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Abstract
Background: An important goal of whole-genome studies concerned with single nucleotide
polymorphisms (SNPs) is the identification of SNPs associated with a covariate of interest such as
the case-control status or the type of cancer. Since these studies often comprise the genotypes of
hundreds of thousands of SNPs, methods are required that can cope with the corresponding
multiple testing problem. For the analysis of gene expression data, approaches such as the empirical
Bayes analysis of microarrays have been developed particularly for the detection of genes
associated with the response. However, the empirical Bayes analysis of microarrays has only been
suggested for binary responses when considering expression values, i.e. continuous predictors.

Results: In this paper, we propose a modification of this empirical Bayes analysis that can be used
to analyze high-dimensional categorical SNP data. This approach along with a generalized version
of the original empirical Bayes method are available in the R package siggenes version 1.10.0 and
later that can be downloaded from  http://www.bioconductor.org.

Conclusion: As applications to two subsets of the HapMap data show, the empirical Bayes analysis
of microarrays cannot only be used to analyze continuous gene expression data, but also be applied
to categorical SNP data, where the response is not restricted to be binary. In association studies
in which typically several ten to a few hundred SNPs are considered, our approach can furthermore
be employed to test interactions of SNPs. Moreover, the posterior probabilities resulting from the
empirical Bayes analysis of (prespecified) interactions/genotypes can also be used to quantify the
importance of these interactions.

Background
Whole-genome experiments comprise data of hundreds
of thousands of single nucleotide polymorphisms (SNPs),
where a SNP is the most common type of genetic varia-
tions that occurs when at a single base pair position differ-
ent base alternatives exist in a population. SNPs are
typically biallelic. Therefore, SNPs can be interpreted as
categorical variables having three realizations: the
homozygous reference genotype (if both chromosomes
show the more frequent variant), the heterozygous geno-

type (if one chromosome shows the more frequent, and
the other the less frequent variant), and the homozygous
variant genotype (if both bases explaining the SNP are of
the less frequent variant).

Since SNPs can alter the risk for developing a disease, an
important goal in studies concerned with SNPs is the
identification of the SNPs that show a distribution of the
genotypes that differs substantially between different
groups (e.g., cancer vs. non-cancer). Detecting such SNPs
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requires methods that can cope with this vast multiple
testing problem in which hundreds of thousands of
hypotheses are tested simultaneously. Naturally, the value
of a statistic appropriate for the considered testing situa-
tion and the corresponding p-value are computed for each
variable, where in the case of SNPs Pearson's χ2-statistic is
an appropriate test score. These raw p-values are then
adjusted for multiple comparisons such that a Type I error
rate is strongly controlled at a prespecified level of signif-
icance α.

The classical example for a Type I error rate is the family-
wise error rate

FWER = Prob(V ≥ 1),

where V is the number of false positives, i.e. the number
of rejected null hypotheses that are actually true – or in
biological terms, the number of SNPs found by the proce-
dure to differ between groups that actually do not differ
between the groups. This error rate is strongly controlled
at a level α so that Prob(V ≥ 1) ≤ α by approaches such as
the Bonferroni correction or the procedures of Westfall
and Young [1]. An overview on such methods is given in
[2]. In [3], procedures for controlling this and other error
rates are compared in an application to gene expression
data.

In classical multiple testing situations in which rarely
more than 20 hypotheses are tested simultaneously, it is
reasonable to keep down the probability of one or more
false positives. However, in the analysis of data from
whole-genome studies, hundreds of thousands of SNPs
are considered simultaneously. Moreover, a few false pos-
itives are acceptable in such experiments as long as their
number is small in proportion to the total number R of
rejected null hypotheses, i.e. identified SNPs. This situa-
tion for which the family-wise error rate might be too con-
servative is thus similar to the multiple testing problem in
studies concerned with gene expression data. In the anal-
ysis of such DNA microarray data, another error rate,
namely the false discovery rate

proposed by Benjamini and Hochberg [4], has hence
become popular which in turn is a reasonable choice in
the analysis of high-dimensional SNP data.

Apart from adjusting p-values, there also exist other
approaches for adjusting for multiple comparisons such
as the significance analysis of microarrays (SAM [5]) and
the empirical Bayes analysis of microarrays (EBAM [6])

that have been developed particularly for the analysis of
gene expression data.

In the original versions of both SAM and EBAM, a moder-
ated t-statistic is computed. In SAM, the observed values
of this test score are then plotted against the values of the
statistic expected under the null hypothesis of no differ-
ence between the two groups, and a gene is called differ-
entially expressed if the point representing this gene in
this Quantile-Quantile plot is far away from the diagonal.
In EBAM, the density f of the observed values z of the
moderated t-statistic is modeled by a mixture of the den-
sity f1 of the differentially expressed genes and the density
f0 of the not differentially expressed genes, i.e. by

f(z) = π0f0(z) + π1f1(z),

where π1 and π0 = 1 - π1 are the prior probabilities that a
gene is differentially expressed or not, respectively. Fol-
lowing Efron et al. [6], a gene having a z-value of z* is
detected to be differentially expressed if the posterior
probability

for being differentially expressed is larger than or equal to
0.9.

In [7], a generalized version of the SAM algorithm is pre-
sented, whereas in [8,9] SAM is adapted for categorical
data such as SNP data.

In the following section, we first present a generalized
EBAM algorithm. Then, we propose an adaption of EBAM
enabling the analysis of categorical data. As computing
the values of the test statistic for all SNPs individually
would be very time-consuming, we further suggest an
approach based on matrix algebra that allows to compute
all values simultaneously. Afterwards, EBAM for categori-
cal data is applied, on the one hand, to two subsets of the
high-dimensional SNP data from the HapMap project
[10], and on the other hand, to simulated data that mimic
data from a typical association study in which several ten
SNPs are considered. In the latter application, it is also
shown how EBAM can be applied to identify SNP interac-
tions associated with the response, and how it can be used
to specify the importance of prespecified SNP interac-
tions.

Methods
Generalized EBAM algorithm
In Algorithm 1, a generalized version of the empirical
Bayes analysis of microarrays (EBAM [6]) is presented.
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This algorithm makes use of the fact that for a given rejec-
tion region Γ, the FDR can be estimated by

where zi is the observed value of the test statistic Zi for var-

iable i = 1 � m, π0 is the prior probability that a gene is not

differentially expressed – or more generally, that a varia-

ble is not associated with the response – and  (#{Zi ∈

Γ}) is the number of values expected under the null

hypothesis to fall into Γ [11].

Several procedures have been suggested to estimate the

prior probability π0[6,11,12]. Efron et al. [6], e.g., propose

to use a narrow interval  around z = 0, and to estimate

π0 by the ratio of the number of observed z-values in 

to the number of z-values that are expected under the null
hypothesis to fall into . However, the narrower , the
more instable is this estimate. To stabilize this estimate,
we use the procedure of Storey and Tibshirani [12] in
which a natural cubic spline h with three degrees of free-
dom is fitted through the data points

where

and qλ denotes the λ quantile of the (estimated) null dis-
tribution. The estimate of π0 is then given by

Algorithm 1 (Generalized EBAM Procedure)
Let X be an m × n matrix comprising the values of m vari-
ables and n observations, y be a vector of length n com-
posed of the values of the response for the n observations,
and B be the number of permutations.

1. For each variable i = 1, ..., m, compute the value zi of a
statistic appropriate for testing if the values of this variable
are associated with the response.

2. If the null density f0, is known, use a density estimation

procedure to obtain  and compute . Other-

wise, estimate the ratio ϕ = f0/f directly by

(a) determining the m permuted z-values zib for each per-
mutation b = 1, ..., B of the n values of the response,

(b) binning the m observed and mB permuted z-values
into an appropriate number of intervals,

(c) fitting a logistic regression model with repeated obser-
vations through these intervals using an appropriate
regression function.

3. Estimate π0 by the procedure of Storey and Tibshirani
[12].

4. For each variable i, compute the posterior probability

5. Order the observed z-values to obtain z(1) ≤ ... ≤ z(m), and

set 

6. For a prespecified probability ∆ or a set of appropriate
values for ∆,

(a) set , and compute the

upper cut-off cU by

(b) set , and compute the

lower cut-off cL by

(c) call all variables i with  significant, where

 denotes the complement of the rejection

region Γ∆,

(d) estimate the FDR of Γ∆ by

where
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The original version of EBAM is of course a special case of
Algorithm 1: Efron et al. [6] compute the moderated t-sta-
tistic

for each gene i = 1, ..., m, where di is the difference of the
groupwise mean expression values and si is the corre-
sponding standard deviation such that di/si is the ordinary
t-statistic. The fudge factor a0 is computed by the quantile
of the m standard deviations that leads to the largest
number of genes called differentially expressed in a stand-
ardized EBAM analysis (see [6] for details on this stand-
ardized analysis). Since the null distribution of (1) is
unknown, the response is permuted repeatedly to gener-
ate mB permuted z-values. Efron et al. [6] then bin the m
observed and mB permuted z-values into 139 intervals.
Treating the observed scores as successes and the per-
muted values as failures, a logistic regression model is fit-
ted through the binned data points using a natural cubic
spline with five degrees of freedom as regression function.
For details on this logistic regression, see Remark (D) in
[6].

Algorithm 1 also comprises the approach used by Efron
and Tibshirani [13] to test two-group gene expression data
with Wilcoxon rank statistics.

The main difference between Algorithm 1 and the original
version of EBAM is that Efron et al. [6] call all genes differ-
entially expressed that have a posterior probability larger

than or equal to ∆ = 0.9, whereas we only call a variable i

with 1(zi) ≥ ∆ significant if there is no other variable

with a more extreme z-value (a larger z-value if zi > 0, or a

smaller z-value if zi < 0) that has a posterior probability

less than ∆. This approach that is comparable to the pro-
ceeding in SAM, therefore, ensures that all variables with
a z-value exceeding some threshold are called significant,
whereas in the original version of EBAM it might happen
that a variable is not called significant, even though it has
a more extreme z-value than some of the identified varia-
bles.

Another difference is that Efron et al. [6] consider one
fixed posterior probability, namely ∆ = 0.9, for calling
genes differentially expressed, whereas we allow both to
prespecify one probability ∆ and to consider a set of rea-
sonable values for ∆. The latter again is similar to the SAM
procedure in which the number of genes called differen-
tially expressed and the estimated FDR is determined for
several values of the SAM threshold, and then the value is
chosen that provides the best balance between the
number of identified genes and the estimated FDR. This
approach can be helpful when the detection of interesting
variables is just an intermediate aim, and the actual goal
of the analysis is, e.g., the construction of a classification
rule. In such a case, prespecifying the value of ∆ might
work poorly, as this might lead to either a too small
number of identified variables, or a too high FDR. For an
example of this proceeding in the context of the empirical
Bayes analysis, see the application of EBAM for categorical
data to the HapMap data set.

EBAM for categorical data
We now assume that our data consist of m categorical var-
iables each exhibiting C levels denoted by 1, ..., C, and n
observations each belonging to one of R groups denoted
by 1, ..., R. If these variables are SNPs, C = 3.

A statistic appropriate for testing each of the m categorical
variables if its null distribution differs between the R
groups is Pearson's χ2-statistic

where nrc and rc are the observed number of observa-

tions and the number of observations expected under the
null hypothesis in group r = 1, ..., R, respectively, showing
level c = 1, ..., C.

Since the small denominator problem [5,6,14], which is
the reason for adding the fudge factor a0 to the denomina-
tor of the ordinary t-statistic in (1), does not show up in
this case, it is not necessary to add a fudge factor to the
denominator of (2). Therefore, Algorithm 1 can be
applied to SNPs – or to any other type of (genetic) categor-
ical data – by employing Pearson's χ2-statistic as test score.

In EBAM, it is assumed that all variables follow the same
null distribution. In the permutation based approach of
Algorithm 1, this, e.g., means that not only the B per-
muted z-values corresponding to a particular variable, but
all mB permutations of all m variables are considered in
the estimation of the null distribution of this variable.
Normally, this is an advantage in the analysis of high-
dimensional data [6,15]. In the analysis of categorical
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data, this, however, might lead to a loss of a large number
of variables, as only variables showing the same number
of levels can be considered together in an EBAM analysis.

Approximation to χ2-distribution
Since the null distribution of (2) can be approximated by
a χ2-distribution with (R - 1)(C - 1) degrees of freedom,
only the density f of the observed test statistics needs to be
estimated. This can be done by applying a (non-paramet-
ric) kernel density estimator to the observed z-values [16].
However, the standard kernels are typically symmetric
such that negative values of z will have a positive esti-
mated density, even though f(z) = 0 for z < 0. A solution
to this problem is to use asymmetric kernels that only give
non-negative values of z a positive density [17,18].
Another solution, which we will use, is a semi-parametric
method proposed by Efron and Tibshirani [19].

In the first step of this procedure, a histogram of the
observed z-values is generated. To obtain a reasonable
number of bins for the histogram, we employ the one-
level bin width estimator of Wand [20]. Although other
bin width estimators such as the approaches of Scott [21]
or of Freedman and Diaconis [22] lead to different bin
widths, the densities resulting from the method of Efron
and Tibshirani [19] are virtually identical. The approach
of Sturges [23], however, which is, e.g., the default
method for estimating the number of bins in the R func-
tion hist, typically leads to a much too small number of
intervals when considering large numbers of observations
[24], and is therefore an inappropriate procedure in our
application.

In the second step of the procedure of Efron and Tib-
shirani [19], a Poisson regression model is fitted in which
the midpoints of the bins are used as explanatory varia-
bles, and the numbers of observations in the intervals are
the values of the response. As most of the SNPs are
assumed to show the same distribution in the different
groups, the density f of the observed z-values typically
looks similar to the null density f0, but has a heavier right
tail (see Figure 1). We therefore use a natural cubic spline
with three degrees of freedom as regression function if (R
- 1)(C - 1) ≤ 2. For (R - 1)(C - 1) ≥ 3, a natural cubic spline
with five degrees of freedom would be a reasonable regres-
sion function. However, in functions such as the R func-
tion ns for generating the basis matrix of the spline, the
inner knots by default are given by the 20%, 40%, 60%,
and 80% quantile of the midpoints of the bins. These
inner knots work well for symmetric densities. But the χ2-
distribution is asymmetric – in particular for a small value
of the degrees of freedom. If (R - 1)(C - 1) ≥ 3, we hence
specify the inner knots directly by centering them around
the mode and not around the median. The inner knots are
thus given by the 0.4qM, 0.8qM, 1 - 0.8(1 - qM), and 1 -

0.4(1 - qM) quantile of the midpoints, where qM is the
quantile of the midpoints that corresponds to the mode
estimated by the midpoint of the bin of the histogram
containing the most observations. If there is more than
one bin showing the largest number of observations, then
the smallest of the corresponding midpoints is used as
estimate. Other mode estimators such as the half-range
mode [25,26] might lead to better estimates than this ad
hoc methods, but the estimation of f is typically only
slightly influenced by the choice of the mode estimator.

In Figure 2, the estimated densities of four χ2-distribu-
tions with different degrees of freedom resulting from the
application of this procedure to 100,000 values randomly
drawn from the respective χ2-distribution are displayed,
where the inner knots are centered, on the one hand,
around the mode (red lines), and on the other hand,
around the median (cyan lines). This figure reveals that
the former leads to a better estimation than using the
standard inner knots. In fact, the densities estimated using
the former approach are very similar to the true densities.

Having estimated f,  is determined, and the

remaining steps 3 to 6 of Algorithm 1 are processed.

Permutation based estimation of the null density

If the assumptions for the approximation to the χ2-distri-
bution are not met [27], the null density f0 also has to be

estimated. In this case, we calculate the ratio  directly by

permuting the group labels B times, computing the mB
permuted z-values, dividing these scores and the m
observed z-values into intervals, and fitting a logistic
regression model through the binned data points. Similar
to the application of the procedure of Efron and Tib-

shirani [19] (see previous section), the estimation of ϕ
does not depend on the number of intervals used in the
binning as long as this number is not too small or too
large. We therefore follow Efron et al. [6], and split the
observed and permuted z-values into 139 intervals. Since
the rejection region is one-sided when considering Pear-

son's χ2-statistic as test score, a natural cubic spline with
three degrees of freedom is used as regression function.

Implementation
Whole-genome studies comprise the genotypes of hun-
dreds of thousands of SNPs for each of which the value of
Pearson's χ2-statistic (2) has to be computed. Since calcu-
lating these values one-by-one is very time-consuming, we
employ matrix algebra for determining all the scores
simultaneously.

ˆ / ˆϕ = f f0

ϕ̂
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Assume that we have given an m × n matrix X in which
each row corresponds to a categorical variable exhibiting
the levels 1, ..., C, and a vector y comprising the group
labels 1, ..., R of the n observations represented by the col-
umns of X.

Firstly, C m × n indicator matrices X(c) for the C levels are
constructed by setting the elements of these matrices to

i = 1, ..., m, j = 1, ..., n. Furthermore, an n × R matrix Y with
entries yjr = I(yj = r) is built in which each column repre-
sents one of the R group labels. Then, we set

N(c) = X(c)Y

and

c = 1, ..., C, where 1n is a vector of length n consisting only

of ones, so that the ith column and rth row of the m × R

x I x c
x c

ij
c

ij
ij( ) ( )

,
,= = =

=



1

0

if 

otherwise

N X 1 1 Y,( ) ( )c c
n nn

= ′1

Densities of the test scores in the analyses of the HapMap dataFigure 1
Densities of the test scores in the analyses of the HapMap data. On the left hand side, the histograms and the esti-
mated densities (marked by red lines) of the values of Pearson's χ2-statistic of the SNPs from the two subsets of the HapMap 
data (upper panel: JPT vs. CHB, lower panel: all four HapMap populations) are shown. The cyan line marks the estimated den-
sity when the inner knots are centered around the median in the natural cubic spline used in the density estimation. On the 
right hand side, the estimated densities (again, marked by red lines) and the corresponding null densities (black lines) are dis-
played.
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matrices N(c) and (c) comprise the observed and the
expected number of observations, respectively, that
belong to the rth group and show the cth level at the ith
variable. Afterwards, the m × R matrices

are determined by elementwise matrix calculation, i.e. by
setting

Finally, the vector z comprising the value of Pearson's χ2-
statistic for each of the m variables is given by

If the permutation based version of EBAM for categorical
data is used, then not "just" m, but m(B + 1) z-values have

N

S
N N

N

( )
( ) ( )

( )
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c c

c
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c nir
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cir
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Estimating the density of the χ2-distributionFigure 2
Estimating the density of the χ2-distribution. For different degrees of freedom, the true (black line) and the estimated 
density (red line) of the χ2-distribution are shown, where the density is estimated by applying the procedure of Efron and Tib-
shirani [19] to 100,000 values randomly drawn from the χ2-distribution. The cyan line marks the estimated density when the 
inner knots of the natural cubic spline are centered around the median in the df ≥ 3 case.
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to be computed. Again, matrix algebra can help to speed
up computation by considering all B permutations at
once, or – if the number of variables or permutations is
too large – subsets of the B permutations.

For this, suppose that L is a B × n matrix in which each row
corresponds to one of the B permutations of the n group
labels. If the B × n indicator matrices L(r), r = 1, ..., R, are
defined analogously to X(c), then the m × B matrix Z0 =
{zib} containing the mB permuted z-values can be deter-
mined by

where  is the rth column of , � is the symbol for the

Kronecker product, and * and the fraction line denote ele-
mentwise matrix calculation.

Processing time
To evaluate how much the matrix calculation procedure
presented in the previous section can speed up the com-
putation in comparison to an individual determination of
Pearson's χ2-statistic, both approaches are applied to sev-
eral numbers of variables. In Table 1, the resulting
processing times are summarized. This table shows that
employing matrix algebra leads to an immense reduction
of time needed for computation – in particular if the
number m of variables is large. If, e.g., 100,000 variables
are considered, it takes just 6.2 seconds to determine the
values of Pearson's χ2-statistic when employing matrix
calculation, but more than 4.5 minutes when calculating
the values one-by-one.

Note that the main reason for this immense reduction in
computation time is not that the matrix calculation
approach is algorithmically less complex than an individ-

ual computation, but that the implementation of this
approach makes essential use of the way how vectoriza-
tion and matrix multiplication are implemented in R [28].

Results
To exemplify that EBAM can be used to analyze high-
dimensional categorical data, it is first applied to two sub-
sets of the genotype data from the International Hapmap
Project [10]. Afterwards, it is shown how EBAM can be
employed to identify SNP interactions associated with the
response in association studies, and to quantify the
importance of genotypes. R code for reproducing the
results of all analyses performed in this section is available
in Additional file 1.

Application to HapMap data
In the International HapMap Project, millions of SNPs
have been genotyped for each of 270 people from the four
populations Japanese from Tokyo (abbreviated by JPT),
Han Chinese from Beijing (CHB), Yoruba in Ibadan,
Nigeria (YRI), and CEPH (Utah residents with ancestry
from northern and western Europe, abbreviated by CEU).

About 500,000 of these SNPs have been measured using
the Affymetrix GeneChip Mapping 500 K Array Set that
consists of two chips. In this paper, we focus on the
BRLMM (Bayesian Robust Linear Models with Mahalano-
bis distance) genotypes [29] of the 262,264 SNPs from
one of these chips, namely the Nsp array (see [30] for
these genotypes).

JPT vs. CHB
Since we are mainly interested in case-control studies, or
more generally in binary responses, EBAM is applied to
the 45 JPT and the 45 CHB to detect the SNPs that show a
distribution that differs substantially between these two
population. Another reason is that both the JPT are unre-
lated, and the CHB are unrelated, whereas the other two
populations consist each of 30 trios each of which is com-
posed of genotype data from a mother, a father and their
child.

Since in EBAM it is assumed that all variables follow the
same null distribution, only SNPs showing the same
number of genotypes are considered in the same EBAM
analysis. Moreover, the current implementation of EBAM
in the R package siggenes cannot handle missing values
such that either missing genotypes have to be imputed, or
SNPs with missing genotypes have to be removed prior to
the EBAM analysis. Therefore, 54,400 SNPs showing one
or more missing genotypes and 75,481 SNPs for which
not all three genotypes are observed at the 90 persons are
excluded from the analysis leading to a data set composed
of the genotypes of 132,383 SNPs.
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Table 1: Comparison of computation times (in seconds) on an 
AMD Athlon XP 3000+ machine with one GB of RAM for both 
the matrix algebra based calculation and the individual 
determination of the values of Pearson's χ2-statistic for different 
numbers of variables and observations. Each of the m variables 
can take C = 3 levels, and each of the n observations belongs to 
one of R = 2 classes.

Matrix Algebra Based Individual

m n = 200 n = 1, 000 n = 200 n = 1, 000

50 < 0.01 0.01 0.13 0.16
100 < 0.01 0.02 0.26 0.32

1,000 0.05 0.40 2.64 3.35
10,000 0.63 2.39 26.74 34.42

100,000 6.16 - 274.96 -
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Using an AMD Athlon XP 3000+ machine with one GB of
RAM on which Windows XP is installed, an application of
EBAM to this data set takes 11.62 seconds if the null den-
sity f0 is approximated by the χ2-density with two degrees
of freedom, whereas it takes about 182 seconds if f0 is esti-
mated using 100 permutations.

In the upper left panel of Figure 1, a histogram and the

estimated density  of the observed test scores is dis-

played. For many of the SNPs the assumptions for an

approximation to the χ2-distribution might not be met
[27], as some of the expected numbers in the correspond-
ing contingency table are smaller than 5. We therefore pre-

fer not to use the approximation to the χ2-distribution,
but the permutation based approach of EBAM for categor-
ical data.

Employing the threshold ∆ = 0.9 as suggested by Efron et
al. [6], i.e. calling all SNPs significant that have a posterior
probability of being significant larger than or equal to 0.9,
leads to the identification of 193 SNPs with an estimated
FDR of 0.08.

It is, however, also possible to use EBAM similarly to SAM
[5,7]. For this, assume that we aim, on the one hand, to
control the FDR at a level of about 0.05, and on the other
hand, to identify about 200 SNPs for further analyses
with, e.g., discrimination methods [9,31] such as logic
regression [32]. In Table 2, the numbers of detected SNPs
and the corresponding FDRs are summarized for six rea-
sonable values of ∆. This table reveals that it is not possi-
ble to attain both goals simultaneously, as calling 200
SNPs significant would lead to an FDR larger than 0.08,
whereas controlling the FDR at 0.05 would result in the
identification of about 42 SNPs. This table also shows that
∆ = 0.90 (or ∆ = 0.91) provides a good trade-off between
the two goals. Hence, ∆ = 0.90 will be also a good choice
here if EBAM is used similarly to SAM.

A list of the 193 SNPs with a posterior probability of being
significant larger than or equal to 0.9 along with links to
dbSNP [33] is available in the Additional file 2. Besides

the z-values and the posterior probabilities 1(z), this file

also contains an estimate for the local FDR for each SNP

[6]. Contrary to the FDR employed to quantify the overall
accuracy of a list of variables, the local FDR proposed by
Efron et al. [6] is a variable-specific measure that can be
estimated by

Multi-class case
EBAM for categorical variables is not restricted to binary
responses. It, e.g., can also be used to identify the SNPs
showing a distribution that differs strongly between the
four HapMap populations.

For this analysis, the most obvious dependencies are
removed by excluding the child from each of the 60 trios
such that 45 JPT, 45 CHB, 60 YRI, and 60 CEU are consid-
ered. Again, all SNPs for which at least one of the 210 val-
ues are missing (104,872 SNPs), or for which not all three
genotypes are observed (14,273 SNPs), are excluded from
the analysis resulting in a data set composed of the geno-
types of 143,119 SNPs. In the lower right panel of Figure
1, the estimated density of the z-values of these SNPs and
the estimated null density are displayed. This figure
reveals that a huge number of these SNPs exhibit a distri-
bution that differs substantially in at least one of the pop-
ulations. In fact, 131,336 SNPs show a posterior

probability 1(z) larger than or equal to 0.9, whereas

33,101 SNPs even have a posterior probability of 1.

To examine which of the populations are responsible for
this huge number of significant SNPs, we perform a two-
class EBAM analysis for each pair of the four HapMap
populations. In Table 3, the numbers of SNPs exhibiting a

posterior probability 1(z) ≥ 0.9 are summarized for all

these analyses. This table reveals that only JPT and CHB
show a small number of SNPs that differ between these
two populations. In all other two-class comparisons, a
huge number of SNPs are called significant, where CEU
differs the most from the other populations. These results
do not seem to be that surprising, since JPT and CHB are
both populations from Asia, whereas the other two popu-
lations come from two other continents.

Identification of interactions

When considering complex diseases, e.g., sporadic breast
cancer, it is assumed that not individual SNPs, but inter-
actions of SNPs have a high impact on the risk of develop-
ing the disease [34,35]. In such a case, it would therefore
be of interest to also test interactions of SNPs. However, in

f̂

p̂

fdr( ) ( ) ( ) .z z p z= = −( )π0 11j

p̂

p̂

Table 2: Estimated FDRs and numbers of identified SNPs for 
several values of the threshold ∆.

0.89 0.90 0.91 0.92 0.93 0.94 0.95

Number 224 193 147 109 66 42 22
FDR 0.090 0.080 0.070 0.063 0.056 0.048 0.039
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whole-genome studies in which the number m of SNPs is
in the tens or even hundreds of thousands, it would take
– depending on the order of the interactions – hours, days

or even weeks to compute the test scores for all p-

way interactions comprised by the m variables. For strate-
gies on testing two-way interactions comprised by data
from a simulated whole-genome study on a cluster of
computers and their computation times, see [36]. Here,
we focus our interest on the EBAM analysis of interactions
of SNPs from association studies such as the GENICA
study [9,37] in which typically several ten SNPs are exam-
ined.

For the simulation of such a study, data for 50 SNPs and
1,000 observations are generated by randomly drawing

the genotypes 1 (for the homozygous reference), 2 (heter-
ozygous), and 3 (homozygous variant) for each SNP Si, i
= 1 ,..., 50, where the minor allele frequency of the SNP is
chosen uniformly at random from the interval [0.25, 0.4].
Afterwards, the case-control status y is randomly drawn
from a Bernoulli distribution with mean Prob(Y = 1),
where

l

logit(Prob(Y = 1)) = -0.5 + I(S6 ≠ 1, S7 = 1),

such that the probability of being a case is 62.25% if SNP
S6 is not of the homozygous reference genotype and SNP
S7 is of this genotype.

In the left panel of Figure 3, the result of the application
of EBAM to these 50 SNPs is displayed. This figure shows
that S6 is the only SNP with a posterior probability larger
than or equal to 0.9, and thus the only SNP called signifi-
cant. This figure also reveals that S7 shows the eighth larg-
est z-value with a posterior probability of 0.313. If,
however, the m(m - 1)/2 = 1,225 two-way interactions of
the m = 50 SNPs are considered, then the interaction of S6
and S7 shows the by far largest z-value (see right panel of
Figure 3). Most of the other features found to be signifi-
cant are interactions of S6 with another SNP. In this anal-

m

p











Table 3: Numbers of significant SNPs found in pairwise EBAM 
analyses of the four HapMap populations.

JPT CHB YRI CEU

JPT - 148 66,410 92,732
CHB 148 - 66,196 92,492
YRI 66,410 66,196 - 92,969

CEU 92,732 92,492 92,969 -

EBAM analysis of the simulated dataFigure 3
EBAM analysis of the simulated data. Scatter plots of the posterior probabilities vs. the z-values resulting from the appli-
cations of EBAM to both the simulated SNPs themselves (left panel) and the two-way interactions comprised by these SNPs 
(right panel). Red points mark SNPs or SNP interactions called significant by EBAM, as their posterior probability is larger than 
or equal to 0.9 (dashed line).
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ysis, not all 1,225, but 1,224 of the two-way interactions
are included, since one of the interactions shows only
seven of the nine genotypes comprised by the respective
two SNPs, and is thus excluded from the EBAM analysis of
interactions showing all nine genotypes.

This analysis is repeated several times using different sim-
ulated data sets each generated randomly with the above
settings. In each of the applications of EBAM to the indi-
vidual SNPs, either one of S6 and S7, or both are identified
to be significant. Rarely, also other SNPs show a posterior
probability larger than 0.9. In all of the analyses of the
two-way interactions, the interaction of S6 and S7 is
detected to be the most important one.

Measuring the importance of genotypes
EBAM cannot only be used to detect interesting variables
or interactions. The posterior probabilities estimated by
EBAM can also be employed to quantify the importance of
features found by other approaches such as logicFS [38].

Logic regression [32] – which is employed as base learner
in logicFS – is an adaptive regression and classification
procedure that searches for Boolean combinations of
binary variables associated with the response. Since this
method has shown a good performance in comparison to
other discrimination [9,39] and regression [40,41]
approaches, a bagging [42] version of logic regression is
used in logicFS to identify interactions of SNPs that are
potentially interesting, i.e. associated with the response.
While some of the found genotypes/interactions, that are
of a similar form as the one intended to be influential for
the disease risk in the previous section, have a high impact
on the disease risk, others are only found at random by
logicFS. It is therefore necessary to quantify the impor-
tance of the detected genotypes.

Since logic regression and thus logicFS can only handle
binary predictors, each SNP has to be split into (at least)
two binary dummy variables. We follow [32,38] and code
each SNP Si, i = 1, ..., m, by

Si1: "Si is not of the homozygous reference genotype."

Si2: "Si is of the homozygous variant genotype."

such that Si1 codes for a dominant and Si2 for a recessive
effect. The genotype intended to be influential in the sim-
ulated data set described in the previous section can thus
also be specified by the logic expression

where C denotes the complement of a binary variable with
outcome true or false, and  represents the AND-operator.

Contrary to the previous section in which each of the

 distributions of the values of the 3p levels comprised

by the respective combination of p of the m SNPs is tested
whether it differs between groups of persons, EBAM is
here applied to conjunctions, i.e. AND-combinations, of
binary variables with outcome true or false which are in
turn binary variables such that genotypes of different
orders, i.e. combinations of genotypes of different num-
bers of SNPs, can be considered together in the same
EBAM analysis.

Applying the single tree approach of logicFS, see [38],
with 50 iterations to the data set composed of the 100
dummy variables coding for the 50 simulated SNPs from
the previous section leads to the detection of 84 poten-
tially interesting interactions. For each of these genotypes
which are conjunctions of one to four binary variables,
the importance is then determined by the posterior prob-
ability estimated by EBAM. The importances, however,
should not be quantified using the same data set on which
the genotypes are identified, as it is very likely that almost
any of the found genotypes is called significant, since it
already has shown up as potentially interesting. In fact, if
EBAM is applied to the 84 genotypes evaluated on the
data set on which they were detected, 70 of them are

called significant using ∆ = 0.9 and 15 show a posterior
probability of 1 (see left panel of Figure 4). While these 15

genotypes are composed of  and one or two

other binary variables, 32 of the genotypes called signifi-

cant do neither contain S6 nor . Moreover, two

genotypes exist that exhibit a larger z-value than

.

It is therefore more appropriate to test the found geno-
types on an independent data set. Thus, a new (test) data
set is randomly generated as described in the previous sec-
tion. Afterwards, the values of the 84 detected genotypes
for the observations from the new data set are computed,
and EBAM is applied to these values.

The same 15 genotypes as in the application to the origi-
nal data set show a posterior probability of 1, where

 is found to be the genotype with the largest z-

value. The other three genotypes also called significant

using ∆ = 0.9 either contain  or S61. All the other

genotypes not intended to have an impact on the disease
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risk, but called significant in the application to the data set
on which they were found show a posterior probability
less than 0.9, and thus are not called significant anymore
in the application to the test data set.

Again, this analysis is repeated several times with different
training and test data sets leading to similar results in each
of the applications.

Conclusion and Discussion
Using the Bayesian framework to adjust for multiple com-
parisons is an attractive alternative to adjusting p-values –
in particular if the data are high-dimensional. Thus, Efron
et al. [6] have suggested an empirical Bayes analysis of
microarrays (EBAM) for testing each gene if its mean
expression value differs between two groups with a mod-
erated t-statistic.

In this paper, we have proposed an algorithm that gener-
alizes this procedure. This algorithm comprises the origi-
nal EBAM analysis of Efron et al. [6] as well as the EBAM
analysis based on Wilcoxon rank sums [13], and allows
for other types of EBAM analyses in other testing situa-
tions. For this, it is only necessary to choose an appropri-
ate test statistic, and, if the null density is known, a
method for estimating the density of the observed test
scores. The EBAM approach for categorical data proposed
in this paper is one example for such an analysis. Another

example would be to use an F-statistic for performing an
EBAM analysis of continuous data (e.g., gene expression
data) when the response shows more than two levels. In
this case, the z-values of the genes would be given by the
values of the F-statistic, and the density of the observed z-
values might be estimated by the procedure of Efron and
Tibshirani [19] if an F-distribution with appropriate
degrees of freedom is assumed to be the null distribution.

The generalized EBAM algorithm along with functions for
using (moderated) t-statistics (one- and two-class, paired
and unpaired, assuming equal or unequal group vari-
ances), (moderated) F-statistics and Wilcoxon rank sums
is implemented in the R package siggenes version 1.10.0
and later that can be downloaded from the webpage [43]
of the BioConductor project [44] (see also the section
Availability and requirements).

siggenes version 1.11.7 and later also contains a function
for the EBAM analysis of categorical data proposed in this
paper. Note that siggenes 1.10.× already comprises a pre-
version of this function. The main difference between
these versions is the estimation of the density f of the
observed test scores: While in siggenes 1.10.× the default
version of the R function ns is used to generate the basis
matrix for the natural cubic spline that is employed in the
estimation of f, the inner knots of this spline are centered
around the mode (and not the median) in siggenes 1.11.7

EBAM applied to the genotypes identified by logicFSFigure 4
EBAM applied to the genotypes identified by logicFS. Scatter plots of the posterior probabilities vs. the z-values result-
ing from the applications of EBAM to the genotypes found in an application of logicFS to the simulated data. On the left hand 
side, the results of the application of EBAM to the data set on which the genotypes are found is shown, whereas on the right 
hand side, an independent data set is used to test the genotypes. Red points mark SNPs called significant by EBAM using ∆ = 0.9 
(dashed line).
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and later which leads to a better estimate of f as Figure 2
shows.

To exemplify how EBAM for categorical data can be
applied to SNP data from whole-genome studies, it has
been used to analyze two subsets of the HapMap data. In
the first application aiming to identify SNPs showing a
distribution that differs substantially between JPT and
CHB, 193 of the 132,383 considered SNPs show a poste-
rior probability larger than or equal to 0.9, and are there-
fore called significant by EBAM, where the estimated FDR
of this set of SNPs is 0.08.

The number of identified SNPs and the corresponding
FDR resulting from this EBAM analysis are identical to the
results of the application of SAM to this HapMap data set
[9] when the same permutations of the group labels are
used in both methods. This is due to the fact that both
EBAM and SAM employ the same approach to estimate
the FDR. Moreover, the same set of SNPs is identified by
both methods, since the same non-negative test statistic is
used in both applications. Virtually the same applies to
the usage of the q-values [11,12] as implemented, e.g., in
John Storey's R package qvalue. For example, each of the
193 SNPs found by EBAM exhibit a q-value less than or
equal to 0.08.

In the second application to the HapMap data set in
which all four populations are considered, most of the
143,119 SNPs show a distribution that differs substan-
tially in at least one of the four groups. This huge number
of differences does not seem to be that surprising, as the
four HapMap populations come from three different con-
tinents. Pairwise EBAM analyses of the four populations
show that CEU is the population that differs the most
from the other populations. Again, a SAM analysis would
lead to the same estimated FDR as the EBAM analysis if
the same number of SNPs is identified, where this set of
significant variables will contain the same SNPs in both
analyses.

An advantage of EBAM over other approaches is that it not
only estimates the FDR for a set of detected variables, but
also naturally provides a variable-specific estimate for the
probability that a variable is associated with the response.

The two applications to the HapMap data, however, also
reveal two restrictions of the EBAM procedure. Since in
EBAM it is assumed that all variables follow the same null
distribution, a large number of SNPs have to be removed
prior to both analyses, as these SNPs either exhibit miss-
ing values or only show (one or) two of the three geno-
types. A solution to the former problem would be to
replace the missing genotypes using imputation methods
such as KNNcatImpute [45] or – when considering

Affymetrix SNP chips – to employ genotype calling algo-
rithms such as RLMM [46] or CRLMM [47] that allow to
obtain genotypes for all SNPs.

An idea to solve the second problem is to perform two
EBAM analyses – one for the SNPs showing only two gen-
otypes, and one for the SNPs with data available for all
three genotypes. Having computed the posterior proba-
bilities for the two sets of SNPs separately and called all
SNPs significant that exhibit a posterior probability of
being significant larger than or equal to ∆ in any of the
analyses, a combined FDR needs to be estimated for both
analysis, since we are interested in one estimate for the
FDR of all detected SNPs. How such a combined estimate
of the FDR can be obtained is an open question that will
be part of future research.

EBAM cannot only be used to test individual categorical
variables such as SNPs, but can also be applied to interac-
tions of these variables.

However, two problems occur when considering interac-

tions. The first problem is that p-way interactions

have to be tested. Although the functions implemented in
siggenes allow to split the variables into subsets, an EBAM
analysis of interactions in high-dimensional data is not
feasible in a reasonable amount of time. It is thus
restricted to data from association studies in which several
ten to a few hundred SNPs are considered.

The second problem is the empty cell problem: The
number of observations available in a study is limited
such that when considering p-way interactions of SNPs
some of the 3p cells of the p-dimensional contingency
tables of some of the interactions will be empty leading to
features with different numbers of categories and thus
with different null distributions. Hence, EBAM cannot be
applied to all of these features at once. In the analysis of
the two-way interactions from the simulated data set, e.g.,
one interaction exhibits values only for seven of the nine
genotypes comprised by two SNPs. This interaction there-
fore has to be removed from the EBAM analysis.

The abovementioned idea of performing separate EBAM
analyses for variables with different numbers of levels and
computing a combined FDR might not be ideal in the case
of interactions, as many different numbers of level could
exist. In such a situation, a better solution is not to con-
sider the p-way interactions as variables with 3p categories,
but to test each of the 3p genotypes comprised by p SNPs
that are observed at at least a particular number of per-
sons. Furthermore, it might make sense to include the
complements of the genotypes, as, e.g., "Not the
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homozygous reference genotype" corresponds to a reces-
sive effect of a SNP. This, however, would increase the
multiple testing problem by a factor of up to 6p such that
a filtering prior to the EBAM analysis might be advisable/
necessary.

Boulesteix et al. [48] propose a multiple testing procedure
for the identification of the combination of genotypes in
a prespecified subset of (interacting) SNPs that shows the
largest association with the response. Another solution to
this multiple testing problem that does not require a pre-
specification of a subset of SNPs has been described in this
paper: Firstly, a search algorithm such as logicFS is used to
identify potentially interesting genotypes, where these
genotypes can be composed of the genotypes from any of
the SNPs considered in the study. Afterwards, the detected
genotypes are tested on an independent data set using
EBAM, where the posterior probability of being significant
resulting from this EBAM analysis can be interpreted as an
importance measure for the genotypes. For this analysis, it
is not necessary that all genotypes are composed of the
genotypes of the same number of SNPs, as they are coded
as binary variables. Quantifying the importance of (com-
binations of) binary variables is implemented in the R
packages logicFS version 1.7.6 and later [49].

Availability and requirements
Project name: siggenes – Multiple testing using SAM and
Efron's empirical Bayes approach

Project home page: http://bioconductor.org/packages/
2.1/bioc/html/siggenes.html (for siggenes 1.12.0)

Operating system(s): Platform independent

Programming language: R

Licence: Free for non-commercial use

Any restrictions to use by non-academics: See the licence
in the siggenes package
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