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ABSTRACT Temporal patterning of biological variables,
in the form of oscillations and rhythms on many time scales,
is ubiquitous. Altering the temporal pattern of an input
variable greatly affects the output of many biological pro-
cesses. We develop here a conceptual framework for a quan-
titative understanding of such pattern dependence, focusing
particularly on nonlinear, saturable, time-dependent pro-
cesses that abound in biophysics, biochemistry, and physiol-
ogy. We show theoretically that pattern dependence is gov-
erned by the nonlinearity of the input–output transformation
as well as its time constant. As a result, only patterns on
certain time scales permit the expression of pattern depen-
dence, and processes with different time constants can re-
spond preferentially to different patterns. This has implica-
tions for temporal coding and decoding, and allows differen-
tial control of processes through pattern. We show how
pattern dependence can be quantitatively predicted using only
information from steady, unpatterned input. To apply our
ideas, we analyze, in an experimental example, how muscle
contraction depends on the pattern of motorneuron firing.

When measuring input–output relations in biological systems, it
is often observed that the magnitude of the output depends not
just on the magnitude of the input, but also on its temporal
pattern—its arrangement in time. The pattern of firing of a
neuron—to cite the most notable example—is found to modulate
seemingly every activity-dependent variable, including the spread
of the electrical activity within the neuron (1), transmitter and
hormone release (2–8), postsynaptic integration of the signal (9),
levels of second messengers (8, 10, 11), as well as more complex
consequences such as synaptic plasticity (12–14), regulation of
ion-channel complements (15–17), neurite growth and motility
(11, 18), and gene expression (11, 19, 20). Another output variable
that is modulated by neuronal firing pattern is muscle contraction
(21–25). Fig. 1 shows a dramatic example of this in a well known
preparation, the accessory radula closer (ARC) neuromuscular
system of Aplysia (26–29). Even though all five motorneuron
firing patterns shown contain the same mean density of spikes,
they produce very different peak, and more importantly mean,
levels of contraction. Further examples of pattern dependence are
found in biochemical systems, for instance in response to different
frequencies of oscillation in levels of hormones and intracellular
second messengers (30, 31).

Temporal pattern dependence is thus a very common phe-
nomenon; indeed, it will be one of our conclusions here that
it is necessarily ubiquitous. However, beyond the basic obser-
vations of its presence, its study has been limited by the lack of
a conceptual framework with which to quantitatively define,
understand, and predict pattern dependence in biological
systems. In this paper, we shall develop such a framework. We

shall then use the experimentally advantageous ARC-muscle
system to illustrate and test our ideas.

Formalization of the Problem

To be able to see under what circumstances pattern dependence
can, or cannot, arise, we must first pose the question, and define
‘‘pattern’’ and ‘‘pattern dependence,’’ more precisely. (Neverthe-
less, from the mathematical standpoint, our presentation and
notation in this paper is informal, aiming at an intuitive sketch of
the main points rather than complete precision. More technical
matters are noted in Appendices A1–A14.)

Consider an arbitrary input–output relation

where i, and therefore o, varies with time, t. Our question
becomes: what forms of f are sufficient or necessary for
patterns in i to affect such properties of o as its peak (o#) and
mean (^o&) amplitude?

Clearly, pattern is a property of an interval of time; we can
suppose i to be periodic and study one period, P. For
simplicity, we shall in this paper concern ourselves only with
steady-state pattern dependence, after i has been applied
sufficiently long for o to be invariant in successive periods.
Let I 5 *P i dt, the ‘‘amount’’ of i in P, and ^i& 5 IyP, the mean
i. Similarly, ^o& 5 (1yP)*P o dt. Any particular input wave-
form (x [i.e., the sequence ix(t), t[P] is completely defined
by ^ix& and the distribution of Ix over P—the pattern. Both
properties will affect o. Given only one input waveform or
waveforms differing in both properties, with f unknown, the
effect of pattern is indeterminate (see Appendix A1). [This
has obvious experimental implications (A2).]

To isolate the effect of pattern, we therefore consider further
only waveforms with the same ^i&, which differ only in pattern. In
particular, we shall use sets of waveforms of the sort shown in Fig.
1 A and C, where each waveform (x concentrates the same I .
0 into a single block of ix 5 ^i&yFx occupying a different fraction
0 , Fx # 1 of P (i.e., F is the ‘‘duty cycle’’). Such waveforms are
a natural representation of a variety of biological patterns—in
Fig. 1, the grouping of neuronal spikes into bursts—and can serve
as elementary constituents of more complex waveforms. (Square
waveforms of this sort are also used in most experimental work.)
Our qualitative conclusions will be applicable to patterns more
generally (even irregular patterns: see A14), but this subset will
serve as a test case for which we shall perform the analysis of
pattern dependence in quantitative terms (A3).

It is convenient to always include in our set of waveforms the
special waveform (0 with F0 5 1, i0 5 ^i&—steady input with
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no pattern. In this case, we can write the ratios of the output
with patterned input to that with steady, unpatterned input,

Fo#~x, ^i&! 5
o# ~(x!

o# ~(0!
and F^o&~x, ^i&! 5

^o&~(x!

^o&~(0!
, [2]

for the absolute dependence F of the peak (o#) and mean (^o&)
output on the pattern x imposed on mean input ^i&. Generally,
of course, o#((0) 5 ^o&((0) (A4), and, since ^o&((x) # o#((x), F^o&

# Fo#. All of this is indicated graphically in Fig. 1.
We find that the mean output is pattern independent (F^o&

5 1) if and only if f is a linear transformation (A5 and A6). If
f(i) 5 constant, Fo# 5 1 also. In any case, as long as f is
instantaneous, the value of P is immaterial.

Properties of Biologically Important Transformations.

To actually compute F, we must specify f. We shall now specify
f that is itself time dependent (A4), implicit in the differential
equation describing the kinetic schema

(where 0 # a # 1; a , b , p, q, constants; q 5 1, 2, 3 . . .)
(A7). Rather than producing o directly, i now controls the rate
of a reaction that produces o. This is a natural way to think of

many biological mechanisms, and schema 3 is representative of
schemata used throughout biophysics, biochemistry, and phys-
iology (32–38). Such schemata share three important proper-
ties that are a universal feature of real biological processes:
nonlinearity, saturability, and time dependence that can be
described by a characteristic time constant (A8). Since it will
be these properties that determine our qualitative conclusions,
these again will be applicable well beyond the exact form of
schema 3, which is just one particular form specified for the
purposes of quantitative analysis.

Properties of Pattern Dependence

Given any f and any input waveform, we can compute F. This
can always be done numerically. However, for our canonical
waveforms as input to the simple f given by schema 3, we can
obtain analytical solutions, because we can explicitly integrate
the differential equation involved (A9). This yields the time
course of a, and thus of o, as they rise and fall during the two
phases of the pattern (see Fig. 2F). The requirement that in the
dynamical steady state of the system the rise and fall must be
equal fixes the absolute elevation of the output waveform, and
so gives o# and ^o&. Thus, in the dynamical steady state reached
with patterned i, just as in the true steady state reached with
steady i, we are able to convert knowledge of the kinetics of o
into knowledge of its absolute amplitude.

Thus, we can derive analytical expressions giving Fo# and F^o&

for any pattern x in terms of a, b, p, q, and ^i& (A9). Because
f is time dependent, we must now include P in the specification
of x. With our waveforms, any pattern x is uniquely defined by

FIG. 1. Pattern and pattern dependence: definitions and examples. (A) Specification of the input waveforms used throughout this work. t, time;
i, input amplitude; ^i&, mean i; P, period; F, duty cycle; (0, unpatterned waveform of steady input at i 5 ^i&; (x, a patterned waveform of three times
higher input for one-third of the time. (B) Dependence of contraction of the ARC muscle of Aplysia on (C) the pattern of motorneuron firing.
Experiments were done as in (28, 29). Motorneuron B15 [(26); B15 was used in all experiments presented in this paper; results with B16 were similar]
was intracellularly stimulated to fire spikes [individual spikes were driven by separate brief current injections (28), not shown] in the desired pattern,
always of the form in A. The firing frequency was taken as the input variable i and contraction amplitude as the output variable o (A13). Contractions
were isotonic and unloaded; length was monitored with an isotonic transducer. o# , peak contraction; ^o&, mean contraction. With steady, unpatterned
firing (waveform (0), the contraction reaches the steady state o#((0) 5 ^o&((0) (Left); with patterned firing (waveforms (x), it reaches different values
o#((x) and ^o&((x), as indicated for the rightmost pattern. By Eq. 2, normalizing the values for (x by that for (0 establishes the scale of absolute
pattern dependence F, shown on the right of B.
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the pair (F, P), allowing x to be plotted in two dimensions and
F in the third (A3). This is what we have done in Figs. 2 A–C
and 3C; Figs. 3E and 4 show sections at a single F. (In Figs. 2
A–C and 4, extended log scales are used to emphasize the
asymptotic behavior at extremes, but, as the linear plot in Fig.
2D shows, only fairly small, physiological changes in F and P
are in fact needed to change F substantially.)

As f is nonlinear, we expect pattern dependence. However—
and this is the key point—the nonlinearity only appears on time
scales longer than t, the time constant of f (A8). The input
pattern exists on time scales shorter than P. Only when P . t,
so that the nonlinearity and the pattern overlap and interact,
does the pattern dependence become expressed (A6).

This can be seen in Fig. 2 A–C, which are plots of the surfaces
of Fo# and F^o& for three representative cases. In the P direction,
each plot is divisible into two regions of distinct F, above and below
P ' t. [In the F direction, F(F 5 1) 5 1 by definition for all P (front
edge); pattern dependence becomes expressed as F decreases.]
The characteristic pattern dependence seen in each region can be
understood by examining the limiting values that F tends to when
P .. t or P ,, t, when f, in effect, becomes time independent
again, and F ceases to vary with P. Typical time courses of o when
P .. t, P ' t, and P ,, t are shown in Fig. 2F.

When P .. t, f becomes, relative to the time scale of the
input pattern, infinitely fast; o relaxes instantaneously to its
new steady-state value, o`, whenever i changes (Fig. 2F3); the
nonlinearity in f is always fully developed. Then pattern
dependence is fully expressed, and its character and magnitude
can be found simply by examining the nonlinearity of the
steady-state f—the standard o`2i ‘‘dose-response’’ relation
(shown for the three cases in Fig. 2E). In other words, for P ..
t, F can be computed—even without kinetic information or
indeed any specific model for f—from just the steady-state
output that is reached with steady, unpatterned input of
different amplitudes [for details see Fig. 2E (legend) and A10].
In agreement with our earlier result, Fo# is represented in the
o` 2 i plot by a horizontal line through ^i&, F^o& 5 1 by a sloping
line through 0 and ^i& (Fig. 2E). Upward departure of the o`

2 i relation from these lines gives ‘‘positive’’ pattern depen-
dence (F . 1; greater output with grouped input), downward
departure ‘‘negative’’ pattern dependence (F , 1; greater
output with dispersed input). In Fig. 2 A–C, these are shown
in lighter and darker tones, respectively.

We note, first, that F greatly depends on ^i&. At different
values of ^i&, the same pattern will have very different quan-
titative, and in some cases even qualitative, effects.

FIG. 2. Theoretical properties of pattern dependence, with transformation f given by schema 3. (A–C) For three representative cases, Fo# (Left) and
F^o& (Right) are plotted as functions of the pattern (F, P), using Eqs. 6 and 7 in A9. Coordinates as well as locations of the line P ' t (A8) and surface
F 5 1 are indicated in the upper middle diagram. F 5 1 is represented in medium gray, F . 1 lighter, and F , 1 darker. In all cases a,b 5 1, p and
q are as indicated, and ^i& 5 0.01 (A) or 0.25 (B and C). These values of ^i& were chosen to give o`(^i&) ' 0.01 and t ' 1 in all three cases. (D) Linear
plot of the circled region in C. (E) The steady-state f: o` 2 i relations for the three cases in A–C (A10). For P .. t, Fo# and F^o& may be computed from
such relations as follows. As F3 shows, o#((x) 5 o`(ix) and ^o&((x) 5 Fo`(ix), and of course o#((0) 5 ^o&((0) 5 o`(^i&). Then, from Eq. 2, Fo# 5 o`(ix)yo`(^i&)
and F^o& 5 Fo`(ix)yo`(^i& 5 Ffo#). Setting Fo# 5 1 and F^o& 5 1 yields equations for the two lines shown. For any particular ^i& and F [here illustrated for
^i& on curve B and F 5 0.5, so that ix 5 2^i&], defining the points 1–4 as shown and writing o`,1 for the o` value at point 1, etc., we see that Fo# 5 o`,2yo`,1
5 o`,2yo`,4 and f^o& 5 Fo`,2yo`,1 5 o`,2yo`,3. (F is much smaller here than in A–C because ^i& is much larger.) F can thus be computed even from a
purely empirical o`2i relation. In this theoretical case, of course, we know the precise equivalent general expressions for F (A10). (F) Time courses of
o at the three locations indicated in A—i.e., the solutions (A9) of schema 3 (Eq. 5) with a, b, p, q 5 1 (since q 5 1, these are also the time courses of
a), for the input waveforms (0 and (x with ^i& 5 0.01, F 5 1y3, ix 5 3^i& (Bottom), when P ,, t (F1), P ' t (F2), and P .. t (F3).
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Qualitatively, as the o`2i relation is always strictly increas-
ing (for p . 0), we always find Fo# . 1 no matter what ^i& we
choose. But the finite amount of a in schema 3, resulting in
downward curvature of the o`2i relation, gives F^o& , 1. Thus,
interestingly, the saturating dose-response relations that
abound in biology inherently impose ‘‘negative’’ pattern de-
pendence of mean output. ‘‘Positive’’ pattern dependence,
requiring a region of upward curvature in the o`2i relation,
becomes superimposed when p . 1 or q . 1, but only over a
limited range of low ^i&. Both kinds of pattern dependence are
observed experimentally (2–8, 11, 19, 20). At the crayfish
opener neuromuscular junction, for example, summation of
excitatory junctional potentials leading to muscle contraction

shows ‘‘positive’’ pattern dependence, while induction of long-
term potentiation shows ‘‘negative’’ pattern dependence (39).

When P ,, t, f becomes, relative to the time scale of the
input pattern, infinitely slow; within any particular period, o
does not sense changes in i at all (Fig. 2F1); thus o# 5 ^o& and
Fo# 5 F^o&. The important question is whether, in the steady
state, the output stabilizes at the same ^o& regardless of pattern.
If it does, then Fo# 5 F^o& 5 1—the output is pattern indepen-
dent. This is true if and only if, when P ,, t, f becomes linear
(A11). With schema 3, this happens only when p 5 1 (Fig. 2 A
and C). When p Þ 1, Fo# 5 F^o& Þ 1 (Fig. 2B). This can be
thought of as the result of inclusion, within f, of a preceding
input–output step with instantaneous nonlinearity (A12).
Thus, two forms of f with similar o`2i relations and therefore
similar pattern dependence when P .. t, such as schema 3 with
p 5 1, q . 1 and p . 1, q 5 1, may nevertheless give very
different pattern dependence as P decreases depending on
exactly how their nonlinearities depend on time.

Analysis of Pattern Dependence in a Real System

We can now see how well these principles apply in a real
experimental case of pattern dependence, that in the Aplysia
ARC-muscle system. We take the frequency of motorneuron
firing as the input variable i and contraction amplitude as the
output variable o (A13). Then, from just contraction param-
eters obtained with steady, unpatterned firing—now not only
the final amplitude but also the kinetics of development of the
contraction (Fig. 3 A and B)—we are able to compute, in the
same way as for the theoretical cases, predictions of the
complete surfaces of both Fo# and F^o&. These predictions prove
to be very accurate when they are then tested with actual
patterned firing (Fig. 3C). Pattern dependence indeed devel-
ops when P . t, of the order of several seconds. As expected
from the curvature of the o`2i relation (Fig. 3A), we see strong
‘‘positive’’ pattern dependence, with hints of underlying ‘‘neg-
ative’’ pattern dependence of F^o& at small F and large P. As in
the theoretical cases, the balance between “positive” and
“negative” pattern dependence shifts toward the latter if ^i& is
increased toward saturation of the o`2i relation.

Interestingly, the same shift can be achieved, without changing
^i&, by contraction-enhancing modulation. The effect of temper-
ature (a physiological variable for a poikilotherm such as Aplysia)
is shown in Fig. 3 D and E; modulatory transmitters (27–29) have
similar though lesser effects. (In this context, we note that our
framework predicts another important way in which pattern
dependence can be modulated, namely by a change in t.)

Two further points are worth emphasizing. First, rather than
using schema 3, or indeed postulating a priori any precise kinetic
model for f, in this case we simply described the observed kinetics
with arbitrary, purely empirical functions. Thus there is nothing
essential about the particular form of schema 3; our analysis
applies generally. If we know the kinetics—no matter how
complex—with which the output develops in response to steady
input i*, we can always predict F for the pattern with ix 5 i*. If
we do not have a precise model for f, we simply assume, as we did
in this case, that the kinetics are the same whenever i* occurs,
whether steadily or as part of a pattern. That is, we assume that
the kinetics depend purely on i, and not, for example, on o as well.
This is a reasonable starting assumption, and indeed it holds for
schema 3 and many similar models. An experimental test of the
predicted F is then a test of this assumption: for the ARC muscle
in Fig. 3C, it appears valid. Of course, if we formulate a precise
model for f, perhaps incorporating a different assumption, again
F can be predicted and tested. Thus, pattern dependence can be
used, experimentally as well as theoretically, to discriminate
between different kinetic models.

Second, the analysis applies to any input–output relation,
without requiring knowledge of intermediate steps, which may
be, as in the ARC-muscle case, many and complex.

FIG. 3. Experimental analysis of pattern dependence in the Aplysia
ARC-muscle system. (A and B) Contraction kinetics and o`2i relations
(from the experiment in B and two others) obtained with steady,
unpatterned motorneuron firing (schematically indicated under B). To
summarize the data for the purposes of computation, we fitted the
kinetics, at each i, with a delay d(i), then a single-exponential rise with
time constant t(i), to the steady-state amplitude o`(i) (thin, smooth curves
in B). Though the actual kinetics are clearly more complex, this form
appeared to provide the most simple yet reasonably adequate empirical
description of the data. (C) Fo# and F^o& predicted from the values
obtained from A and B (mesh; computed using the same strategy as in A9)
and experimentally measured (scatter points; steady-state measurements
as in Fig. 1 B and C). The measured values are from 11 preparations,
which gave surfaces of F of similar shape but different absolute ampli-
tude. The values from each preparation were therefore scaled so as to
normalize the reference value F(F 5 0.5, P 5 10 s) to the mean from all
preparations (Fo#, 27 6 19 SD, range 13–75; F^o&, 14 6 9 SD, range 6–37).
The mean ^i& was 5.7 Hz (61.2 SD, range 4–8); the same value was used
in the theoretical computations. The mean deviation of the experimental
points from the predicted surface is 3.4 for Fo#, 1.0 for F^o& (n 5 132, values
for F 5 1 excluded). (D) Cooling the preparation (here from 20.3 to
14.9°C; unpatterned firing at 4 Hz) greatly increases contraction ampli-
tude. (E) Concomitantly, cooling greatly reduces F. Means 6 SEM from
four preparations (not normalized) first at 20–21.1°C, then 14.9–15°C. ^i&
5 4–5.5 Hz; F 5 0.25. [The experiments in Figs. 1 B and C and 3 A–C
were done at the ‘‘warm’’ temperatures. All temperatures used are in the
physiological range for Aplysia (40).]
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Significance of Biological Pattern Dependence

In this paper, then, we have developed a conceptual framework
for a quantitative understanding of temporal pattern dependence
in biological processes. These concepts have both retrospective
and prospective utility. Where pattern dependence has been
demonstrated [e.g., with the patterns of neuronal firing (1–25) or
oscillating hormone levels (30, 31)] they allow prediction of the
properties of the underlying mechanisms. Three other areas that
come to mind where temporal pattern is well known to be
important are activity-dependent determination and mainte-
nance of muscle properties (41), clinical pharmacokinetics (31,
42), and massed vs. spaced training in experimental psychology
(43, 44). But beyond the known cases, temporal patterns are
ubiquitous in biology (30, 45–47). In addition to many different
kinds of neuronal firing patterns (48–51), diverse biochemical
oscillations (30) and intracellular Ca21 spikes and waves (30,
52–54) are well known. Time-dependent, nonlinear reactions and
transformations are universal. And, whenever a patterned vari-
able acts through such a reaction, the output can be predicted to
be pattern dependent in the way we have described.

Of course, many patterns arise primarily from the need to
time, phase and synchronize activity vis-à-vis other processes
or the external world (48–51, 55–57). Even then, pattern
dependence of the output of any reaction that inputs the
patterned variable will, at least, be an automatic consequence
of the existence of such patterns. More interestingly, however,
pattern dependence may provide a mechanism by which
different patterns are detected and decoded. One important
case is the decoding of information encoded in temporal spike
patterns in the brain (58–60). Our analysis constrains the
properties a process should possess to be able to decode
specific patterns. Conversely, given a particular process, it
constrains the set of patterns that can be meaningful, in the
sense of being distinguishable from other patterns. For exam-
ple, patterns cannot be differentiated on the basis of P when
P .. t or P ,, t ; thus any process that is to accomplish this
must have t ' P. And, if f becomes linear when P ,, t, all
patterning or even irregular variability on time scales ,,t is
irrelevant (A14).

Finally, differential control of multiple processes may even
be the primary role of some patterns. Fig. 4 shows how
different processes can be tuned, by virtue of their different
time constants, to respond preferentially to different patterns
of the same input variable. By varying the input pattern, one
or another process can be selected. Already, experimental
examples of this have been reported. In the crayfish opener
neuromuscular system that we mentioned earlier, for instance,
bursts of motorneuron firing contract the muscle without
inducing long-term potentiation, whereas steady firing at the
same mean frequency has the converse effect (39). Similarly,
the extra dimension of temporal pattern may help explain how
different signals acting through a common set of processes
(e.g., several hormones all acting via intracellular Ca21 or
cAMP in the same cell) can yet have specific effects (52–54, 61,
62). Clearly, when considering biological variables, temporal
pattern is a dimension that should not be neglected.

Appendix

A1. We test for pattern dependence of ^o&, for instance, by
asking whether there exists a function g such that, simulta-
neously for each given input waveform,

E
P

f~i! dt 5 gSE
P

i dtD , [4]

or equivalently ^o& 5 g(^i&)—i.e., can pattern be disregarded?
If g does not exist—i.e., some ^i& corresponds to more than one

^o&—^o& is pattern dependent. If g exists—i.e., no ^i& corre-
sponds to more than one ^o&—^o& is pattern independent or,
trivially, there is only one waveform with that particular ^i&, so
it necessarily corresponds to just one ^o&.

A2. As a consequence of A1, pattern dependence can be
established unambiguously only with input waveforms of the
same ^i&. (In the experimental literature, this rule is not always
observed.) Otherwise, pattern dependence may only be in-
ferred, on the basis of assumptions about f.

A3. More formally, our treatment of pattern can be thought
of as follows. In most general terms, pattern is, essentially, the
waveform (x itself, an infinite-dimensional variable. With our
canonical subset of waveforms, we reduce the number of
dimensions, in a plausible way, to three: F, P, and ^i&. We then
define the pattern x more strictly in terms of F and P only, and
to extract its effect from the total effect of (x, we restrict the
set of waveforms considered at any one time further so that ^i&
becomes a constant parameter rather than a variable. More
realistically, of course, both pattern and ^i& will vary simulta-
neously. However, the same data that are needed to compute
the effect of pattern will also yield that of ^i&, and thus the total
effect (e.g., Fig. 3 A–C).

A4. o#((0) 5 ^o&((0) is assured as long as f is time indepen-
dent, or time dependent only because it has a (decaying)
‘‘memory’’ of the history of i, as in schema 3. In this paper, we
assume that f has no extraneous time dependence that is not
tied in this way to the input waveform.

A5. Over the relevant set of i. Proof along the lines of Eq.
4; we find, of course, f 5 g.

A6. Most practical cases, of course, will be a matter of
approximation: F 3 1 if the nonlinearity in f is sufficiently
small, the pattern is sufficiently modest (F 3 1) or, when f is
time dependent, its time constant is sufficiently longer than P.

A7. Schema 3 is described by

daydt 5 aip~1 2 a! 2 ba; o 5 aq. [5]

A8. The time “constant” varies with i (see A9). Furthermore,
at each F there are two time constants, for i 5 ^i&yF and i 5
0. For simplicity, we refer to this whole set of related time
constants by the generic term ‘‘t’’.

A9. We solve Eq. 5 in A7, then Eq. 2, for the input waveforms
in Fig. 1 A. For (x with ix 5 ^i&yF, in the dynamical steady state
of the system, a cycles from a minimum (aI) to a maximum (a#)
along a1(t 2 taI) 5 a`,x 2 (a`,x 2 aI)exp[2(t 2 taI)ytx], where tx
5 (ai x

p 1 b)21 and a`,x 5 ai x
ptx, until a# 5 a1(FP), then back

along a2(t 2 ta#) 5 a# exp[2b(t 2 ta#)] until aI 5 a2([1 2 F]P).

FIG. 4. Different processes can be tuned to respond to different
patterns of the same input variable. This is, essentially, a section
through the f^o& surface in Fig. 2C (thus p 5 1, q 5 3, ^i& 5 0.25) at
F 5 23 for three processes with time constants two orders of
magnitude apart: process 1, a 5 400, b 5 1,000; process 2, a 5 4, b
5 10; process 3, a 5 0.04, b 5 0.1. ‘‘Windows’’ of pattern dependence
such as these are observed experimentally (11, 19, 20).
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Combining, we obtain a# 5 a`,x[1 2 exp(2FPytx)]y{1 2
exp[2FPytx 2 b(1 2 F)P]} and aI 5 a# exp[2b(1 2 F)P]. For
(0 with i0 5 ^i& and F 5 1, a(t) 5 a# 5 aI 5 a`,0. Then, with all
a’s related to the corresponding o’s by o 5 aq,

Fo# 5 F a#
a`,0

Gq

5 FH a^i&p 1 b

a^i&P 1 bFpJH1 2 exp@ 2 P~a^i&p F12p 1 bF!#

1 2 exp@ 2 P~a^i&p F12p 1 b!# JG
q

, [6]

F^o& 5
1

Pa`,0
q SE

0

FP

a1
q dt 1 E

0

~12F!P

a2
q dt D . [7]

For any q, Eq. 7 has a straightforward but lengthy explicit
solution, omitted here.

A10. From A9, o`(i) 5 a`
q (i) 5 [aipy(aip 1 b)]q. Substi-

tuting this into the expressions for Fo# and F^o& in terms of o`

in Fig. 2E legend, or taking the limit of Eqs. 6 and 7, as Pyt
3 `, Fo# 3 [(a^i&p 1 b)y(a^i&p 1 bFp)]q and F^o& 3 FFo#.

A11. As Pyt3 0, o(t)3 constant, and the steady state may
be found simply by equating the time-averaged rates of in-
crease and decrease of o. Only if the net i-dependent compo-
nent of these rates is linear with ix is the steady-state o 5 ^o&
the same for all Fix 5 ^i&. In the specific case of schema 3, from
Eq. 5 or by taking the limit of Eqs. 6 and 7, as Pyt3 0, ^o&3
[a^i&py(a^i&p 1 bFp21)]q, and F^o& 3 [(a^i&p 1 b)y(a^i&p 1
bFp21)]q.

A12. That is (decomposing Eq. 5), i* 5 ip; daydt 2 ai*(1 2
a) 2 ba; o 5 aq. How pattern dependence propagates, in
general, through such chains or networks of multiple steps is
clearly of interest, but beyond the scope of this paper. An
important factor is the degree to which the pattern in i survives
the transformation to appear as a pattern in o. In Fig. 2B, for
instance, although Fo# is the same whether P , t or P . t, o
is patterned only in the latter case.

A13. Since spikes are discrete, firing frequency is not truly
a continuous variable. Pattern becomes meaningless when,
roughly, P , 2y^i&. However, in the experiments reported in
this paper, this limit was sufficiently low not to be a problem.
In Figs. 1 B and C, and 3C, for example, with mean ^i& 5 7 and
5.7 Hz, the limit was 0.29 and 0.35 s, respectively.

A14. The argument in A11 can be generalized to spectral
components of the input waveform with frequencies ..t21.
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