huang P. C. New chromatographic form of phenylalanine transfer ribonucleic acid from Escherichia coli growing exponentially in a low-phosphate medium. J Bacteriol. 1974 Apr;118(1):209–212. doi: 10.1128/jb.118.1.209-212.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Muench K. H., Safille P. A. Transfer ribonucleic acids in Escherichia coli. Multiplicity and variation. Biochemistry. 1968 Aug;7(8):2799–2808. doi: 10.1021/bi00848a015. [DOI] [PubMed] [Google Scholar]
  23. Munns T. W., Sims H. F. Methylation and processing of transfer ribonucleic acid in mammalian and bacterial cells. J Biol Chem. 1975 Mar 25;250(6):2143–2149. [PubMed] [Google Scholar]
  24. Münch H. J., Thiebe R. Biosynthesis of the nucleoside Y in yeast tRNAPhe: incorporation of the 3-amino-3-carboxypropyl-group from methionine. FEBS Lett. 1975 Mar 1;51(1):257–258. doi: 10.1016/0014-5793(75)80900-8. [DOI] [PubMed] [Google Scholar]
  25. Rao Y. S., Cherayil J. D. Studies on chemical modification of thionucleosides in the transfer ribonucleic acid of Escherichia coli. Biochem J. 1974 Nov;143(2):285–294. doi: 10.1042/bj1430285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saneyoshi M., Nishimura S. Selective inactivation of amino acid acceptor and ribosome-binding activities of Escherichia coli tRNA by modification with cyanogen bromide. Biochim Biophys Acta. 1971 Aug 12;246(1):123–131. doi: 10.1016/0005-2787(71)90077-3. [DOI] [PubMed] [Google Scholar]
  27. Saneyoshi M., Nishimura S. Selective modification of 4-thiouridylate residue in Escherichia coli transfer RNA with cyanogen bromide. Biochim Biophys Acta. 1970 Apr 15;204(2):389–399. doi: 10.1016/0005-2787(70)90158-9. [DOI] [PubMed] [Google Scholar]
  28. Saponara A. G., Enger M. D. The isolation from ribonucleic acid of substituted uridines containing alpha-aminobutyrate moieties derived from methionine. Biochim Biophys Acta. 1974 Apr 27;349(1):61–77. doi: 10.1016/0005-2787(74)90009-4. [DOI] [PubMed] [Google Scholar]
  29. Seidman J. G., Comer M. M., McClain W. H. Nucleotide alterations in the bacteriophage T4 glutamine transfer RNA that affect ochre suppressor activity. J Mol Biol. 1974 Dec 25;90(4):677–689. doi: 10.1016/0022-2836(74)90532-4. [DOI] [PubMed] [Google Scholar]
  30. Singhal R. P., Best A. N. Examination of highly purified transfer RNAs from Escherichia coli. Differences in amount of minor components and presence of a cytidine-thiouridine photoproduct in "normal" tRNAs; a comparison of two analytical methods. Biochim Biophys Acta. 1973 Dec 21;331(3):357–368. [PubMed] [Google Scholar]
  31. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  32. Walker R. T., RajBhandary U. L. Studies on polynucleotides. CI. Escherichia coli tyrosine and formylmethionine transfer ribonucleic acids: effect of chemical modification of 4-thiouridine to uridine on their biological properties. J Biol Chem. 1972 Aug 10;247(15):4879–4892. [PubMed] [Google Scholar]
  33. Waters L. C., Shugart L., Yang W. K., Best A. N. Some physical and biological properties of 4-thiouridine- and dihydrouridine-deficient tRNA from chloramphenicol-treated Escherichia coli. Arch Biochem Biophys. 1973 Jun;156(2):780–793. doi: 10.1016/0003-9861(73)90332-9. [DOI] [PubMed] [Google Scholar]
  34. White B. N. Chromatographic changes in specific tRNAs after reaction with cyanogen bromide and sodium periodate. Biochim Biophys Acta. 1974 Jul 11;353(3):283–291. doi: 10.1016/0005-2787(74)90021-5. [DOI] [PubMed] [Google Scholar]
  35. White B. N., Tener G. M. Activity of a transfer RNA modifying enzyme during the development of Drosophila and its relationship to the su(s) locus. J Mol Biol. 1973 Mar 15;74(4):635–651. doi: 10.1016/0022-2836(73)90054-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES