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Insulin resistance is necessary but not sufficient for the development of type 2 diabetes. Diabetes results when
pancreatic beta-cells fail to compensate for insulin resistance by increasing insulin production through an expansion
of beta-cell mass or increased insulin secretion. Communication between insulin target tissues and beta-cells may
initiate this compensatory response. Correlated changes in gene expression between tissues can provide evidence for
such intercellular communication. We profiled gene expression in six tissues of mice from an obesity-induced
diabetes-resistant and a diabetes-susceptible strain before and after the onset of diabetes. We studied the correlation
structure of mRNA abundance and identified 105 co-expression gene modules. We provide an interactive gene
network model showing the correlation structure between the expression modules within and among the six tissues.
This resource also provides a searchable database of gene expression profiles for all genes in six tissues in lean and
obese diabetes-resistant and diabetes-susceptible mice, at 4 and 10 wk of age. A cell cycle regulatory module in islets
predicts diabetes susceptibility. The module predicts islet replication; we found a strong correlation between 2H2O
incorporation into islet DNA in vivo and the expression pattern of the cell cycle module. This pattern is highly
correlated with that of several individual genes in insulin target tissues, including Igf2, which has been shown to
promote beta-cell proliferation, suggesting that these genes may provide a link between insulin resistance and
beta-cell proliferation.

[Supplemental material is available online at www.genome.org. Primary expression data for all arrays used in this
study have been submitted to Gene Expression Omnibus under accession no. GSE10785.]

Type 2 diabetes is a disorder that involves an increased demand
for insulin brought about by insulin resistance, together with a
failure to compensate with sufficient insulin production. Al-
though insulin resistance occurs in most obese individuals, dia-
betes is generally forestalled through compensation with in-
creased insulin. This increase in insulin occurs through an ex-
pansion of beta-cell mass and/or increased insulin secretion by
individual beta-cells. Failure to compensate for insulin resistance
leads to type 2 diabetes.

One way to understand the pathophysiology of diabetes is
to examine the coordinate changes in gene expression that occur
in insulin-responsive tissues and pancreatic islets in obese ani-
mals that either compensate for insulin resistance or progress to
type 2 diabetes. In each case, there are groups of genes that un-

dergo changes in expression in a highly correlated fashion. By
identifying groups of correlated transcripts (gene expression
modules) during the compensation and development of diabe-
tes, we can gain insight into potential pathways and regulatory
networks in obesity-induced diabetes.

We study two strains of mice that differ in obesity-induced
diabetes susceptibility. In this study, we surveyed gene expres-
sion in six tissues of lean and obese C57BL/6 (B6) and BTBR mice
aged 4 wk and 10 wk. B6 mice remain essentially non-diabetic at
all ages, irrespective of obesity. When obese, BTBR mice become
severely diabetic by 10 wk of age.

By analyzing the correlation structure of the genes under
three contrast conditions, obesity, strain, and age, we identified
gene expression modules associated with the onset of diabetes
and provide an interactive co-expression network model of type
2 diabetes. We found a key module that is comprised of cell cycle
regulatory genes. In the islet, the expression profile of these tran-
scripts accurately predicts diabetes and is highly correlated with
islet cell proliferation.
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Results

Diabetes results from the convergence of age, strain, and obesity

To understand the relative contribution of age, strain, and obe-
sity to the etiology of type 2 diabetes, we compared mice across
three primary axes—time: 4 vs. 10 wk of age; body mass: lean vs.
obese; and strain: C57BL/6 (B6) vs. BTBR mouse strain (Fig. 1A).
B6 and BTBR mice differ in obesity-induced diabetes susceptibil-
ity. The B6 strain is essentially nondiabetic when it carries the
leptinob/ob (ob) mutation, whereas, by 10 wk of age, the BTBR ob
mouse is severely diabetic (Fig. 1B). Since the BTBR ob mouse is
not yet diabetic at 4 wk of age, changes in gene expression at this
time are potential causes rather than consequences of hypergly-
cemia. The ability of the B6 mouse to maintain euglycemia when
challenged with morbid obesity is due to a >50-fold increase in

circulating insulin at 10 wk of age (Fig. 1C). This contrasts with
the relative hypoinsulinemia of the 10-wk-old BTBR ob mouse.
The difference in insulin at 10 wk of age is correlated with the
number of islets harvested from the pancreas (Fig. 1D), suggesting
that the ability to continue compensating for insulin resistance is a
function of the ability to continue expanding beta-cell mass.

We observed significant differences between B6 and BTBR
mice in circulating adipose-derived hormones (adipokines). Adi-
ponectin has been shown to regulate peripheral insulin sensitiv-
ity. There was a ∼50% decrease in circulating adiponectin in
BTBR mice relative to B6 mice, irrespective of age and obesity
(Fig. 1E). Plasminogen activator inhibitor-1 (PAI-1), a bio-marker
for inflammation, showed an obesity-dependent increase at 4
and 10 wk only in BTBR mice (Fig. 1F). In rodents, resistin is
highly expressed in adipose tissue and is thought to negatively
regulate hepatic insulin sensitivity (Haluzik and Haluzikova
2006). Resistin showed an obesity-dependent increase in all but
the diabetic BTBR mice (Fig. 1G). In summary, three key adipo-
kines showed significant differences between the various groups
of mice, consistent with a potential role for adipose tissue in the
diabetes susceptibility of BTBR mice.

Differential expression of individual genes among six key tissues

Since age and obesity are necessary to unmask diabetes, we
sought to deconstruct their relative contribution in B6 and BTBR
mice by gene expression profiling of lean and obese male mice at
4 and 10 wk of age. In each strain, average expression levels from
the four groups of mice can be sorted into 15 distinct theoretical
patterns (Supplemental Table S1). Using EBarrays, the empirical
Bayes method described in Methods, for each transcript in each
strain, we calculated the posterior probability for each of the 15
patterns and assigned the transcript to the expression pattern
with maximum posterior probability (MPP). Differentially ex-
pressed (DE) transcripts are defined as those with MPP > 0.7
(MPP > 0.5 for hypothalamus) for one of the DE patterns (pat-
terns 2–15 in Supplemental Table S1) in at least one mouse strain.
Supplemental Figure S1 plots the MPP for DE transcripts in B6 vs.
the MPP for DE transcripts in BTBR. We found that >96% of the
DE transcripts were confined to seven of the 14 possible DE pat-
terns (shaded in Supplemental Table S1). This approach has en-
abled us to identify primary and secondary drivers of changes in
gene expression in the six tissues profiled. It is important to note
that thresholds were chosen to balance false discovery rate (FDR)
and number of genes identified (see legend of Supplemental Fig.
S1). To ensure that modules identified were robust to more strin-
gent thresholds for DE transcript identification, we varied the
MPP cutoff and remapped the modules onto those identified at
lower thresholds. For all tissues, except hypothalamus, the mod-
ules identified with MPP > 0.9 dendrogram tree were remapped
onto the MPP > 0.8 and MPP > 0.7 dendrogram trees, maintain-
ing their color designation. For hypothalamus the modules from
the 0.6 tree were remapped onto the 0.5 tree, as the 0.7 tree had
only one module (turquoise). Supplemental Figure S7 shows the
result from islet (hypothalamus is similar). As shown, most clus-
ters are highly conserved.

Primary vs. secondary drivers of differential gene expression
at the individual transcript level

There were three variables in our experiment: obesity, age, and
strain. Using a nonsupervised hierarchical algorithm, the 40
mice, five in each of eight groups, were clustered based solely on

Figure 1. Ten-week-old BTBR ob mice are severely diabetic. (A) Sche-
matic representation of experimental model depicting a gene expression
network connecting key tissues in a mouse when examined over three
primary axes: obesity, strain, and age. Clinical phenotypes are shown for
five to seven animals for each of the eight groups of mice used for study.
Plasma glucose (B), insulin (C), total number of islets harvested per pan-
creas (D), adiponectin (E), PAI-1 (F), and resistin (G) are plotted. Open
(lean) and closed (ob/ob) circles represent individual mice. Horizontal
bars show mean values for each group (�SD).
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the DE transcripts for each tissue. Differential gene expression in
islet, liver, and adipose tissue was primarily driven by obesity,
whereas differential expression in the two muscle tissues and
hypothalamus was driven primarily by age (Supplemental Fig.
S2). Secondarily, age determined the clustering of the mice in
islet, liver, and adipose tissue, whereas obesity drove the second-
ary changes in muscle and hypothalamus.

Each tissue contains modules of highly correlated
differentially expressed transcripts enriched for specific
biological functions

To create a framework to explore strain-, obesity-, and age-
dependent determinants of gene expression, we restricted our-
selves to the DE transcripts in each tissue and calculated the
correlation coefficient among all transcripts, and partitioned
them into color-coded modules by the method of Zhang and
Horvath (2005) (Supplemental Table S2). Such modules often
contain transcripts of related biological function (Carlson et al.
2006; Gargalovic et al. 2006; Ghazalpour et al. 2006; Horvath et
al. 2006). Each tissue yielded 19 distinct co-expression network
modules, except hypothalamus, which had 10, for a total of 105
modules (Supplemental Fig. S3). The modules were largely cohe-
sive, as quantified by measuring the pairwise correlations of tran-
scripts within each module. Average absolute pairwise correla-
tions exceeded 0.7 for 84%, 100%, 79%, 95%, 90%, and 30% of

the modules in islet, adipose, liver, solues, gastrocnemius, and
hypothalamus, respectively (data not shown).

To assess the biological relevance of the co-expression net-
work modules we asked if modules contained genes enriched for
specific biological processes. A substantial number of modules in
each tissue were enriched for genes with specific gene ontology
(GO) classifications. For example, in each tissue, except hypo-
thalamus, we identified a single module significantly enriched
with genes involved in cell cycle regulation (P < 10�14 for each
tissue) (Supplemental Table S4). Thus, unsupervised clustering of
genes with highly correlated expression profiles yields modules
enriched for biologically relevant processes (Horvath et al. 2006).

We examined the contrast condition(s) responsible for dif-
ferential expression for all DE transcripts in each of the six tis-
sues: obesity, age, and/or strain (Fig. 2; see also http://
diabetes.wisc.edu/kelleretal2008/fig2.php for hyperlinked data
page). Strain-dependent differences are evident when the pattern
distribution for a particular color-coded module is shifted in the
two strains. For example, the cell cycle module in islets (Fig. 2,
green-yellow, arrowhead) is predominantly “all different” in B6,
reflecting a combination of obesity and age as primary drivers of
DE for this module. However, a large fraction of these genes
change to an “age only” pattern in BTBR, resulting from the loss
in an obesity-dependent signal present in B6. In contrast to the
regulation of cell cycle genes observed in the islets, a similar set
of genes in adipose tissue (Fig. 2, light green, arrowhead), also

Figure 2. Co-expression modules can be deconstructed to show strain-dependent changes in transcript expression patterns. The strain-specific
expression pattern for each co-expression module is illustrated for all six tissues profiled. The color of a particular module within one tissue is not related
to that same color for a module of another tissue but is preserved across strains. The vertical size of the lines used to illustrate the module transcripts
is proportional to the strain-specific posterior probability determination illustrated in Supplemental Figure S1. A decrease in the size of the symbols is
evident in the hypothalamus compared to the other tissues, reflecting the decreased posterior probability cutoff (0.5) that was used for DE transcript
identification in hypothalamus. For each strain and all tissues, every transcript has a unique expression pattern. Filled arrowheads highlight the cell cycle
regulatory modules in islet and adipose tissue. Strain-dependent differences in expression pattern are evident when the pattern distribution for a
particular color-coded module is shifted in the two strains. For example, the cell cycle regulatory gene set in islets largely shifts from pattern 15 in B6
to pattern 7 in BTBR (see arrowheads). This figure is hyperlinked to our microarray gene expression database at http://diabetes.wisc.edu/kelleretal2008/
fig2.php.
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enriched in cell cycle regulatory tran-
scripts, showed an “all different” expres-
sion pattern in both mouse strains.
Supplemental Table S3 lists the num-
ber of transcripts contained within each
co-expression module as a function of
expression pattern, strain, and tissue
(see also http://diabetes.wisc.edu/
kelleretal2008/tabs3.php). In short, an
unsupervised analysis of expression
modules identified a key change in cell
cycle gene expression in islets that
distinguishes a diabetes-susceptible
from a non-diabetes-susceptible mouse
strain.

We identified a module of highly
correlated genes in liver (turquoise mod-
ule) that had a strain-specific expression
pattern. Within this module is the glu-
cagon receptor (Gcgr), which shows an
age-dependent increase in lean and
obese B6 and BTBR mice and an obesity-
dependent decrease in all mice except
10-wk B6. Hepatic glucagon receptor
mRNA expression has been shown to in-
crease in diabetic animals and in fasting
conditions, and its expression may be
regulated by serum glucose levels via
glucokinase (Burcelin et al. 1998). Inhi-
bition of glucagon receptor mRNA ex-
pression in liver in db/db animals im-
proves glucose tolerance and normalizes
serum glucose, so it is clear that hepatic
glucagon signaling plays a crucial role in
the pathophysiology of diabetes (Liang
et al. 2004). As glucagon signaling in the
liver leads to increased nutrient mobili-
zation, we looked in the same module
for genes involved in these processes.
We identified genes involved in carbo-
hydrate metabolism (isocitrate dehy-
drogenase 2, aldolase 1A, phosphoglyc-
erate mutase-2, and 6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 3),
ketone body production (aldehyde dehyrogenase 1b1), and oxi-
dative phosphorylation (succinate dehydrogenase A, mitochon-
drial F0 complex, subunit c). This suggests that, by examining
correlated genes within a module, we can identify strain-specific
differences in key metabolic signals and their downstream effects
on cellular metabolism.

The cell cycle modules predict adipose and beta-cell
replication and obesity and diabetes

To maintain euglycemia, insulin-resistant animals must increase
insulin production, which can occur through an expansion of
pancreatic beta-cell mass. We focus here on two of the five tissue-
specific modules that were highly enriched in genes controlling
the cell cycle. The islet cell cycle module had 217 transcripts,
which showed an age-dependent decrease in expression in both
mouse strains and an obesity-dependent increase only in B6 mice
(Fig. 3A). We calculated the first principle component (PC1) as a

single descriptor of the expression pattern for the entire module
(Fig. 3B). The PC1 shows an obesity-dependent increase in cell
cycle gene expression in the islets of B6 mice at 4 and 10 wk of
age. This induction fails to occur in BTBR mice. The same strain-
specific differences in obesity-dependent induction of the islet
cell cycle module were seen at 4 wk, when the animals were still
euglycemic. Thus, the islet cell cycle module changes precede the
onset of diabetes.

The cell cycle module profile predicts that obesity induces
islet cellular proliferation in B6 but not BTBR mice. To measure
islet cellular proliferation, we exposed the mice to 8% 2H2O in
the drinking water for two weeks and measured the enrichment
in 2H in DNA extracted from their islets. By normalizing the islet
enrichment values to 2H enrichment in bone marrow DNA,
which undergoes complete turnover during this period, we esti-
mated the percent new cells in the islets (Neese et al. 2002). B6 ob
mice showed a 2.6-fold increase in the percent new islet cells
relative to B6 lean mice (Fig. 3C). In contrast, BTBR islets showed

Figure 3. Co-expression modules enriched with cell cycle regulation accurately predict diabetes and
obesity. Expression heat maps (A) and the PC1 on log10 scale (B) of the cell cycle regulatory modules
in islets (217 transcripts) and adipose (96 transcripts) are shown. For the heat maps, red shows
increased expression, green shows decreased expression, and black is neutral. Bar plots in B show the
PC1 for individual mice and correspond to an expressed decrease for negative values and increased
expression for positive values. The percentage of new cells, derived from an in vivo measure of 2H
incorporation into newly synthesized DNA, is shown for islets and adipose tissue (C). Where significant
obesity-dependent differences were observed, P-values are shown. Arrows are used to show influence
of obesity. NS, not significant.
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no significant increase in the proportion of new islet cells in
response to obesity.

In contrast to islets, the cell cycle module in adipose did not
show a strain difference in expression pattern: both B6 and BTBR
show an obesity-dependent up-regulation of expression for these
genes at 10 wk of age (Fig. 3A,B). Consistent with the gene ex-
pression data, cellular proliferation measured in adipose tissue
showed no strain difference in the fraction of newly replicated
cells, with mice in both strains showing an obesity-dependent
increase in cellular growth (Fig. 3C). Thus, the adipose cell cycle
module PC1 correctly predicted adipose tissue proliferation and
obesity, just as the islet cell cycle module predicted islet prolif-
eration and diabetes.

Gene expression modules are highly correlated with glucose
and insulin levels

Modules in islet, adipose, and soleus most strongly correlated
with plasma glucose (Supplemental Fig. S4) contained genes pre-
viously shown to have a role in glucose homeostasis. For ex-
ample, the cyan module in islet contains the branched chain
aminotransferase 1 enzyme (Bcat1), which on its own had a 0.85
correlation with plasma glucose. Bcat1 catalyzes the transamina-
tion of alpha-ketoisocaproate (KIC) and glutamate to yield leu-
cine and alpha-ketoglutarate (alpha-KG). We have previously
shown that BTBR islets are hyperresponsive to KIC-induced in-
sulin secretion and that alpha-KG can directly stimulate insulin
release from isolated pancreatic islets (Rabaglia et al. 2005).

The magenta islet module, also enriched with transcripts
highly correlated with plasma glucose (Supplemental Fig. S4),
contains transcripts from a number of genes previously high-
lighted for their potential role in glucose homeostasis, including:
gamma-subunit of the gamma-aminobutyric acid A-receptor,
Gabrd (plasma glucose correlation = 0.93); peroxisome prolifera-
tor-activated receptor-alpha, Ppara (0.92); and cocaine- and am-
phetamine-regulated transcript, Cartpt (0.86). Glucose suppresses
glucagon release by activation of the GABA-A receptors on alpha-
cells, mediated by GABA released from neighboring beta-cells
(Rorsman et al. 1989; Wendt et al. 2004). More recent evidence
suggests that glucose may directly suppress glucagon release from
alpha-cells (Vieira et al. 2007). Chronic treatment of Ins-1 cells or
primary rat islets with a high glucose medium has been shown to
decrease Ppara expression (Roduit et al. 2000). Finally, Cartpt ex-
pression is up-regulated in the beta-cells of type 2 diabetic models
in rat (Wierup et al. 2006), and Cartpt knockout mice have im-
paired GSIS and are glucose intolerant (Wierup et al. 2005).
Taken together, our results indicate that modules highly corre-
lated with plasma glucose may identify compensatory changes in
gene expression elicited by hyperglycemia.

Only islet, liver, and adipose contained modules correlated
with plasma insulin. Adipose contained the greatest number of
modules correlated with insulin (11 of 19), whereas liver con-
tained the module with the greatest absolute correlation with
plasma insulin (Supplemental Fig. S4). Obesity is a well-known
driver of changes in plasma insulin, due to an obesity-induced
increase in insulin resistance. The lack of correlation for insulin
in the muscle tissues and hypothalamus is consistent with their
“age-responsive” expression patterns, with few obesity-related
transcripts (Fig. 2). For islets, liver, and adipose, modules with a
high correlation with insulin were generally not correlated with
glucose.

We identified a module of correlated transcripts in adipose

tissue enriched with genes involved in inflammation (the brown
module, Supplemental Fig. S3). These transcripts show increased
expression in the obese animals, and older animals, of both
strains. These data are consistent with the previous finding that
adipose tissue from the B6 ob/ob mouse is enriched in transcripts
found in macrophages (Weisberg et al. 2003; Xu et al. 2003).
These cells are believed to secrete cytokines that affect peripheral
insulin resistance. Up-regulated transcripts in our module in-
clude: Emr1, the macrophage-specific surface marker; Cd68, a
macrophage transmembrane protein; Itgam, an integrin found
primarily on macrophages and other inflammatory cells; and
Adam8, a monocyte metalloproteinase. Transcripts in this mod-
ule showed a high correlation with plasma glucose (Supplemen-
tal Fig. S4).

An inter-tissue gene expression network model

A major challenge in diabetes research is to better understand the
potential relationships between gene expression changes among
various tissues. For example, there are dramatic changes in gene
expression in liver, muscle, and adipose tissue associated with
insulin resistance and consequent changes in islets. Insulin-
resistant tissues may communicate with islets through the pro-
duction and secretion of blood-borne factors.

One way to search for molecules that mediate inter-organ
communication is to identify relationships among the 105 mod-
ules across all six tissues. For each strain we represented each
module with its strain-specific first principal component
(PC1strain), which is highly correlated with all the module-
specific transcripts (Supplemental Fig. S5). Each module corre-
sponds to a node within the network (Fig. 4, see also http://
diabetes.wisc.edu/kelleretal2008/fig4.php for hyperlinked data
page). Strain-specific edges are shown when two modules have
significant partial correlation (PaCor). PaCor is distinct from an
ordinary correlation in that PaCor reveals the “direct” correlation
between two PC1s after adjusting for the effects of all other mod-
ule PC1s, as well as plasma glucose and insulin (see Methods).
Adjusting for these two physiological traits has allowed us to
more clearly establish direct gene-to-gene networks in B6 and
BTBR. The strain-specific networks contained only 66 and 62 of
105 module nodes, forming just 125 and 161 significant edges
out of potentially 5460 edges, in B6 and BTBR, respectively (Fig.
4). Few connections were formed out of the total possible num-
ber (∼2%), which is consistent with the assumptions made in the
network construction algorithm (Schafer and Strimmer 2005b).
Thus, in the diabetic strain, fewer network nodes were associated
with a greater number of inter-tissue connections.

Strain-specific PaCor among the 105 PC1strain variables,
plasma glucose and insulin, revealed remarkable strain differ-
ences (Supplemental Fig. S6). In B6, there were 14 connections
between glucose and gene modules, whereas in BTBR plasma,
glucose made no connections with any module after adjusting
for insulin and other module nodes. For insulin, there were sig-
nificant PaCor connections formed with six and seven modules
in B6 and BTBR mice, respectively, with only one in common.
Many modules contain transcripts highly correlated with plasma
glucose or insulin (Supplemental Fig. S4).

There were substantial differences between tissues in the
degree of intra-tissue connectivity in the co-expression network
(Fig. 4). The two muscle tissues had the most intra-tissue connec-
tions, whereas liver and hypothalamus had the fewest, in both
strains. Gastrocnemius showed a twofold increase in the number
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of intra-tissue connections in BTBR vs. B6 mice. The number of
connections present in the other tissues was similar between the
strains. There was two- to eightfold more inter-tissue than intra-
tissue connections in all tissues, except gastrocnemius, where

there were ∼60% fewer inter-tissue connections. All tissues
showed an increase in inter-tissue connectivity in BTBR vs. B6.
Soleus and liver had the greatest number of inter-tissue connec-
tions, whereas gastrocnemius had the fewest. Overall, connec-
tion strength was greater for intra-tissue connections than for
inter-tissue connections throughout the network. Taken to-
gether, our results suggest that obesity-dependent diabetes re-
sults in dramatic changes in the intra-tissue correlation structure
of the co-expression network.

There were several nodes in each of the strain-specific net-
works that appear to be “hot spots”, or nodes that form the
greatest number of connections within the network (Fig. 4, as-
terisks). These hot spots were found in both strains and in all
tissues, excluding gastrocnemius, consistent with the relatively
low inter-tissue connectivity of this tissue. Several of the hot spot
nodes form as many as 10 or more connections with other nodes.
It is interesting to note that these hot spots are highly inter-
connected among themselves, as well as with other nodes.

The islet cell cycle module, Isletgreenyellow (Fig. 4, arrow-
head), showed dramatic strain-dependent changes in its inter-
connectivity within the network. In the B6 network there is one
connection between this node and a node derived from another
islet module, Isletcyan, with a negative association (Fig. 4, arrow-
head). Interestingly, the Isletcyan module contains transcripts
with expression patterns highly correlated with plasma glucose
(Supplemental Fig. S4), suggesting that genes positively corre-
lated with glucose have negative association with the genes
within the cell cycle module in B6 islets.

In the BTBR network, the intra-islet connection was lost,
being replaced with two new connections: a negative association
with the livermagenta node and a positive association with the
soleusmidnightblue node (Fig. 4, arrowheads). Both of these nodes
are highly interconnected within the network, forming 16 and
10 connections, respectively. The soleus node contains tran-
scripts with expression patterns highly correlated with plasma
glucose (Supplemental Fig. S4), suggesting glucose-regulated
genes in soleus may positively associate with cell cycle regulatory
genes in BTBR islets.

The islet cell cycle module is highly correlated with individual
transcripts in insulin target tissues

The correlations between modules do not allow the identifica-
tion of instances where there are strong correlations between a
module and a transcript not belonging to a module. To identify
transcripts highly correlated with the islet cell cycle module, we
calculated the correlation between the module’s PC1 and all tran-
scripts in each of the five non-islet tissues. We identified a few
transcripts with high correlations to the islet cell cycle PC1, in-
cluding: Gdf10 (0.85, gastrocnemius), Bmp1 (0.84, soleus), Igf2
(0.86, soleus), Igf2bp1 (0.85, adipose), and Ngf (0.8, soleus). These
genes could potentially mediate a signal that promotes islet cel-
lular proliferation. These results offer a hypothesis that one or
more of these proteins mediate beta-cell proliferation in insulin-
resistant mice.

A searchable type 2 diabetes gene expression database

We have created a searchable resource (http://diabetes.wisc.edu)
of the gene expression data that was used to generate the network
model described herein. This search tool allows the user to enter
one to multiple genes and will display the gene expression pro-
files of our eight experimental groups (lean and obese B6 and

Figure 4. A gene-gene network model is distinct between B6 and BTBR
mice. A gene-gene network was constructed based on the PaCor be-
tween the strain-specific PC1 calculated between all modules identified in
the six tissues profiled. Modules are illustrated as colored bricks along the
inside and outside of the network wheels and preserve the color scheme
illustrated in Figure 2. Inter-tissue edges within the network are shown as
lines connecting inside modules; intra-tissue edges are depicted as arcs
connecting the outside modules. The cell cycle regulatory module in islet
and those modules that form a direct connection to the cell cycle islet
module are highlighted with open arrowheads. Network hot spots are
indicated with asterisks. Line thickness is proportional to the magnitude
of the PaCor, which ranged from 0.487 to 0.093 in B6 and from 0.303 to
0.086 in BTBR, for maximum and minimum, respectively. Positive pre-
dictive values for edge accuracy, obtained from simulations (see Meth-
ods), were on average 78% in B6 and 77% in BTBR. Red, negative PaCor;
green, positive PaCor. Significance is set to control FDR at 0.5%. This
figure is hyperlinked to our microarray gene expression database at
http://diabetes.wisc.edu/kelleretal2008/fig4.php.
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BTBR mice at 4 and 10 wk of age) in any of six tissues (islets,
adipose, liver, gastrocnemius, soleus, and hypothalamus). In ad-
dition, we have incorporated a transcript-to-transcript correla-
tion tool that can be used to identify groups of genes with highly
correlated expression profiles. For example, searching the data-
base for the expression profiles for Ccna2 (cyclin A2) shows that
this transcript was included in four co-expression gene mod-
ules (Gastrocnemiuscyan, Isletgreenyellow, Livermidnightblue, and
Soluesgreen), all of which were significantly enriched with GO
terms associated with cell cycle regulation (see Supplemental
Table S4). Plots of the expression profiles reveal, in general, that
Ccna2 decreases with age in all tissues and increases with obesity
in adipose for both mouse strains and in islet for B6 mice only.
Searching the mlratio database in islets for transcripts that
correlate with Ccna2 yields a list of 100 transcripts with a Pear-
son’s correlation, r > 0.94. Many of these highly correlated
transcripts themselves are involved in cell cycle regulation, in-
cluding Foxm1 (r = 0.99), Ccnb1 (r = 0.98), Ccnb2 (r = 0.98), Brca1
(r = 0.97), and Aurka (r = 0.96), and are included in the cell cycle
regulatory modules. In addition to positively correlated tran-
scripts, the most negatively correlated transcripts are displayed,
which, in the case of Ccna2, included Ccnk (r = �0.77), a cyclin
that has been shown previously to suppress cellular proliferation
when overexpressed in human glioblastoma cells (Mori et al.
2002). This brief example has illustrated the utility of our search-
able database. It can be used to survey gene expression in six key
tissues as a function of obesity, strain, and age in a mouse model
of type II diabetes. We believe it will be a powerful resource tool
that will benefit many in the diabetes research community.

Discussion

During the transition to diabetes, tissues undergo coordinated
changes in gene expression and arrive at a new highly regulated,
although pathological, steady state. These changes are highly
correlated and thus enable us to identify modules of coordinately
regulated genes. In this study, we exploited three primary vari-
ables that converge to cause type 2 diabetes in our model—
obesity, age, and mouse strain—to study the correlation structure
of the changes in gene expression in six tissues. We obtained a
gene expression network model containing 105 modules and es-
tablish the modules’ inter- and intra-tissue relationships in the
non-diabetic and diabetic state.

A major finding in our study is that, in five of the six tissues
profiled, at least one of the tissue-specific modules was signifi-
cantly enriched with cell cycle regulatory genes. Of direct rel-
evance to diabetes pathogenesis, the islet cell cycle module ex-
hibited a striking strain difference in expression pattern; B6, but
not BTBR, showed an obesity-dependent increase in expression
at both 4 and 10 wk of age.

These results predict a strain difference in beta-cell prolif-
eration during the onset of obesity that would correlate with
resistance or susceptibility to diabetes. This prediction was tested
with a direct measure of cellular proliferation. We found that B6
islets have a robust, obesity-dependent increase in islet cell rep-
lication, consistent with previous reports. In contrast, BTBR islets
failed to increase proliferation in response to obesity. Thus, the
islet cell cycle module predicted diabetes.

Given the dramatic islet growth phenotypes that have been
reported for the Cdk4 knockout (Rane et al. 1999; Tsutsui et al.
1999) and constitutively active transgenic (Rane et al. 1999)

mouse, we asked whether Cdk4 or any of the D-type cyclins were
present in the islet and other tissue-specific cell cycle modules.
These genes were not present in the cell cycle modules, suggest-
ing that age, obesity, and strain were not factors that alter their
expression in our experimental model. However, cyclins A, B,
and E were identified in several cell cycle modules, suggesting
these molecules play a critical role in obesity and age-related
changes in cell cycle progression. Ccna2 was present in the cell
cycle modules in all tissues except adipose, whereas Ccne2 was
unique to adipose.

There are a number of cyclin-dependent kinase inhibitors,
but only two that were identified in the cell cycle modules:
Cdkn2c (also known as p18) in the liver module and Cdkn3 in
both liver and islet modules. Similar to the partnership that is
formed between Cdk4 or Cdk6 and the D cyclins, Cdk2 partners
with either the E or A cyclins to mediate phosphorylation of
retinoblastoma tumor suppressor protein (Rb1) at sites distinct
from those phosphorylated by Cdk4 and Cdk6 (Cozar-Castellano
et al. 2006). Remarkably, Cdk2 was uniquely included in the cell
cycle module of the islets, suggesting that Cdk2-dependent phos-
phorylation of Rb1 may be a key regulatory step that mediates
the strain difference in islet cell proliferation between B6 and
BTBR mice. Rb1 is widely regarded as the molecular “brake” that
controls transition from G1 into S phase of cellular growth (Co-
zar-Castellano et al. 2006). Once relieved of Rb1-dependent in-
hibition, a family of E2F transcription factors mediates coordi-
nate regulation of gene expression that is required for cellular
replication. However, it is important to note that beta-cell spe-
cific ablation of Rb1 does not lead to pancreatic beta-cell mass or
glucose homeostatic phenotypes, suggesting that other factors
(e.g., the additional pocket proteins, Rbl1 or Rbl2) can compen-
sate to achieve growth arrest in the absence of Rb1 (Vasavada et
al. 2007).

E2f1 and E2f2 were found in soleus and liver, whereas E2f8
was in adipose and islet cell cycle modules. E2f7 was found ex-
clusively in the islet cell cycle module. Our results reveal key
molecular components of the cell cycle regulatory machinery
that form expression pathways in most of the tissues profiled.
Some of these components are uniquely contained in islet path-
ways and may play a critical role in islet cell proliferation during
aging or under the stimulus evoked by obesity-induced insulin
resistance.

The cell cycle module results also predicted an obesity-
dependent increase in adipose cell proliferation in both mouse
strains. The prediction was tested in vivo and, again, the results
are entirely consistent with the cell cycle module data; both
mouse strains showed an obesity-dependent increase in adipose
cell proliferation.

What is the link between obesity and an increase in islet
cellular proliferation? One possibility is expression and secretion
of mitogenic factors from peripheral insulin-resistant tissues that
circulate in the blood and stimulate beta-cells to proliferate, a
mechanism supported by transplantation studies (Flier et al.
2001). Perhaps B6 mice express a beta-cell mitogenic signal in
peripheral tissues and this signal is missing or not functional in
BTBR mice.

To search for possible candidates for these factors, we iden-
tified genes in insulin target tissues with expression profiles
highly correlated to the islet cell cycle regulatory module and
whose products were putative secreted peptides. Several candi-
dates were identified, including Ngf, Igf2, Igf2bp1, Gdf10, and
Bmp1.
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Several studies have provided compelling evidence that
these molecules play a critical role in regulating beta-cell mass.
Widespread (Petrik et al. 1999) or local (Devedjian et al. 2000;
Okamoto et al. 2006) overexpression of Igf2 has been shown to
promote islet cell hyperplasia, and application of Igf2 to beta-
cells in culture induces proliferation (Milo-Landesman and Efrat
2002). Recent genome-wide association studies have identified
genetic variants in IGF2BP2 that are associated with type 2 dia-
betes in human patients (Saxena et al. 2007; Scott et al. 2007;
Zeggini et al. 2007). While distinct from Igf2bp2, Igf2bp1 func-
tions similarly to Igf2bp2 to stabilize Igf2 mRNA, resulting in in-
creased synthesis and secretion of Igf2 protein. Removal of Ngf
from isolated islets in culture induces apoptosis (Pierucci et al.
2001). Finally, recent work has shown that Bmp3, a member of
the bone morphogenetic protein ligand super-family that in-
cludes Gdf10 and Bmp1, may play a critical role in regulating
beta-cell mass. Bmp3 knockout mice have decreased islet Mki67-
positive immunoreactivity, reduced beta-cell mass, and increased
random-fed blood glucose, suggesting a role for Bmp3 in regulat-
ing beta-cell proliferation (Lee et al. 2007).

Recent evidence suggests that beta-cell replication is the pri-
mary means by which animals increase beta-cell mass during
adulthood and under conditions of islet regeneration (Dor et al.
2004). All beta-cells have equal capacity to replicate (Brennand et
al. 2007) and this replicative capacity requires functional Ccnd2
(Georgia and Bhushan 2004). Mice harboring beta-cell specific
ablations of the transcript factor Foxo1 (Okamoto et al. 2006) or
Insr (Okada et al. 2007) fail to show islet cell hyperplasia in re-
sponse to severe insulin resistance. Taken together, these data
strongly support a model whereby the expansion of beta-cell
mass in response to insulin resistance is due to replication of
preexisting beta-cells. Our finding of obesity-dependent differ-
ences in the expression of genes critical for cell cycle regulation
in isolated islets, coupled with our direct in vivo measure of islet
cellular proliferation, corroborates this model.

These studies provide the scientific community with the
first gene expression network model of type 2 diabetes across
multiple tissues. In addition, it provides a large database inferring
intra- and inter-tissue connections between gene expression
modules across a wide array of cellular functions. The modules
can be broadly used to make predictions about the regulation of
numerous pathways as we did with the cell cycle module.

Methods

Animals
All mice used in this study were male, bred from our in-house
colonies at the University of Wisconsin Biochemistry Depart-
ment, and housed in an environmentally controlled facility on a
12-h light/dark cycle (6 am–6 pm, respectively). Mice were pro-
vided free access to water at all times and to a standard rodent
chow (Purina no. 5008) ab libitum, except during a fasting period
(8 am–noon) in order to obtain plasma at 4 or 10 wk of age, after
which they were sacrificed by decapitation. For each animal, the
following tissues were collected in order: left lateral lobe of the
liver, hypothalamus, right gonadal fat pad (adipose), pancreas,
soleus, and gastrocnemius. For the two muscle tissues, both the
right and left were combined for gene expression profiling. All
tissues, except the pancreas, were flash-frozen in liquid nitrogen.
All procedures were approved by the University of Wisconsin
Animal Care and Use Committee.

Materials
Collagenase Type XI, RIA-grade BSA, dextrose, and Ficoll Type
400-DL were purchased from Sigma. Hanks’ balanced salt solu-
tion was from GIBCO. RNeasy Mini Kit was from Qiagen. DEPC-
treated water was from Ambion.

Plasma measurements
Glucose was measured by the glucose oxidase method using com-
mercially available kits (Sigma-Aldrich). For lean mice, insulin
was measured by radioimmunoassay (RIA; RI-13K, Linco Re-
search). For ob mice, insulin was measured by an in-house devel-
oped ELISA using a pair of anti-insulin/proinsulin antibodies
(clones D6C4 and D3E7-BT) purchased from Research Diagnos-
tics. Briefly, 96-well high-binding plates (Corning) were coated
(50 µL/well) overnight with 3 µg/mL of D6C4. After removal of
D6C4, plates were blocked with PBS containing 4% RIA-grade
BSA (Sigma) for 1 h (100 µL/well) and then incubated for 1 h with
insulin standards (Linco Research, 0.1–10 ng/mL), whole plasma
or whole pancreas extract (25 µL/well). D3E7-BT (25 µL/well) and
1 µg/mL in PBS/1% BSA were added, gently mixed, and incubated
for an additional hour. After washing each well three times (50
mM Tris, 0.2% Tween-20, pH 8.0), 1 µg/mL of streptavidin-HRP
(Pierce) in PBS/0.1% BSA was added (50 µL/well) and incubated
for 30 min. Following an additional three washes, 16 µmol/mL of
o-phenylenediamine (Sigma), dissolved in citrate buffer (0.1 M
citrate-phosphate, 0.03% H2O2 at pH 5.0), was added (50 µL/
well) and incubated for 30 min, followed by an equal volume of
0.18 M sulfuric acid to quench the reaction. Absorbance at 492
nm was determined by a plate reader (Ultra 384 TECAN). Insulin
contents in plasma were calculated by comparison to known
standards. Adiponectin, PAI-1, and resistin were determined by
commercial ELISA services at Linco Research.

Islet isolation and RNA purification
Intact pancreatic islets were isolated from mice using a collage-
nase digestion procedure as previously described (Rabaglia et al.
2005). Islets were carefully hand-picked under a stereo micro-
scope to remove contaminating acinar tissue, after which the
islets were washed twice with phosphate buffered saline (PBS)
and centrifuged at 2500 rpm, 5 min, 4°C. The PBS supernatant
was removed and 200 µL RLT buffer (Qiagen) was added. Islets
were homogenized by hand for 1 min with a plastic micro-pestel
(USA Scientific) and stored at �80°C until RNA purification. RNA
was purified using the Qiagen RNeasy Mini Kit, according to
manufacturer directions. An Agilent Bioanalyzer 2100 was used
to assess RNA quality for all islet samples, which typically showed
a 28/18S ratio of ∼1.5 or greater.

RNA isolation from non-islet tissues, gene expression
profiling, data normalization, and GO term enrichment
analysis
RNA preparations (liver, muscles, adipose, and hypothalamus)
and all array hybridizations were performed at Rosetta Inphar-
matics (Merck & Co.). The custom ink-jet microarrays used in
this study were manufactured by Agilent Technologies and con-
sisted of 4732 control probes and 39,558 noncontrol oligonucle-
otides extracted from mouse Unigene clusters and combined
with RefSeq sequences and RIKEN full-length cDNA clones.
Mouse tissues were homogenized and total RNA extracted using
Trizol reagent (Invitrogen) according to manufacturer’s protocol.
Total RNA was reverse-transcribed and labeled with either Cy3 or
Cy5 flurochrome. For a given strain, labeled complementary RNA
(cRNA) from each animal of that strain was hybridized against a
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pool of labeled cRNAs constructed from equal aliquots of RNA
from all of the animals for that strain (over both time points). All
hybridizations were performed in fluor-reversal for 48 h in a hy-
bridization chamber, washed, and scanned using a confocal laser
scanner. Arrays were quantified on the basis of spot intensity
relative to background, adjusted for experimental variation be-
tween arrays using average intensity over multiple channels, and
fitted to a previously described error model to determine signifi-
cance (type I error) (He et al. 2003). Gene expression measures are
reported as the ratio of the mean log10 intensity (mlratio). Gene
expression data that were used for the trait-gene correlations
were generated using the ratio splitter pairwise ratio builder func-
tion in Resolver 6.0 (Rosetta Biosoftware) to account for the
strain-specific reference pools. This pipeline allows the creation
of new experiments based on comparisons of intensity channels
from existing ratio hybridizations without having to prepare new
hybridizations. The ratio-splitting operation which generates in-
tensity profiles includes error modeling of the channels of the
ratio scan, group normalization, forward transformation of in-
tensities, group de-trending, and inverse transformations. Experi-
ments are then rebuilt by ratioing each sample to a new baseline
value, represented here as a super-pool (average of all array hy-
bridizations in the experiment). The statistical significance of the
overlap between input sets from the co-expression networks and
GO biological process gene sets was assessed using the hypergeo-
metric distribution and a multiple test correction (Bonferroni).

In vivo islet proliferation measurement
The proliferation rate of islet cells was measured using a recently
developed heavy water (2H2O) labeling technique (Busch et al.
2004; Shankaran et al. 2006, 2007). Briefly, the incorporation of
deuterium (2H) from 2H2O into the deoxyribose moiety of de-
oxyribonucleotides in cells replicating their DNA is measured by
gas chromatography/mass spectrometry (GC/MS). To rapidly at-
tain stable 2H2O enrichment in body water, mice were given an
IP injection of 2H2O in 0.9% NaCl at 6 wk of age. The volume, V
(mL), of the IP injection was calculated for each animal according
to the formula for lean and ob animals, respectively,
Vlean = 0.03 � body weight (gm) and Vob = 0.015 � body weight
(gm). On the same day of the IP injection, mice were placed on
drinking water containing 8% 2H2O for a period of 2 wk ad libi-
tum. Mice were sacrificed at 8 wk of age, at which time plasma
was collected and islets and adipose tissue isolated as described
above. This procedure yielded average 2H2O enrichment in
plasma of 5.7% � 0.5% in all mice except BTBR ob where
7.8% � 0.5% enrichment was achieved, owing to polyuria, in
turn due to hyperglycemia, in these diabetic mice. Hind legs were
collected in order to determine the 2H2O enrichment in the DNA
of bone marrow, a cellular population considered to have com-
pletely, or nearly completely, turned over during the 2-wk label-
ing period (Neese et al. 2002). DNA was extracted from islets,
whole adipose tissue, or bone marrow using Qiagen DNeasy tis-
sue kits (Qiagen Inc.) and hydrolyzed to deoxyribonucleosides.
The deoxyribose moiety of purine deoxyribonucleosides was
then converted to the pentafluorobenzyl triacetate derivative by
reaction with excess pentafluorobenzyl hydroxylamine under
acidic conditions, followed by acetylation with acetic anhydride.
GC/MS analysis was performed in negative chemical ionization
mode using an Agilent model 5973 mass spectrometer and a
6890 gas chromatograph fitted with a db-225 column. Selected
ion monitoring was performed on ions with mass-to-charge ra-
tios (m/z) 435 and 436. Incorporation of 2H into purine deoxy-
ribose was quantified as the molar excess fraction M1 (EM1),
correcting for injected amount of material as described (Neese et

al. 2002).The fraction of newly replicated cells in islet or adipose
was calculated as the ratio of the 2H-enrichment for each tissue to
that observed in bone marrow.

In vivo adipose proliferation measurement
Measurement of adipose cell proliferation was performed as de-
scribed above for islets. The whole epididymal adipose tissue was
removed and frozen. Genomic DNA was isolated and 2H enrich-
ment was determined by GC/MS as above.

Identification of differentially expressed (DE) genes
To classify genes into differential expression patterns, we used an
empirical Bayes hierarchical modeling approach called EBarrays
(Newton et al. 2001; Kendziorski et al. 2006; Yuan and Kendzi-
orski 2006), which is implemented in R, a publicly available sta-
tistical analysis environment (R Development Core Team 2005)
and available through Bioconductor (www.bioconductor.org).
EBarrays describes the probability distribution of a set of expres-
sion measurements. It accounts generally for differences among
genes in their true underlying expression levels, measurement
fluctuations, and distinct expression patterns for a given gene
among cell types or conditions. An expression pattern is an ar-
rangement of a gene’s true underlying intensities (µ) in each
condition. The number of patterns possible depends on the num-
ber of conditions from which the expression measurements were
obtained. For example, when measurements are taken from two
conditions, two patterns of expression are possible: equivalent
expression (µ1 = µ2) and differential expression (µ1�µ2). Given
the four conditions within each strain (4 or 10 wk; lean or obese),
15 expression patterns are possible (Supplemental Table S1).
Since we do not know a priori which genes are in which patterns,
the marginal distribution of the data is a mixture over the pos-
sible patterns with model parameters determined by the full set
of array data. In this way, the approach utilizes information
across a set of arrays to optimize model fit and is thus more
efficient than a number of methods that make gene inferences
one gene at a time. Posterior probabilities for each of the 15
patterns are calculated for every transcript and used for transcript
classification. For each tissue, a transcript is assigned to the ex-
pression pattern with maximum posterior probability (MPP). Dif-
ferentially expressed (DE) transcripts are defined as those with
MPP > 0.7 (MPP > 0.5 for hypothalamus) in at least one mouse
strain. For a given threshold, FDR is estimated by averaging the
posterior probabilities of equivalent expression for each tran-
script on the list (Newton et al. 2006).

Identification of co-expression modules
We used a previously developed method to identify transcript
co-expression modules (Zhang and Horvath 2005). For tran-
scripts identified as DE by EBarrays, an adjacency matrix was
constructed. Each entry in the matrix is the absolute value of
Pearson’s correlation, adjusted so that the overall network is ap-
proximately scale-free. Connection strength between two genes
(xi and xj) in the network was determined according to the adja-
cency function, aij = |cor(xi,xj)|

�, using the estimated power pa-
rameter �, resulting in a weighted network (Zhang and Horvath
2005). We note that this allows for all correlations to be used,
unlike approaches that invoke arbitrary thresholds. For a discus-
sion of the advantages of weighted vs. unweighted networks, see
Zhang and Horvath (2005) and references therein. The 8000
most connected transcripts were used in the topological overlap
matrix (TOM) calculation, and 1 – TOM was used as a distance
matrix in the hierarchical clustering of the transcripts for module
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identification. When there were fewer than 8000 DE transcripts
in a particular tissue (adipose, soleus, and hypothalamus), all
were used for module identification. We found that clusters were
robust to more stringent thresholds of 0.8 or 0.9 (MPP) for DE
transcript identification (Supplemental Fig. S7).

Partial correlation-based networks
A Gaussian graphical modeling framework was used for gene-
gene network construction (Schafer and Strimmer 2005a,b).
Briefly, the method assumes a linear relationship among vari-
ables that can be described by a multivariate normal distribution.
In this setting, the partial correlation (PaCor) matrix completely
prescribes dependence relationships among variables since a
nonzero PaCor between two variables indicates conditional de-
pendence given all other variables; and a zero PaCor indicates
that the variables are conditionally independent. More precisely,
given (X1, X2, . . . , Xn), the partial correlation between X1 and X2

is defined as the correlation of X1r and X2r where Xir denotes the
residuals obtained after regressing Xi upon (X3, . . . , Xn) (i = 1,2).
In contrast to Pearson’s correlation coefficient between two vari-
ables, which can be high if those two variables are both related to
a third variable, the PaCor quantifies the “direct” correlation be-
tween two variables since effects from all other variables are “ad-
justed” for, or more specifically regressed away. Significant Pa-
Cor’s were identified as previously described (Schafer and Strim-
mer 2005a), with FDR controlled at 0.005. For each mouse strain,
1000 simulations of multivariate normal data were generated for
20 mice and 107 nodes, using the strain-specific empirical co-
variance matrix, to verify that FDR was well-controlled and to
evaluate power and the positive predictive value (percent of cor-
rectly detected edges) for each network.
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