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Abstract
Background: Mixture models of mutagenetic trees are evolutionary models that capture several
pathways of ordered accumulation of genetic events observed in different subsets of patients. They
were used to model HIV progression by accumulation of resistance mutations in the viral genome
under drug pressure and cancer progression by accumulation of chromosomal aberrations in
tumor cells. From the mixture models a genetic progression score (GPS) can be derived that
estimates the genetic status of single patients according to the corresponding progression along the
tree models. GPS values were shown to have predictive power for estimating drug resistance in
HIV or the survival time in cancer. Still, the reliability of the exact values of such complex markers
derived from graphical models can be questioned.

Results: In a simulation study, we analyzed various aspects of the stability of estimated mutagenetic
trees mixture models. It turned out that the induced probabilistic distributions and the tree
topologies are recovered with high precision by an EM-like learning algorithm. However, only for
models with just one major model component, also GPS values of single patients can be reliably
estimated.

Conclusion: It is encouraging that the estimation process of mutagenetic trees mixture models
can be performed with high confidence regarding induced probability distributions and the general
shape of the tree topologies. For a model with only one major disease progression process, even
genetic progression scores for single patients can be reliably estimated. However, for models with
more than one relevant component, alternative measures should be introduced for estimating the
stage of disease progression.

Background
A grand challenge in biomedical research is improving
diagnosis and therapy for various diseases by using
genetic profiles from the patients. This can enable person-
alized medicine, where the therapy of a patient is influ-
enced not only by the results of the conventional medical

analysis, but also by the analysis resulting from the values
of the individual genetic composition.

The mutagenetic trees mixture model introduced by Beer-
enwinkel et al. [1] provides an interpretable probabilistic
framework for modeling multiple paths of ordered accu-
mulation of permanent genetic changes. The model
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describes several alternative pathways of disease develop-
ment, each in a different mixture component. Datasets
used for estimating the mixture model consist of patterns
of genetic events observed for single patients. From the
mixture model, a genetic progression score (GPS) can be
computed for each pattern [2] that incorporates correla-
tions among genetic events and mean time intervals
between their occurrences. The GPS gives an estimate of
the progression of the disease process and can be used for
specifying therapies or estimating survival times of the
patients [2].

Both the mixture model itself and derived features like
GPS values have been proven to improve the interpreta-
tion of disease progression and estimation of survival
times in the context of two different diseases, namely HIV
[1] and cancer [2]. However, due to the complexity of the
mixture model, it is important to analyze the stability of
the estimation process and of features that are calculated
from the model.

In this manuscript, we present a simulation study for
inspecting the stability of estimated mutagenetic trees
mixture models. We compare simulated true mixture
models with models fitted to observations drawn from
these true models. The stability analysis refers to GPS val-
ues as well as to other features of the mixture model like
induced probability distributions or tree topologies. A
bootstrap method [3] is used for a more detailed analysis of
the variability of the GPS values and for deriving GPS con-
fidence intervals.

The EM-like learning algorithm used for estimating muta-
genetic trees mixture models finds a starting solution by
an initial clustering step. We extend the fitting procedure
given in [1] by specifying different initial assignments of
the responsibilities, i.e. a different starting solution for
mixture model fitting. We introduce the diversity parameter
d that describes the diversity of the initial tree compo-
nents. Based on simulated models we specify an optimal
value for d with regard to the reliability of the final esti-
mated models.

HIV drug resistance
The mutagenetic trees mixture model can be used for
modeling HIV evolution as a process of accumulation of
mutations in the viral genome under drug pressure. The
replication rate of the HI-Virus is extremely high. Under
therapy, genetic mutations enable the virus to develop
drug resistant mutants. The evolution of HIV drug resist-
ance is conveyed by the erroneous reverse transcription
during virus replication, the large diversity of the HIV
population, and the natural selection of the fittest mutant
under drug pressure. This results in a dynamic and highly
adaptive virus population.

In this work we focus on HIV-1 drug resistance to the nucl-
eoside reverse transcriptase (RT) inhibitor zidovudine. The
most prevalent mutations in the HIV-1 genome that rise
under zidovudine are M41L, D67N, K70R, L210W,
T215F/Y, and K219E/Q [4,5]. Typically, K70R and T215F/
Y are the first mutations to occur [6]. The set of mutations
215F/Y, 41L, and 210W, also known as 215 – 41 pathway,
occurs together. The same holds for 70R and 219E/Q (70
– 219 pathway). In our experiments we use the dataset
from the Stanford HIV Drug Resistance Database [7] that
comprises genetic measurements of 364 HIV patients
treated only with the drug zidovudine. The data contains
the six classical major zidovudine resistance mutations
mentioned above.

Evolutionary tree models
In this section, we present the mutagenetic trees mixture
models as means to model disease evolution. Further-
more, we describe the genetic progression score (GPS)
derived from these models used for quantifying the stage
of the disease.

Mutagenetic trees mixture models
The mutagenetic trees mixture model is a probabilistic
model that can describe multiple pathogenetic routes of
ordered genetic mutations in disease progression. A single
mutagenetic tree is a weighted directed tree in which the
genetic events are represented by nodes and weights on
the edges correspond to the conditional probability of the
child event happening given that the parent event has
occurred. This tree structure provides a probabilistic
model that annotates evolutionary paths of disease pro-
gression. A disadvantage of this model is that many sub-
sets of genetic events cannot be explained by a single tree,
since it can only represent those subsets of events which
include events together with all their predecessors in the
tree. All other subsets of events have likelihood zero in the
probability distribution generated by a single tree model.
A single tree also often fails to capture all diverse pathoge-
netic routes that can occur in disease progression. Formal
details of the definition and estimation of single trees are
presented in [8].

The mutagenetic trees mixture, proposed by Beerenwinkel
et al. in [1], provides a probabilistic model that can cap-
ture multiple evolutionary processes conducting the dis-
ease evolution, each of them in a separate mixture
component. We consider K mutagenetic trees Tk, k =
1,...,K, on the set of vertices V = {0,...,l - 1} denoting l
events with the null event r as root. The root comprises
events that has initially occurred in all samples and
accounts for the therapy naive patients. Moreover, it rep-
resents the starting point of disease progression. The tree
T1 has a star-like topology and describes the genetic events
as being independent of each other given the initial null
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event. According to the probability distribution it induces,
the star tree assigns positive probability to all possible 2l-1

patterns generated by a given set of l genetic events [1].

Formally, a mutagenetic trees mixture model M is a

weighted sum of K mutagenetic trees ,

where αk ∈ [0, 1] and . Every subset of genetic

events, determined by the pattern x, has positive probabil-
ity of being generated, given by:

Let V be the set of vertices corresponding to the genetic
events, and let E = {(u, v) | u, v ∈ V} be a set of edges. For
all edges e = (u, v) ∈ E, the edge weights indicate the con-
ditional probability that the event v appears given that the
event u has occurred, and are determined with the map-
ping p: E → [0, 1], such that:

p(e) = Pr(Xv = 1 | Xu = 1).

The root vertex denoted by r is the node 0 and specifies the
initial null event, such that Pr(Xr = 1) = 1. The connected
branching T = (V, E, p) formally captures the notion of a
mutagenetic tree.

Let Ω = {0, 1}l be the set of all possible patterns of genetic
events of length l and x be an observation defined by the
subset S ⊆ V of events that have occurred. Each observa-
tion x is a binary vector with ones indicating occurrence of
mutations. For example, if the pattern (0, 0, 1, 0, 1) is
associated with a specific patient this means that the
genetic mutations 3 and 5 have occurred in the respective
sample. The mutagenetic tree T = (V, E, p) induces a prob-
ability distribution on the set Ω. Accordingly, if there
exists an edge subset E' ⊆ E, such that S is the set of vertices
reachable from the root in the induced tree T' = (V', E', p),
then the probability that the tree T generates the pattern x
is:

Otherwise, the mutagenetic tree T cannot generate the pat-
tern x, i.e. Pr(x | T) = 0.

Given the number of tree components K and a finite sam-
ple of N observations D = {x1,...,xN } of the binary vector
X = (X1,...,Xl) that indicates occurrence of subsets of
genetic events, the mixture model can be estimated as fol-
lows. Assuming that for each sample the tree component
from which that sample was generated is known, one can

easily reconstruct the mixture model by using Edmonds'
branching algorithm [9] K times on the respective obser-
vation sets. For large number of samples Edmonds'
branching algorithm reconstructs the original mutage-
netic tree with very high probability [9]. Since one does
not know from which tree each sample was generated,
one has to estimate it from the data. The goal is to find
trees T1,...,TK and mixture parameters α1,...,αk that maxi-
mize the log-likelihood of the data. Having a mixture
model, a standard procedure for maximum-likelihood
estimation is the EM algorithm [10].

Let ∆1,...,∆K be binary random variables where Pr(∆K = 1)
= αk. The responsibility of the k-th tree component Tk for the
i-th observation xi is the probability that xi was generated
from Tk given the mixture model M: γik = Pr(∆k = 1 | xi, M).
The EM-like algorithm for fitting mutagenetic trees mix-
ture models is briefly described below. A detailed descrip-
tion is presented in Figure 1. The algorithm is only an
"EM-like"-algorithm, since the tree reconstruction step
with Edmonds' algorithm does not provide an exact max-
imum likelihood estimate. In practice, the solution of
Edmonds' algorithm is close to the maximum-likelihood
solution.

1. Guess initial responsibilities: Run (K-1)-means clustering
algorithm on the given dataset and assign samples to the
corresponding (K – 1) clusters.

2. Maximization-like step: Estimate the K tree components
T1,...,TK from all patterns weighted with their responsibil-
ities and compute the mixture parameters α1,...,αk.

3. Expectation step: Recompute the responsibilities of the
samples by using the tree components estimated in the
previous step.

4. Iterate the two previous steps until convergence.

The solution of an EM algorithm depends on the initial
values used for the responsibilities. The mixture model
tries to capture diverse paths of ordered genetic changes
present in the data. Furthermore, only a small fraction of
the dataset, that cannot be mapped to the nontrivial com-
ponents of the mixture, should be mapped to the star
component. The rest should be assigned to the nontrivial
trees of the mixture model. In [1], the starting solution is
determined by running a (K – 1)-means clustering algo-
rithm on the set of observed patterns D by using the
squared Euclidian distance as dissimilarity measure [11].
Here we propose initial assignments of the responsibili-
ties depending on a diversity parameter d. This parameter
controls the diversity of the initial tree components com-
prising the mixture model and, as a consequence, also the
diversity of the components in the EM solution. The opti-
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EM-like algorithm for learning mutagenetic trees mixture modelsFigure 1
EM-like algorithm for learning mutagenetic trees mixture models. Detailed EM-like algorithm for fitting K-trees 
mutagenetic mixture models from a given dataset, adapted from Beerenwinkel et al. [1].
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mal value of d = 3 is chosen as a result of the simulation
study presented in the Results section. This value is a good
compromise between diversity of nontrivial branchings
and quality of the fitted model.

The EM-like algorithm assumes that the number of trees K
is known. The algorithm is efficient enough to estimate
this model parameter in a cross-validation framework, as

proposed in [1]. Yin et al. [12] introduce a modified Baye-
sian Information Criterion (BIC) for estimating the number
of trees. The modified BIC incorporates a similarity meas-
ure for estimating the structural redundancy between tree
components in the penalization term of the standard BIC.
A mutagenetic trees mixture model estimated for HIV
patients is illustrated in Figure 2. The model complies

Mutagenetic trees mixture model with two componentsFigure 2
Mutagenetic trees mixture model with two components. Timed mutagenetic trees mixture model estimated on the 
HIV dataset. The responsibility of the nontrivial tree component is 0.82. A sample is generated from the noise component with 
probability 0.18. The nodes represent the genetic events and the labels of the edges depicted with dark blue color are the con-
ditional probabilities between the events. The nontrivial branching of the mixture model shows the two typical pathways 70 – 
219 and 215 – 41 that develop under zidovudine monotherapy. Exponential distributions are assumed for the time difference 
between the occurrences of the child and parent events on all edges and for the sampling time (with mean sampling time equal 
to 1). The timed model then is obtained by mapping the edges with the expected waiting times of occurrence of the child 
events (red color), given that the parent events has occurred. The GPS of the pattern x, which specifies the occurrence of the 
subset of events {0, 70R, 219E/Q, 67N}, is calculated using the timed mutagenetic trees mixture model and formula (1).
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with the main experimental results about HIV-1 zidovu-
dine resistance.

Genetic progression score (GPS)
Considering the tree structure of the components of the
mixture model, under some additional assumptions wait-
ing times can be mapped on the tree edges. Consequently,
a progression score that incorporates correlations among
events and time intervals among occurrences of events can
be associated to the mixture model as proposed in [2].

The timed mixture model can be obtained by assuming
independent Poisson processes for the occurrence of
events on the edges of each mixture component and for
the sampling time of the disease. The sampling time
denotes the time interval between the onset of the disease
and its discovery or analysis. Let the waiting time Ti of the
i-th event denote the time difference between the occur-
rences of its parent event pa(i) and the event itself. Let Ti
and the sampling time TS have exponential distributions
with parameters λi and λS, respectively. The conditional
probability pi assigned to the edge (pa(i), i) that enters the
i-th event can be calculated as pi = λi/(λi + λS). In this
framework the expected waiting time E(i) for an event i is
given as follows:

Typically, the onset of the disease is not known for single
patients. Thus λS cannot be derived from the data and the
waiting times E(Ti) on the edges cannot be expressed in
timescale of the process of genetic progression. Therefore
the mean sampling time is normalized to 1, i.e. E(TS) = 1,
and unitless waiting times are mapped on the edges of the
trees of the mixture model.

It is easy to calculate the expected waiting time for a single
event i and map it to the corresponding edge (pa(i), i).
However, an explicit closed formula for computing the
expected waiting times for an arbitrary pattern xi of genetic
events cannot be derived. Using the timed mutagenetic
trees mixture model M the expected waiting times of arbi-
trary patterns of events can be obtained by simulating the
waiting process along the edges of each tree component
and using the probability distribution induced by the
mixture model.

When simulating the waiting process along a single tree
from the mixture with sufficiently large number of simu-
lations (≥ 106), first, waiting times for the events i on the
edges (pa(i), i) are drawn from exponential distributions
with parameters λi = pi/(1 - pi). Since the tree structure cap-
tures the order in which the genetic abberations occurred,

the waiting times of subsequent events along the tree
topology are added.

Considering the simulation of the waiting process for the
k-th tree component Tk, the expected waiting time for the

subset of events xi, denoted with (W (xi)), is the aver-

age of all waiting times at which the pattern xi was

observed. Finally, the expected waiting time of the pattern
xi with respect to the given mixture model, referred to as

the GPS of the pattern, is a weighted sum of the expected
waiting times of xi with respect to each of the K mixture

components. The weights are the responsibilities of the
respective tree components for the pattern of events xi.

Formally, the GPS of the pattern xi with respect to the mix-
ture model M is given by

The computation of the GPS for the pattern x = {0, 70R,
219E/Q, 67N} from the HIV dataset is depicted in Figure
2.

Results and Discussion
We present the results of a stability analysis for mutage-
netic trees mixture models and features derived from such
models. In short, the stability analysis was performed with
the following approach. First, a "true" mutagenetic trees
mixture model is drawn uniformly at random from the
model space, and a data sample is drawn from this true
model. Then, a mutagenetic trees mixture model is fitted
to the sample. The quality of the fitted model is assessed
by comparing its quality with the quality of a sufficient
number of random mixture models sampled uniformly
from the mixture model space.

The quality of a model is computed with respect to a spec-
ified model feature. A similarity measure has to be defined
for comparing two tree mixture models based with respect
to this feature. The similarity between the true and the fit-
ted model is then compared to the similarity between the
true and the random models. A p-value is obtained as the
percentage of cases, in which the true model is closer to a
random model than to the fitted model. Similarity is
defined in various ways, comparing the probability distri-
bution induced by the model, the topologies, and the GPS
values calculated from the models.
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In the publication introducing mutagenetic trees mixture
models [1], the initial step of the EM-like algorithm for fit-
ting a K-mutagenetic trees mixture models is determined
by first running a (K-1)-means clustering algorithm on the
set of observed patterns. Then, all observations in one
cluster are assigned to one component with probability
0.5 and to the other components with equal probability.
Here, we introduce a diversity parameter d that deter-
mines the softness of this initial assignment. We show
that the setting of the diversity parameter influences the
stability of the mixture models.

The Methods section below introduces the similarity
measures used for comparing mutagenetic trees mixture
models and gives a detailed description of the simulation
setup used in the stability analysis.

In the following, first, the influence of the initial cluster
assignments on the model diversity is discussed. Then, the
results of the detailed stability analysis are presented.
Finally, the results of a bootstrap analysis for estimating
confidence intervals of the GPS values is presented.

Influence of initial clustering on diversity between model 
components
In [1], the starting solution for the EM-like algorithm is
determined by running a (K – 1)-means clustering algo-
rithm on the set of observed patterns and subsequent soft
assignment of clusters to model components.

Let γik denote the responsibility of the k-th mixture model
component for generating the i-th observation.

The initial responsibilities in [1] are defined by

We propose different assignments of the initial responsi-
bilities as follows.

The diversity parameter d controls the softness of the ini-
tial assignment. In order to choose an optimal value for d
we performed two different simulations. The first analysis
compares the topologies of the nontrivial tree compo-

nents within a mixture model. This reflects the diversity of
the paths of disease progression captured by the mixture
model.

We usually repeat the simulation procedure described in
the Methods section 500 times using either the previous
cluster assignments (2) or the new assignments (3) for
diversity parameter settings d ∈ {1, 3, 6, 10, 100}. The
objective of this analysis is to see how the initial assign-
ments of the responsibilities determined by the (K – 1) –
means clustering [11] affect the diversity of the topologies
of the nontrivial branchings of the final model. For this
purpose we calculate the diversity of model branchings in
the initial and in the final mixture model. The initial
model is obtained from fitting tree components to the
clustering results (the starting point in the model search
space), and the final model is obtained from the EM-like
search algorithm [1,10]. The results for the two different
similarity measures for comparing tree topologies (5) and
(6) are depicted in Figure 3A and Figure 3B, respectively.

Both figures show that the larger d is, the more diverse are
the nontrivial components in the initial and the final
model. For d = 1 the nontrivial components in the models
(initial and final) are equal. In what follows, we consider
only the tree topology similarity measure (6).

Influence of initial clustering on stability
Next, we evaluated the quality of the fitted models
depending on the different cluster assignments. The
notion "quality of the estimated mixture models" refers to
the goodness of fit of the probability distributions
induced by the mixture models, of the fitted tree topolo-
gies, and of the fitted GPS values. For exploring these fea-
tures we performed simulations using the simulation
setup described in the Methods section, using both the
old clustering (2) and the new one (3) with d ∈ {3, 6, 10,
100}. For these simulations K = 3 model components
were used. For all different cluster assignments the proba-
bility distributions were estimated with high quality, doc-
umented by p-values smaller than 0.05 in all simulation
iterations.

The experimental results rendering the quality of the fitted
tree topologies are shown in Figure 4A, where we used the
similarity measure (6) for comparing tree topologies. Box-
plots of p-values are depicted, that quantify the superior-
ity of the fitted model over random models. It can be seen
that the new cluster assignments with d ∈ {3, 6, 10} lead
to more significant results than the previous cluster
assignments (2). We confirmed this observation by apply-
ing a two-sided test for equality of the proportions of p-
values that are less than or equal to 0.05. Only for d = 100
the improvement of the new cluster assignments with
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respect to the previous cluster assignments is not signifi-
cant at the significance level 0.05.

The stability of GPS values strongly depends on the tree
topologies and on the conditional probabilities assigned
to the tree edges. The simulation results for the different
cluster assignments are shown in Figure 4B. Here, the Euc-
lidian distance is used for comparing the GPS vectors. The
best results are obtained for the old clustering method and
for d = 3 with the new clustering method. Larger values for
the diversity parameter d are too extreme and make the
GPS estimation more unstable.

To summarize, using the cluster assignments defined by
(3) with d = 3 is a good compromise between diversity of
the nontrivial branchings and quality of the fitted branch-
ings. The new cluster assignments achieve the same fitting
quality regarding the probability distributions and the
GPS values as the previous cluster assignments introduced
in [1]. However, they provide higher diversity of the non-
trivial tree components and significantly better estimation
in terms of the topology of the branchings of the fitted
models (see Figure 4A).

In the final estimated mixture model the fraction of the
dataset that can be mapped only to the noise component

should be as small as possible. Thus it is promising to start
the EM-like algorithm from a point in the model space
with this property. Therefore, in formula (3), we initially
assign each observation to the noise component with the
small probability 0.01. For the more extreme value of
0.001 we obtained comparable results.

Stability of the probability distribution
The mutagenetic trees mixture models generate a proba-
bility distribution on the set of all possible patterns for a
given number of genetic events l [1]. The EM-like algo-
rithm [10] used for learning the mixture model from a
given set of patterns maximizes the log-likelihood of the
patterns in terms of this probability distribution. We per-
formed a stability analysis using the simulation setup
described in the Methods section. We used the Cosine dis-
tance, the L1 distance and the Kullback-Leibler divergence
for calculating the similarity between the probability dis-
tribution induced by the "true" model and the one
induced by the fitted model.

The simulation results are similar for K = 2 and for K = 3
branchings in the mixture models (data not shown). For
reasonable sample size of the data set (n > 100) and for all
similarity measures the results show that the fitted model
provides a close estimate of the true probability distribu-

Analysis of the diversity parameterFigure 3
Analysis of the diversity parameter. A) Diversity of the nontrivial components in the initial (light blue color) and final (blue 
color) mixture models for different cluster assignments. The tree comparisons in the experiments are performed with the sim-
ilarity measure (5) based on the sum of the number of different edges. The larger d is in (3), the more diverse are the nontrivial 
components in the initial and the final models. B) Diversity analysis as in Figure 3A, but with the similarity measure (6) based on 
the sum of the number of different edges and the L1 distance of the vectors containing the levels of the events.
Page 8 of 16
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tion on the set of all patterns (with p-values smaller than
5%). Independent of the number of genetic events the
estimate for the induced probability distribution is always
statistically significant. Almost all comparisons with the
true probability distribution for the different similarity
measures have p-values smaller than 0.02.

Stability of the tree topologies
The topology of the branchings comprising the mixture
model is an important model property that determines
the order of the genetic events during disease progression.
It also establishes the notions of early and late events
which are crucial in the waiting time simulation used to
calculate the GPS values. We examined the quality of the
fitted tree topologies with the simulation setup described
in the Methods section. We used the similarity measure
given by (6) for comparing the topologies of the tree com-
ponents between the true and the corresponding fitted
model. The boxplots displaying the results for different
sample sizes and different numbers of genetic events for K
= 2 are depicted in Figures 5A and 5C, and the same results
for K = 3 in Figures 5B and 5D, respectively.

For K = 2 tree components (one nontrivial branching) we
observe significant similarity between the topology of the

trees from the original model and the topology of the trees
from the fitted model, independent of the size of the data-
set and of the number of genetic events. For K = 3 compo-
nents the results are worse, since two nontrivial
branchings in the models make the fitting problem more
difficult. As shown by Desper et al. [8], using a sufficiently
large data sample generated by a mutagenetic tree one can
reproduce the original tree with high probability. When
there are at least two nontrivial branchings in the mixture
model, they have to be estimated with the EM-like algo-
rithm (see [1,10] and the Methods section).

However, as can be seen from Figure 5B, for dataset sizes
larger than or equal to 200 the topologies of the mixture
components are estimated with good quality for most of
the simulation iterations. Also, when varying the number
of genetic events (see Figure 5D), the quality of the
learned tree topologies does not vary much. This is not
true for l = 5 genetic events, since this number is not large
enough for having two diverse pathways of disease pro-
gression in the randomly generated models. For l = 5 usu-
ally two estimated nontrivial tree components are very
similar and many patterns in the dataset can be mapped
to both trees with high probability. This makes it very dif-
ficult for the clustering algorithm [11] and the EM-like

Stability of tree topology and GPS for different cluster assignmentsFigure 4
Stability of tree topology and GPS for different cluster assignments. A) Significance of the similarity between the tree 
topologies of the true and the corresponding fitted mixture models. The red line depicts the threshold p-value = 0.05. The 
cluster assignments given by (3) with d ∈ {3, 6, 10} achieve the best estimation of the tree topologies. B) Significance of the sim-
ilarity between the GPS vectors resulting from the true and the corresponding fitted mixture models. The red line depicts the 
threshold p-value = 0.05. The previous clustering (see [1]) and the new one (see formula (3)) with d = 3 achieve the best 
results.
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Stability of tree topologyFigure 5
Stability of tree topology. A) Significance of the similarity between the tree topologies of the true and the corresponding 
fitted mixture models for various sample sizes. The mixture models have two components (K = 2). The red line depicts the 
threshold p-value = 0.05. The tree topologies are estimated with high quality. B) Significance analysis as in Figure 5A, but for K 
= 3. For sample sizes larger than 200 the tree topologies are estimated with good quality. C) Significance analysis as in Figure 
5A for various numbers of genetic events. The tree topologies are estimated with high quality. D) Significance analysis as in Fig-
ure 5C, but for K = 3. Except for l = 5 genetic events, the estimation of the topologies of the branchings is of good quality.
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algorithm [10] to correctly separate the data and estimate
the true topologies with high significance.

Stability of the GPS values
The GPS values [2] are estimated with a waiting time sim-
ulation from an underlying mutagenetic trees mixture
model based on some additional assumptions (for more
details see the Methods section and formula (1)). The sim-
ulation study for examining GPS stability was carried out
with the standard simulation setup given in the Methods
section. The Euclidian distance was used for comparing
the estimated GPS vectors associated with the fitted model
to the corresponding true GPS vectors. The results for K =
2 are given in Figures 6A and 6C, and the results for K = 3
are depicted in Figures 6B and 6D.

The simulations with 2-trees mutagenetic mixture models
show that for varying sample sizes (larger than 100) and
for varying number of genetic events the similarity
between the fitted GPS vectors and the corresponding true
GPS vectors is highly significant. This is not the case for K
= 3.

As already mentioned above, for more than one nontrivial
tree component in the mixture model, the fitting problem
is more complicated since we have incomplete informa-
tion on which patterns were generated from which
branching.

Additionally, the GPS values are highly sensitive to
changes in the values of the conditional probabilities
assigned to the edges of the branchings, changes in the
values of the mixture parameters and modifications in the
tree topologies. This can be inferred from the way by
which they are calculated (see formula (1) and the Meth-
ods section). From the simulation results depicted in Fig-
ure 6B it can be seen that the similarity between the GPS
vector estimated from the original and the one from the
fitted model is not significant at the 5% level for a large
portion of the tested models. Increasing the size n of the
dataset used for estimating the mixture models does not
give significant improvements for n > 200.

The experimental results from the simulation analysis
shown here and in the previous two sections demonstrate
that, for l = 9 genetic events, datasets with around 200 –
300 samples are sufficiently large for generating a 3-trees
mutagenetic mixture model and investigating its features.
When varying the number of genetic events for a fixed
sample size, it can be seen from Figure 6D that for l = 5
genetic events the results are much worse than the rest. As
mentioned before, the reason for this behavior is the lack
of resulting diversity of the nontrivial model components.

Finally, we compare the boxplots in Figures 6B and 6D
from the GPS analysis with the boxplots in the corre-
sponding Figures 5B and 5D from the analysis of the tree
topologies. These were calculated from the same simula-
tion runs, i.e. for the same pairs of true and fitted models.
It can be observed that when the tree topologies are better
reproduced, the similarity between the true and fitted GPS
vectors are also higher.

Bootstrap analysis of GPS values
The stability analysis presented in the preceding para-
graphs showed that the GPS value is not a stable feature of
the mixture model estimation. We thus performed a boot-
strap [3] analysis for inspecting the variance of the GPS
values resulting from a mutagenetic trees mixture model
fitted to the HIV dataset [7].

As depicted in Figure 2, when learning a 2-trees mixture
model, the nontrivial component captures the two typical
pathways 70 – 219 and 215 – 41 of HIV evolution under
zidovudine pressure. We examined the GPS values and
their confidence intervals along the edges of the two path-
ways. In almost all cases, GPS confidence intervals of sub-
sequent patterns in the path are increasing and, if they are
overlapping then only to a small extent. Especially the
pathway 215 – 41 is stable with typically non-overlapping
confidence intervals for subsequent steps in the path.

However, for some patterns the GPS estimation is less reli-
able. For the pattern x = {0, 70R, 67N, 215F/Y, 41L,
210W}, the 95% confidence interval of the GPS [1.81,
4.04] shows large variability. We observed a bimodal
shape of the bootstrap distribution shown in Figure 7. For
many bootstrap samples drawn from the HIV data the
mixture model is estimated as given in Figure 2. Due to
the missing event 219E/Q the pattern x can only be
mapped to the noise component and obtains a GPS value
in the interval [1.5, 3.0]. However, for some of the boot-
strap samples the event 67N is placed after the event 70R
in the nontrivial tree component of the estimated model.
In this case the pattern x can also be mapped to the non-
trivial tree and its GPS value is larger, i.e. it lies within the
interval [3,5]. The low reliability of the GPS value is thus
due to the low confidence in the order of occurrence of the
events 67N and 70R.

Conclusion
We considered the mixture model of mutagenetic trees for
modeling disease progression that is characterized by
ordered accumulation of permanent genetic changes.
First, we improved the model estimation by providing a
different starting solution in the EM-like algorithm [1,10].
We introduced new assignments of initial responsibilities
of observations with respect to model components. With
simulation studies we examined the influence of these ini-
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Stability of GPSFigure 6
Stability of GPS. A) Significance of the similarity between the GPS vectors resulting from the true and its corresponding fit-
ted mixture models for various sample sizes. The mixture models have two components (K = 2). The red line depicts the 
threshold p-value = 0.05. For sample sizes larger than 100 the similarity between the GPS vector estimated from the true 
model and the one estimated from the fitted model is highly significant. B) Significance analysis as in Figure 6A, but for K = 3. 
The GPS vector estimated from the fitted model is unstable even for large sample sizes used for learning the fitted model. C) 
Significance analysis as in Figure 6A for various numbers of genetic events. The GPS vectors are estimated with high quality. D) 
Significance analysis as in Figure 6C, but for K = 3. The GPS vector estimated from the fitted model is unstable.
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tial assignments on the final model estimated on a given
dataset. This assessment included the analysis of the qual-
ity of different model features like the probability distri-
bution induced by the model, the tree topologies, the
GPS, and diversity of the evolutionary paths captured by
the model. The study showed that there exists an optimal
trade off between desired diversity of the model compo-
nents and quality of the fitted model.

We evaluated the mutagenetic trees mixture model by per-
forming a detailed analysis of the stability on different lev-
els of the model using different similarity measures.
According to this analysis the probability distribution
induced by the mixture model can be estimated with high
precision. The model also yields a good estimation of the
topologies of its tree components.

We observed that the GPS estimated from an underlying
fitted mixture model can be sensitive to changes in the
tree topologies of the model components and to changes
in the conditional probabilities mapped to the edges.
With a bootstrap analysis we examined the variability of
GPS values and derived corresponding confidence inter-
vals. This helps in determining which GPS values are reli-
able and can be used for drawing conclusions about the
stage of a disease in a specific patient. The sample size was

shown to be most critical for the stability of the GPS value.
According to the simulation results, for a mutagenetic
trees mixture model with l = 9 genetic events a sample size
of 200 – 300 patients is sufficient for obtaining reasonable
estimates.

Since the mutagenetic trees mixture model offers a highly
significant estimation of the probability distribution that
it induces and also manages to recover the tree topologies
with good quality, a future objective is to improve the GPS
estimation or to find other ways for using the mixture
model in estimating the stage of disease progression. The
results of this study are also of interest for other applica-
tions of graphical models. It is striking that even when
induced probability distributions and topologies of the
estimated models are close to those of the true underlying
models there is no guarantee that derived scores like the
progression along a tree model are highly reliable.

Methods
In the Methods section we introduce the similarity meas-
ures used for comparing mutagenetic trees mixture mod-
els and give a detailed description of the simulation setup
used in the stability analysis.

Similarity measures for tree mixture models
The mixture model induces a discrete probability distribu-
tion on the set of all possible patterns. In the simulation
studies we use three different similarity (distance) meas-
ures for exploring the stability of the probability distribu-
tions induced by the fitted mixture models, namely the L1
distance, the Cosine distance, and the Kullback-Leibler
divergence.

In the following, we present similarity measures for tree
topologies that are needed both for comparing two differ-
ent mixture models and for comparing the nontrivial
components within a single mixture model. Yin et al. [12]
proposed to use the difference of the maximum number
of outgoing edges as a dissimilarity measure of the topol-
ogies of two directed branchings. In the following we
present two other more sophisticated similarity measures
for tree topologies.

Let M1 and M2 be K-mutagenetic trees mixture models (K
≥ 2) on a set of l genetic events. In order to compare the
topologies of the trees of the two mixture models, we first
form pairs of similar components. In other words, to each
branching in M1 we associate the most similar branching
from M2, such that every branching from M2 corresponds
to exactly one branching in M1. This is the cost minimiz-
ing assignment problem which can be solved by the Hun-
garian algorithm [13] in polynomial time (O((K – 1)3)).
The noise components in the mixture models have identi-
cal topology, so we leave them out.

Histogram of GPS bootstrap distributionFigure 7
Histogram of GPS bootstrap distribution. Histogram of 
the GPS values for the subset of genetic events {0, 70R, 67N, 
215F/Y, 41L, 210W} estimated from the mutagenetic trees 
mixture model fitted on 1000 bootstrap samples (bootstrap 
GPS values). The bootstrap samples are drawn from the HIV 
dataset.

Bootstrap GPS values

F
re

q
u

e
n

c
y

0 1 2 3 4 5

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Page 13 of 16
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:165 http://www.biomedcentral.com/1471-2105/9/165
Let , i ∈ {1, 2}, j ∈ {1,...,K} denote the i-th branching

of the mixture model Mj and let :Π {2,...,K} → {2,...,K};

denote all possible permutations of the set {2,...,K}. We
start by building a cost matrix:

where sij is the edge difference between tree component (i

+ 1) of M1 and tree component (j + 1) of M2 formally

denoted by e.dif ( )

Afterwards, we apply the Hungarian algorithm [13] on the
cost matrix S to find the assignment Πmatch that minimizes
the dissimilarity of the trees of the two mixture models.
This is given by the formula

where the minimum is taken over all possible permuta-
tions Π of the set {2,...,K}. Hence, Πmatch defines (K – 1)
similarity pairs of tree components of the two models M1
and M2 by using the number of different edges as a dissim-
ilarity measure. In what follows, we use these pairs for the
introduction of two similarity measures for comparing the
mixture models M1 and M2.

One straightforward way to measure the difference (or
similarity) of the tree topologies of the mixture models is
to simply add the number of different edges of the simi-
larity pairs. Considering (4), this is formally given by:

We divide the sum in (5) by the maximum possible
number of different edges (K – 1)·(l – 1), in order to
obtain a normalized number inside the interval [0, 1].

The topology of the components of the mixture models
should capture the order in which the genetic changes
accumulate during disease progression. It is a significant
difference, if an event appears very early in one tree and
very late in another tree. We thus define a similarity meas-
ure that also takes into account the levels (depths) of the
events in the tree. We associate a level vector to each non-
trivial tree component of the mixture models. In our set-
ting, the level vectors have lengthl (the number of genetic
events), where each component corresponds to a specific
genetic event and gives the level (depth) of that event in
the considered tree topology. For comparison purposes

the order of the vector components has to be fixed in all
level vectors.

The enhanced topology distance measure is constructed
by adding to each edge difference of a similarity pair in
formula (5) the L1 distance of the level vectors of the trees
creating the similarity pair. Let level.vec(T |T ∈ M) denote
the level vector associated with the events of the tree com-
ponent T from the mixture model M. The similarity meas-
ure is then given by:

Since the level vectors reflect the order of the genetic
events in the branchings, this similarity measure is more
model-specific when it comes to comparing topologies of
two mutagenetic trees mixture models. This is important
for assessing the quality of the mixture models and thus
(6) is used in the stability analysis.

The similarity measure introduced in (6) was constructed
for comparing the topologies of the components of two
mixture models. It can also be used for comparing the
topologies of the nontrivial branchings in a single muta-
genetic trees mixture model. This enables analyzing the
diversity of the paths of ordered genetic events in disease
progression captured in each branching of a given mixture
model. In this case, the procedure of forming similarity
pairs is not needed. The diversity of the nontrivial tree
components of a mixture model can be quantitatively
expressed by the sum of the comparisons of all nontrivial
tree components against each other (all different sets of
two distinct trees).

Simulation setup for stability analysis
The mutagenetic trees mixture model can be characterized
by many different features like the probability distribu-
tions induced by the model, the number of tree compo-
nents, the topologies of the tree components, the GPS
values, and so on. This makes the model rather complex,
so grasping the essence of its quality and stability
demands simulated data from artificial mixture models
created uniformly at random from topology space (ran-
dom models). Having defined true models we can inspect
the quality of the fitting procedure by comparing the dif-
ferent features characterizing the true and the fitted mix-
ture models and by estimating their stability. The
following simulation setup is similar to the experimental
design in [14] and the simulation setup in [12].

The simulation procedure consists of a sufficient number
of iterations, where different similarity measures are com-
puted and later used for examining the stability on the dif-
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ferent levels of the mixture model. The procedure is given
as follows:

1. For a fixed number of tree components K and a given
number of genetic events l draw a true mixture model M at
random.

• The first component T1 is a noise component with star
topology.

• The nontrivial tree components T2,...,TK are random
trees sampled uniformly from topology space. Cayley's
theorem [15] states that there are l(l-2) distinct labeled trees
on l vertices. Moreover, Prüfer in [16] proved that a
labeled tree on l vertices can be uniquely encoded as an (l-
2) tuple of vertex labels. Hence, a random tree can be sam-
pled by generating a random (l-2) tuple of vertex labels
(the set {1,...,l}) and considering it as the Prüfer code of a
labeled tree (see [12]).

• The edge weights of the trees are drawn uniformly at ran-
dom from the interval [0.2, 0.8].

• The tree weights (mixture parameters) are set as follows:
α1 = 0.05 (5% noise) and αk = 0.95/(K – 1), where 2 ≤ k ≤
K.

2. Draw a sample D (a certain number n of patterns) from
the true mixture model M.

3. Fit a K-trees mutagenetic mixture model Mfit to the sam-
ple D.

4. Compare different model features (GPS, distributions,
tree topologies) of the fitted model Mfit with the corre-
sponding features of the true model M by computing the
values of the appropriate similarity measures (true similar-
ities).

5. Generate 100 random models and compare their
model features with the corresponding features of the true
model M by computing the appropriate similarity meas-
ures (random similarities).

6. Use the values of the random similarities to calculate the
p-values for the true similarities. The p-value is the propor-
tion of random similarities that are equal to or smaller
than the corresponding true similarities.

For the analysis of the influence of the initial clustering in
the EM-like algorithm, we compare two tree mixture mod-
els, namely the initial one constructed directly from the
initial assignments and the final one obtained when run-
ning the entire EM-like algorithm. The procedure for one
simulation iteration is given as follows:

1. Draw a true mixture model M uniformly at random
with K = 3 branchings on l = 9 genetic events.

2. Draw a sample D from the model M with 500 patterns.

3. Fit a K-trees mixture model Minit to the dataset D based
only on the clustering results. In other words, we build the
K tree components T1,...,TK with the tree reconstruction
algorithm [8,9] from all patterns weighted with their ini-
tial responsibilities (resulting from the clustering) and we
compute the mixture parameters α1,...,αK.

4. Fit a K-trees mixture model Mfit by using the EM-like
learning algorithm [1].

5. Compare the topologies of the nontrivial tree compo-
nents in the mixture models Minit and Mfit by using the
similarity measure (6) for comparing tree topologies.
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