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Although the enzymatic capacity of endothelial cells to

produce nitric oxide was described as early as 1987 (Palmer et
al. 1987), the definitive molecular characterization of the

endothelial isoform of nitric oxide synthase, or eNOS, was

first provided in 1992 (Janssens et al. 1992; Lamas et al. 1992;

Nishida et al. 1992; Sessa et al. 1992). Analysis of its cDNA

confirmed its belonging to a family of three different NO

synthases, each encoded by a different gene, i.e. the neural

isoform (or nNOS), the inducible isoform (or iNOS, initially

cloned from monocytes/macrophages) and the endothelial

isoform (eNOS), encoded by NOS1, NOS2 and NOS3,

respectively. Subsequent expressional studies revealed each

isoform to be present in many more cell types than where it

was originally discovered, both at the mRNA and at the

protein level. Accordingly, eNOS was identified in hippo-

campal neurons, several epithelial cell types, platelets and

cardiac myocytes, in addition to endothelial cells (for a

review, see (Forstermann et al. 1998). Not unexpectedly, this

promiscuity also results in the co-expression of several NOS

isoforms within the same cell type, as exemplified in cardiac

muscle cells where the constitutive eNOS and nNOS may

coexist with iNOS, induced upon stimulation with the

appropriate inflammatory mediators. A mitochondrial NOS

(mtNOS) has also been identified (Bates et al. 1996),

corresponding to  a variant of neuronal NOS (Kanai et al.
2001; Elfering et al. 2002), although its  functional impact on

mitochondrial function in vivo remains to be  firmly

established (French et al. 2001).
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The modulatory role of endothelial nitric oxide synthase (eNOS) on heart contraction, relaxation

and rate is examined in light of recent studies using genetic deletion or overexpression in mice under

specific conditions. Unstressed eNOS_/_ hearts in basal conditions exhibit a normal inotropic and

lusitropic function, with either decreased or unchanged heart rate. Under stimulation with

catecholamines, eNOS_/_ mice predominantly show a potentiation in their b-adrenergic inotropic

and lusitropic responsiveness. A similar phenotype is observed in b3-adrenoceptor deficient mice,

pointing to a key role of this receptor subtype for eNOS coupling. The effect of eNOS on the

muscarinic cholinergic modulation of cardiac function probably operates in conjunction with other

NO-independent mechanisms, the persistence of which may explain the apparent dispensability of

this isoform for the effect of acetylcholine in some eNOS_/_ mouse strains. eNOS_/_ hearts

submitted to short term ischaemia–reperfusion exhibit variable alterations in systolic and diastolic

function and infarct size, while those submitted to myocardial infarction present a worsened

ventricular remodelling, increased 1 month mortality and loss of benefit from ACE inhibitor or

angiotensin II type I receptor antagonist therapy. Although non-conditional eNOS gene deletion

may engender phenotypic adaptations (e.g. ventricular hypertrophy resulting from chronic

hypertension, or upregulation of the other NOS isoforms) potentially confounding the

interpretation of comparative studies, the use of eNOS_/_ mice has undoubtedly advanced (and

will probably continue to improve) our understanding of the complex role of eNOS (in conjunction

with the other NOSs) in the regulation of cardiac function. The challenge is now to confirm the

emerging paradigms in human cardiac physiology and hopefully translate them into therapy.
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Despite this apparent redundancy, the use of isoform-specific

inhibitors or genetic deletion experiments has identified a

specific modulatory role for each isoform that is subserved by

its subcellular localization, at least in the cardiomyocyte. The

recent publication of the phenotypic characterization of

genetically modified mice in which eNOS is either deleted or

overexpressed specifically in cardiomyocytes now motivates

the proposal of an updated model of its regulatory functions,

almost 10 years after the initial description of the modulation

of catecholamine responsiveness of isolated cardiac cells by

endogenous NO (Balligand et al. 1993).

Molecular regulation of eNOS: an update
Like the other two members of the NOS enzyme family,

eNOS contains two functionally distinct domains, i.e. an

N-terminal oxygenase, where haeme, tetrahydrobiopterin

(BH4) and L-arginine bind, and a C-terminal reductase

comprising binding sites for FAD, FMN and NADPH.

These two domains are linked by a calmodulin-binding

site (aa 499 to 518 of human eNOS) where, upon calcium-

induced binding, calmodulin increases the rate of electron

transfer from NADPH to the reductase domain flavins and

from the reductase domain to the haeme centre for the

oxidation of the substrate, L-arginine. Accordingly,

inhibition of eNOS activity by calcium removal and

calmodulin inhibitors justifies the classification of eNOS

(with nNOS) as one of two calcium-sensitive NOSs.

Moreover, all NOS function in a dimeric form that is

stabilized by haeme and L-arginine, as well as BH4

(Marletta, 1993; Crane et al. 1998). Importantly, in the

absence of sufficient L-arginine or BH4, ‘uncoupled’ NOS

may generate superoxide anions (O2
_) instead of NO (Pou

et al. 1992), leading to the formation of peroxynitrite

(ONOO_) resulting from the equimolar reaction of NO

and O2
_. In turn, peroxinitrite may further induce the

production of O2
_ by eNOS through oxidation of its

zinc–sulphur cluster (Zou et al. 2002). The N-terminal

domain also contains a glycine residue in position 2 critical

for myristoylation, as well as cysteines (Cys15 and Cys26)

supporting palmitoylation that are unique to eNOS and

importantly condition the enzyme targeting to caveolae

(Feron et al. 1998a). Caveolae are small (70–90 nm in

diameter), invaginated foldings of the plasmalemmal

membrane that are distinctively enriched in cholesterol

and glycosphingolipids, and structurally maintained by

oligomerized caveolins that also serve as scaffolds for the

assembly of multi-protein signalling complexes within

these specialized membrane compartments (Simons &

Toomre, 2000). Of note, T-tubule membranes are

particularly enriched in caveolae (Levin & Page, 1980)

which supports a modulatory role of eNOS in

excitation–contraction coupling in the sarcoplasmic

reticulum (SR)–T-tubule junctional space (e.g. in

response to stretch; Petroff et al. 2001), where it may act in

concert with nNOS also expressed in SR membranes (Xu et
al. 1999).

Aside from transcriptional up- and down-regulation (for a

review, see Forstermann et al. 1998) and the availability of

cofactors and substrate (which support eNOS dimeric

conformation for optimal catalytic activity), eNOS is also

regulated post-translationally by phosphorylation on

serine, and, in specific circumstances, also on tyrosine and

threonine residues. Stimuli such as insulin or stretch (in

cardiomyocytes) (Petroff et al. 2001) induce phos-

phorylation at serine 1177 (for human)/1179 (for bovine

eNOS) through PI3K-dependent activation of Akt

(protein kinase B), with a subsequent increase in enzyme

activity that is less sensitive to fluctuations of intracellular

calcium through mechanisms that are presently unclear.

Other kinases, e.g. protein kinase A, protein kinase G and

AMP-activated kinase also phosphorylate eNOS on serine

1177. AMP-activated kinase and protein kinase C also

induce phosphorylation on threonine 495 that inactivates

eNOS. According to current models in endothelial cells,

stimulation with histamine or bradykinin would first lead

to dephosphorylation at this threonine residue, located in

the critical calmodulin binding domain, to allow the

binding of calmodulin, further stabilized by the

subsequent phosphorylation on serine 1177 (Fleming et al.
2001).

Regulation of eNOS by protein–protein interactions
Caveolin. eNOS interacts with caveolin-1 (and caveolin-3)

in assays of recombinant proteins in vitro or in co-immuno-

precipitation assays using anti-caveolin-1 antibodies from

endothelial cell extracts (and anti-caveolin-3 antibodies in

extracts of cardiomyocytes). This interaction both ensures

the proper targeting of eNOS (or at least a portion of

cellular eNOS) to caveolae and maintains eNOS in an

inhibited state. This inhibition can be reversed by addition

of exogenous calmodulin, suggesting a reciprocal

regulation of the enzyme by inhibitory caveolin versus
activating calcium–calmodulin (Michel et al. 1997). A

current model proposes that stimulus- or agonist-induced

increases in intracellular calcium promote the displacement

of inhibitory caveolin and binding of activated calcium–

calmodulin to its consensus sequence on eNOS to initiate

catalytic activity. Whether this necessarily implicates

translocation of eNOS out of caveolae is still under debate.

The phenotypes of mice deficient in either caveolin-1 or

caveolin-3 illustrate the functional relevance of the

inhibitory ‘caveolin clamp’ in vivo, e.g. vessels from caveolin-

1 deficient mice exhibit a marked hyporesponsiveness to

constrictor agonists attributable to increased NO release

(Drab et al. 2001; Razani et al. 2001) whereas increased

nNOS activity has been observed in skeletal muscle from

caveolin-3 deficient mice (Sunada et al. 2001) Likewise,

our group showed that statins potentiate eNOS activity by

decreasing caveolin-1 abundance in vitro and in vivo, at

least in macrovascular endothelial cells where the caveolin

pool is lower and the proportion of caveolin-bound eNOS

is higher (Feron et al. 2001).
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The allosteric regulation of eNOS could theoretically be

influenced upon stoichiometric changes in the abundance

of any of its protein partners that would impact on its

binding equilibrium. At one extreme is the total absence of

a binding partner, as exemplified in genetic deletion

experiments for caveolin-1 and caveolin-3, as mentioned

above. Whether the abundance of these proteins changes

with pathologic states, especially in heart diseases, has been

very little explored. Recently, we showed a reduction of

caveolin-1 and -3 (and eNOS) protein abundance in left

ventricular tissue of dogs with non-failing, hypertrophic

cardiomyopathy induced by perinephritic hypertension

(Piech et al. 2002b) and in similar extracts from

spontaneously hypertensive rats (SHR) (Piech et al. 2002a).

Of note, despite reduced eNOS abundance, the tissue levels

of cGMP were unchanged, and these animals retained a

marked sensitivity to NOS inhibitors, indicating that

eNOS catalytic activity was probably maintained through

the parallel downregulation of inhibitory caveolins. This

emphasizes the need to integrate changes in NOS abundance

with those of their allosteric regulators in future studies on

cardiovascular diseases to gain further understanding in

their functional impact on downstream NO signalling.

Hsp 90. This ubiquitous 90 kDa, heat-shock protein is

expressed at high levels (accounting for up to 1–2 % of

total cellular protein content) in the cytosol even in

unstressed conditions. It functions as a chaperone for the

proper folding of specific protein substrates, including

many signal transducing molecules (e.g. non-receptor

tyrosine kinases, transcription factors and eNOS, among

others; for a review, see Richter & Buchner, 2001). Most of

its regulatory action in eNOS signalling has been described

in endothelial cells. Hsp90 is associated with eNOS in

resting endothelial cells and, upon stimulation with

vascular endothelial growth factor (VEGF), oestrogen,

histamine, shear stress and statins, the association between

the two proteins is increased, resulting in enhanced NO

production (Garcia-Cardena et al. 1998). Of note, the

protein kinase Akt (or protein kinase B), the kinase

involved in the activating phosphorylation of eNOS on

serine 1177, is another client protein for hsp90 and binds

to a sequence of hsp90 that does not overlap with those

involved in the binding of eNOS. Therefore, hsp90 was

recently proposed as an adaptor between Akt and its

substrate, eNOS, thereby promoting the activating

phosphorylation of eNOS (for more details, see Balligand,

2002).

Modulation of cardiac function by eNOS
We will focus on the specific impact of NO, as released

from eNOS, on inotropic, lusitropic and chronotropic

aspects of cardiac contraction (for a comprehensive review

on all NOSs, see also Massion et al. 2001). This will

encompass the paradigms deduced from studies in isolated

cardiomyocytes, isolated cardiac muscle preparations and

in vivo assessment of cardiac haemodynamics in animals

(mostly in mice with genetic deletion of eNOS, as

mentioned in the Introduction), and to a limited extent, in

humans. We will distinguish the influence of eNOS in

unstimulated cardiac preparations (i.e. in the basal state,

without agonist activation) and in stimulated ones

(e.g. with catecholamines). In addition, the role of eNOS

in unstimulated and stimulated preparations will be

compared in ‘unstressed’ (i.e. in the absence of cardiac

injury, such as ischaemia–reperfusion, or infarction) and

in ‘stressed’ preparations.

Role of eNOS in ‘unstressed’ and ‘basal’ cardiac
preparations
Effect on basal contractility. Some studies previously

reported a biphasic inotropic effect of exogenous NO,

positive with low concentrations of NO donors but

negative with high ones (Kojda et al. 1996; Mohan et al.
1996; Vila-Petroff et al. 1999; Wegener et al. 2002).

Endogenous NO also may have a positive inotropic effect

(Kojda et al. 1997; Muller-Strahl et al. 2000), as recently

evidenced in normal human hearts (Cotton et al. 2001). A

positive inotropic effect of NO may be explained at the

cardiomyocyte level by the potential following

mechanisms (see Fig. 1): (1) direct activating nitrosylation

of the RyR2 (Xu et al. 1998), as demonstrated by

nanomolar NO in skeletal muscle (RyR1) (Eu et al. 2000)

and also probably accounting for the enhanced excitation–

contraction coupling gain and positive inotropic effect of

cardiomyocyte stretch (Petroff et al. 2001); (2) direct

S-nitrosylation of the voltage-operated L-type calcium

channel (VOC) through a redox switch-mediated increase

in ICa,L (Campbell et al. 1996); (3) cGMP-independent

activation of adenylyl cyclase at low NO levels (Vila-

Petroff et al. 1999); (4) cGMP-dependent increase in

cAMP, through cGMP-mediated inhibition of cAMP PDE

III and prevention of cAMP breakdown (Mery et al. 1993);

(5) PKG-mediated activation of the RyR, through

phosphorylation of ADP ribosyl cyclase and cADP-ribose-

mediated activation of RyR, as identified in sea urchin eggs

(Willmott et al. 1996). However, one should bear in mind

that the above mechanisms were mostly demonstrated

with exogenous NO donors that may not always reproduce

the action of endogenous NO released within the

boundaries of cellular microdomains. Accordingly, eNOS

gene deletion does not influence basal cardiac inotropic

state in mice (see Table 1), although this apparently

‘neutral’ phenotype may result from the confounding

effects of several compensatory adaptations. These may

include (1) ‘backup’ production of NO by nNOS, recently

shown to exert autocrine modulation of cardiomyocyte

function (albeit in divergent fashion – see Barouch et al.
(2002) and Ashley et al. (2002); (2) or iNOS, superinduced

in eNOS_/_ mice even in unstressed conditions (Sharp et
al. 2002); (3) production of atrial natriuretic peptide

(Gyurko et al. 2000). The latter would increase myocardial

Modulation of cardiac function by eNOSJ. Physiol. 546.1 65
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Figure 1. NO signalling pathways in the cardiomyocyte
All NOS isoforms (eNOS, nNOS, iNOS and mtNOS) within specific subcellular compartments of the
cardiomyocyte (e.g. sarcolemmal caveolae, SR–T-tubule junction, sarcoplasmic reticulum, mitochondria)
are represented, as well as associated regulatory proteins. The net effect of eNOS-derived NO on contractility
depends on the specific stimulus (e.g. agonists on b3-adrenoceptor and muscarinic M2 receptor, or stretch),
the subcellular compartment (cytosolic or subsarcolemmal) involved and the subsequent amount of NO
produced as well as the oxidative status of the cell. On one hand, NO exerts anti-adrenergic inotropic effects
after b3-adrenoceptor-dependent activation of eNOS and through cytosolic (and mostly cGMP-dependent)
modulation of the main targets of the classical  b-adrenergic cAMP–protein kinase A (PKA) pathway,
i.e. (1) the voltage-operated L-type Ca2+ channel (VOC); (2) the ryanodine receptor Ca2+-release channel
type 2 (RyR2); (3) phospholamban (PLN; involved in regulation of sarcoendoplasmic reticulum Ca2+-
ATPase (SERCA)); (4) the troponin I (TnI) limiting the sensitivity of troponin C (TnC) to Ca2+. On the other
hand, eNOS-derived NO may exert positive inotropic effects, e.g. (1) after sarcolemmal stretch, through
subsarcolemmal activation of protein kinase B (PKB), eNOS and probably direct nitrosylation of RyR2 by
NO; (2) direct nitrosylation of VOC; (3) direct activation of adenylate cyclase (AC); (4) increase of cAMP
after phosphodiesterase 3 (PDE3) inhibition; (5) activation of RyR2 through protein kinase G (PKG)-
dependent ADP ribosyl cyclase phosphorylation. as and ai, G protein subtypes; b1, b2 and b3,
adrenoreceptor subtypes; cav3, caveolin 3; CaM, calmodulin; ONOO_, peroxynitrite; I to IV, mitochondrial
respiratory complexes; full arrows with + symbol designate stimulation; dashed arrows with – symbol
designate inhibition.
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cGMP, with effects mostly on relaxation, rather than

inotropism (Ji et al. 1999). In addition, chronic hyper-

tension in older eNOS_/_ mice may induce structural

adaptations characteristic of the hypertrophic phenotype,

such as reduced arteriolar density (Kubis et al. 2002),

altered SR calcium load (Boknik et al. 2001) or expression

of ionic channels (e.g. an increase in IK,ACh (Guo et al.
1997), all of which may confound the interpretation of

comparative studies with wild-type animals. Conversely,

transgenic mice with overexpression of the eNOS gene

driven by a cardiomyocyte-specific promoter exhibited a

reduction in basal contractile state, probably attributable

to the very high level of eNOS expression and deregulated

NO production (90-fold higher basal eNOS activity)

(Brunner et al. 2001). The negative inotropic effect in this

case probably involves a desensitization of cardiac

contractile myofilaments to calcium.

Effect on basal relaxation. NO exerts a positive lusitropic

effect that has been attributed to a cGMP- and PKG-

mediated phosphorylation of troponin I, subsequent myo-

filament calcium desensitization, relaxation hastening and

improved distensibility (Shah et al. 1994; Layland et al.
2002). Indeed, previous studies showed that infusion of

intracoronary NO donors in patients induced (1) a

relaxation-hastening effect (shorter time to onset of left

ventricular (LV) relaxation), secondary (or leading) to

abbreviation of contraction (associated with reduced LV

end systolic pressure); (2) an improved LV diastolic

distensibility (downward shift of the end diastolic

pressure–volume relationship, i.e. greater LV end diastolic

volume at lower LV end diastolic pressure) (Paulus et al.
1994, 1995; Bartunek et al. 1997; Paulus, 2001), especially

in hypertrophied hearts (Matter et al. 1999). The velocity

of relaxation (_dP/dtmin) was not improved in these

patients (Paulus et al. 1994), contrary to some animal

models (Muller-Strahl et al. 2000; Hart et al. 2001).

Notably, the above effects were observed either with

exogenous NO donors (in vivo, or on isolated cardio-

myocytes) or after stimulation with agonists known to

activate paracrine NO production from endothelial cells

(in whole heart preparations), but the specific implication

of unstimulated endothelial or cardiomyocyte eNOS

remains uncertain. Analysis of the cardiac phenotype of

genetically modified mice revealed that neither eNOS _/_

nor cardiomyocyte eNOS-overexpressing mice presented

any modification in relaxation under basal conditions in
vivo (Table 1), which would suggest that eNOS is

dispensable for normal diastolic function in vivo. The

absence of eNOS-derived NO may be compensated by

intracardiac production of atrial natriuretic peptide,

another stimulant of guanylyl cyclase and cGMP,

potentially leading to similar lusitropic properties

(Gyurko et al. 2000), or NO from residual nNOS with

similar positive lusitropic properties, as illustrated in a

recent study on nNOS_/_ mice (Ashley et al. 2002).

Effect on basal heart rate. A distinction must be made

here between the involvement of eNOS on spontaneous

rhythmicity of pacemaker cells versus the modulation by

eNOS of the effect of autonomic (i.e. orthosympathetic and

parasympathetic) agonists on the heart. Not considered

here, but probably relevant to whole organ physiology, is the

effect of endogenous NO (from nNOS as well as eNOS) on

the control of neuromediator release at the pre-synaptic

level, that negatively affects the orthosympathetic input,

but reinforces the vagal influence to the heart (Elvan et al.
1997; Choate et al. 2001). At the cardiomyocyte level,

cGMP analogues and NO from endogenous NOS were

shown to decrease the spontaneous beating rate of

cultured neonatal ventricular myocytes (Balligand et al.
1993). Feron et al. (1998b) subsequently showed the

abolition of the response to carbachol in neonatal

myocytes from eNOS_/_ mice, although the

generalizability of this NO dependence for the vagal effect

in other cardiac preparations is subject to caution. In

Modulation of cardiac function by eNOSJ. Physiol. 546.1 67

Table 1. Inotropic, lusitropic and chronotropic effects of NO in unstressed hearts, under
basal and b-adrenergic- and/or muscarinic-stimulated conditions

Inotropic Lusitropic Chronotropic

Model Basal b b+M2 Basal b Basal b M2

eNOS_/_ = 1–12 , 1–3 = 3–4 = 1, 2, 6–8 , 2 , 1 = 4 = 4

, 12 = 4 not . 5 = 2, 4, 8, 12, 13 not . 13

not . 1 . 7, 11, 14–18

eNOS-OE 19 . = = = =

b, beta-adrenergic; M2, muscarinic type 2; _/_, knockout; OE, over-expressor; ,, enhanced effect in
genetically modified mice compared with wild-type/control (inotropic, lusitropic or chronotropic, in
absolute value); =, similar effect;  ., decreased effect; not  ., (contractility or heart rate) not decreased by b3
agonist1 or carbachol5, 13 in genetically modified mice, while decreased in wild-type. References: 1, Barouch et
al. 2002; 2, Gyurko et al. 2000; 3, Godecke et al. 2001; 4, Vandecasteele et al. 1999; 5, Han et al. 1998; 6, Kanno
et al. 2000; 7, Yang et al. 1999; 8, Scherrer-Crosbie et al. 2001; 9, Tada et al. 2000; 10, Kubota et al. 2000; 11, Liu
et al. 2002; 12, Sharp et al. 2002; 13, Feron et al. 1998b; 14, Rakhit et al. 2001; 15, Sumeray et al. 2000; 16,
Shesely et al. 1996; 17, Godecke et al. 1998; 18, Kojda et al. 1999; 19, Brunner et al. 2001.
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eNOS-deficient mice, baseline heart rate was increased in

only one study (Barouch et al. 2002), possibly owing to a

relative hypovolaemia and/or chronic ventricular re-

modelling, while the other studies showed normal or

decreased heart rate. Since all conscious (unanaesthetised)

2- to 3-month-old eNOS_/_ mice (Shesely et al. 1996;

Kojda et al. 1999; Yang et al. 1999; Liu et al. 2002)

presented a decreased heart rate, it is reasonable to assume

a positive chronotropic effect of eNOS at the whole organ

level. Low concentrations of NO donors were previously

shown to increase heart rate in vitro (Pabla & Curtis, 1995;

Musialek et al. 1997), possibly through stimulation of the

hyperpolarization-activated inward current (If) sensitive

to cGMP (Musialek et al. 1997, 2000; Yoo et al. 1998). The

bradycardia observed in eNOS_/_ mice may also result

from a potential adaptive hyperactivity of nNOS, known

to facilitate acetylcholine release at the presynaptic level

(Jumrussirikul et al. 1998; Choate et al. 2001 ).

Role of eNOS in unstressed but stimulated hearts
Effect on stimulated contractility. The situation is quite

different after activation of the b-adrenergic pathway.

Under b-adrenergic stimulation in vivo, eNOS knockout

mice (from two different strains) exhibited a potentiation

of their inotropic response (Gyurko et al. 2000; Barouch et
al. 2002). A similar observation was made in isolated

mouse hearts from yet another strain, after perfusion with

intracoronary dobutamine (Godecke et al. 2001). In

papillary muscle preparations, another group did not find

any difference in the inotropic response to isoproterenol

(Vandecasteele et al. 1999). Although the apparent

discrepancy between paradigms observed in whole organs

versus papillary muscles may have suggested a significant

contribution from paracrine (i.e. endothelial-derived NO)

under flow conditions, when contractile shortening was

studied in isolated, single cardiomyocytes from eNOS

knockout mice, Barouch and colleagues again observed a

potentiation of the effects of isoproterenol (Barouch et al.
2002), concomitant with an increased calcium transient.

This phenotype implies a countervailing effect of

autocrine, eNOS-derived NO on the inotropic response tob-adrenergic stimulation, as first suggested almost a

decade ago (Balligand et al. 1993). Subsequent evidence

has indeed demonstrated that b-adrenergic agonists

activate a calcium-sensitive NOS in cardiomyocytes

(Balligand et al. 1995; Kanai et al. 1997). Although the

molecular mechanism for this activation is incompletely

characterized, convergent evidence (Gauthier et al. 1998;

Moniotte et al. 2001) clearly identified the involvement ofb3-adrenoceptors for the stimulation of NO production in

the human myocardium. Subsequent studies showed that

the negative inotropic effect (and decrease in calcium

transient) induced by the b3-preferential agonist BRL

37344 is abolished in cardiomyocytes from eNOS_/_ mice

(Barouch et al. 2002), and that the potentiation of the

b-adrenergic inotropic effect of NO synthase inhibitors is

absent in b3-adrenoceptor knockout mice (Varghese et al.
2000), thereby extending the validity of our paradigm in

genetically deficient mice.

Once activated, eNOS may counterbalance the adrenergic

effect by at least three pathways (see Fig. 1), some of which

were identified on the basis of adrenergic inhibition with

exogenous NO donors (Mery et al. 1993; Campbell et al.
1996; Vila-Petroff et al. 1999), e.g. (1) cGMP-dependent

inhibition of the voltage-operated L-type calcium channel

(VOC) and subsequent inhibition of ICa,L (Campbell et al.
1996), either by PKG-dependent phosphorylation of an

intermediate protein opposing the effect of PKA (Mery et
al. 1991) or by increasing cGMP-sensitive cAMP

phosphodiesterase (PDE) II activity (Mery et al. 1993; Han

et al. 1998); (2) PKG-dependent phosphorylation of

troponin I decreasing troponin C-mediated myofilament

responsiveness to calcium (Blumenthal et al. 1978; Lincoln

& Corbin, 1978), as reproduced with a cGMP analogue

(Shah et al. 1994), NO donors (Vila-Petroff et al. 1999) or

NOS stimulation by pacing (Kaye et al. 1999); (3) inhibition

of RyR2 by NO (Zahradnikova et al. 1997), at least after

maximal b-adrenergic stimulation (Ziolo et al. 2001). Sinceb-adrenergic-stimulated ICa,L was unchanged in most

experiments using cardiomyocytes from eNOS_/_ mice

(Vandecasteele et al. 1999; Belevych & Harvey, 2000;

Godecke et al. 2001), the first of the above mechanisms

seems unlikely, at least in mouse cardiomyocytes.

Aside from a reduced basal LV-developed pressure, as

mentioned above, mice with a large amount of eNOS

overexpression (40- to 90-fold, based on enzymatic

activity; Brunner et al. 2001) exhibited a downward shift of

the isoproterenol dose–response curve for left ventricular

developed pressure (LVDP) but with unchanged EC50,

suggesting that the b-adrenergic effect was superimposed

on a constant background production of NO, as if the

(vastly) overexpressed eNOS was uncoupled from agonist

stimulation in this strain. In contrast, in another strain of

transgenic mice with lower amounts of cardiomyocyte-

specific eNOS overexpression, the baseline inotropic state

of the heart, assessed from LV +dP/dtmax in vivo, was

unchanged, whereas the inotropic response to

isoproterenol was attenuated at higher doses of the agonist

(S. Janssens, personal communication).

In addition to modulating the positive inotropic effect ofb-adrenergic agonists, eNOS was also suggested to

mediate, at least in part, the attenuating effect of

muscarinic cholinergic stimulation on the b-adrenergic

response (Balligand et al. 1995; Han et al. 1995, 1996; Hare

et al. 1995), i.e. the classical ‘accentuated antagonism’

(Levy, 1971). This proposition, however, has been

challenged on the basis of subsequent negative studies

(Vandecasteele et al. 1999; Belevych & Harvey, 2000;

P. B. Massion and J.-L. Balligand68 J. Physiol. 546.1
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Godecke et al. 2001; Bett et al. 2002). By contrast,

accentuated antagonism was lost in another study using

eNOS_/_ myocytes (Han et al. 1998). Clearly, eNOS is not

an obligatory pathway in all species (notably not in frogs)

and its implication relative to other signalling mechanisms

(e.g. muscarinic cholinergic Gi/o coupling to IK-Ach or

inhibition of adenylyl cyclase) varies at different levels of

the heart, i.e. atria versus ventricles and pacemaking versus
working myocytes, which may confound the inter-

pretation of experiments using whole heart preparations.

Since these alternative, eNOS-independent pathways (as

well as other confounding NO-sensitive currents, such as

If) are less represented at the ventricular level, this is where

the modulatory role of eNOS may be more easily

identifiable. Nevertheless, even when using ventricular

myocytes, other technical parameters turned out to be

crucial for the proper identification of eNOS influence,

such as the temperature used for in vitro experiments,

which is critical for enzymatic activity. Other factors (age-

dependent presence of ventricular hypertrophy and

potential upregulation of IK-Ach, non-littermate genetic

background for control groups) have confounded the

interpretation of experiments in eNOS_/_ mice that were

reported as negative (Vandecasteele et al. 1999). A more

complete analysis of this contradictory evidence can be

found in a previous review on the subject (Balligand, 1999).

Other stimuli than neurotransmitters or hormones may

also activate eNOS in the cardiomyocyte. Sarcomere

stretching (in the range of physiological elongation, i.e.

12–14 % increase in length) was recently shown to increase

eNOS phosphorylation on Ser1179 (consecutive to PI3

kinase activation and phosphorylation of downstream

Akt) and induce measurable increases in NO production

in single myocytes. This effect was accompanied with an

increase in calcium spark rate and a slow increase in

calcium transients that was totally absent in

cardiomyocytes from eNOS-deficient mice. Notably, these

effects were also insensitive to guanylyl cyclase inhibition

with1-H-[1,2,4]oxidiazolo[4,3-a]quinoxaline-1-one

(ODQ), pointing to a cGMP-independent mechanism,

possibly through S-nitrosylation of RyR2 (Petroff et al.
2001). The relative enrichment of T-tubules in caveolar

membranes (where eNOS is localized) would favour a role

for eNOS-derived NO in the regulation of EC coupling

through its compartmentation in the SR–T-tubule

junction, as opposed to its modulation of other aspects of

cardiac contraction (as detailed above) that mostly involve

increases in cytosolic cGMP. This eNOS-mediated

increase in EC coupling gain with stretch could participate

in the length-dependent recruitable contractile reserve

capacity of the heart, accounting for at least part of the

classical Anrep effect.

Effect on stimulated relaxation. Again, the situation may

be different under b-adrenergic stimulation, that, by itself,

induces a well-known positive lusitropic effect. As for

inotropy (see above), b-adrenergic activation of eNOS

may similarly oppose the effect of catecholamines on

relaxation, instead of being additive. This would be

supported by molecular data (Layland et al. 2002) showing

that troponin I is phosphorylated on the same residues by

PKG and PKA, and that the effect of 8-bromo-cGMP to

desensitize cardiac myofilaments to calcium was abolished

in the presence of isoproterenol (Shah et al. 1994) (again

arguing for effects of the two interventions that are

mutually exclusive). Accordingly, eNOS_/_ mice had an

improved relaxation under b-adrenergic stimulation (as

attested by enhanced _dP/dtmin compared to wild-type

littermate (Gyurko et al. 2000).

Effect on stimulated heart rate. eNOS_/_ mice

presented no difference in their increase in heart rate

under b-adrenergic stimulation compared to controls

(Vandecasteele et al. 1999), but more inducible ventricular

tachycardia after digoxin pretreatment (Rakhit et al. 2001)

as well as more ouabain-induced arrhythmic contractions

and transient inward current (Kubota et al. 2000). NO has

been shown to transiently increase (Herring et al. 2001) or

decrease (Yoo et al. 1998) If during adrenergic stimulation

in sinoatrial node pacemaker cells. These studies point to a

potential role of eNOS in controlling the sensitivity to

arrhythmia that deserves more study in the clinical setting.

Role of eNOS in the stressed heart
Although seminal studies have provided valuable insights

into the role of NO in the stressed heart using NOS

inhibitors, the relative lack of specificity of these drugs

(towards the three NOS isoforms) precludes firm

conclusions regarding the specific role of cardiac eNOS.

Therefore, emphasis will be put on the latest studies of the

phenotype of mice genetically deficient in eNOS

submitted to various cardiac insults.

eNOS in acute ischaemia–reperfusion. During ischaemia–

reperfusion (I/R), eNOS_/_ mice exhibit either improved

or decreased contractility, improved or worsened

relaxation, unchanged heart rate as well as variable impact

on infarct size (see Table 2). Differences in ischaemic

(range 16–30 min) or reperfusion times (30–60 min) in

the experimental control of coronary flow and heart rate

may complicate the interpretation. Studies with the

shortest ischaemic time (16 min) at constant coronary

flow and pacing (600 min_1) (Flogel et al. 1999) showed an

improved functional inotropic (LVP), lusitropic and

metabolic (phosphocreatine and ATP) recovery,

suggesting a detrimental effect of NO in I/R, at least in

isolated hearts under these experimental conditions.

Possibly, the endogenous production of NO combined

with the classical oxidant burst of O2
_ in the initial phase of

reperfusion may produce peroxynitrite, a well-known

mediator of cellular injury (Beckman et al. 1990; Wang &
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Zweier, 1996; Yasmin et al. 1997). By contrast, another

study (Sumeray et al. 2000) in eNOS_/_ mice showed an

increased infarct size attributable to a permanent decrease

in coronary flow, confirming the protective vasodilatory

properties of NO. Furthermore, endogenous NO

produced by additional NOS isoform induction may exert

cardioprotective effects. Accordingly, eNOS_/_ mice in

the study by Kanno et al. (2000) showed a compensatory

induction of iNOS after 30 min of ischaemia that resulted

in improved function attributed to cardioprotective

iNOS-derived NO production. Finally, eNOS_/_ mice

also lost the benefit from preconditioning with repetitive

ischaemic cycles (Bell & Yellon, 2001) and an ACE

inhibitor (Yang et al. 1999), emphasizing the benefit of NO

produced by vascular eNOS in these settings.

The picture may again be different when considering the

role of eNOS in the late window of preconditioning

(delayed acquisition of tolerance to ischaemia). A

substantial body of evidence now supports a critical role

for constitutive NOS in the early triggering (Xuan et al.
2000) of the induction of a second isoform, or iNOS, that,

in turn, ensures a sustained production of cardio-

protective NO. Specifically, enhanced NO production by

iNOS, moderately and specifically overexpressed in

myocytes (Wang et al. 2002), is essential to mediate the

anti-stunning and anti-infarct actions of late pre-

conditioning elicited by five different stimuli (ischaemia,

adenosine A1 agonists, opioid d1 agonists, endotoxin

derivatives and exercise), suggesting that the upregulation

of this enzyme is a central mechanism whereby the

myocardium protects itself from ischaemia (Guo et al.
1999). The molecular and functional aspects of ischaemia-

induced late preconditioning can be reproduced by the

administration of NO donors in lieu of ischaemia in

experimental animals and more recently in patients

(Leesar et al. 2001), indicating that NO is also sufficient to

induce late preconditioning. Accordingly, gene transfer of

either eNOS or iNOS has been shown to replicate the

infarct-sparing actions of ischaemic preconditioning,

suggesting that NOS gene therapy could be an effective

strategy for alleviating ischaemia–reperfusion injury (for a

complete review, see Bolli, 2001).

eNOS in chronic myocardial infarction. When submitted

to coronary ligation, eNOS_/_ mice had unchanged infarct

size but evident remodelling with decreased capillary

density and hypertrophy (unrelated to the development of

hypertension), accompanied with subsequent systolic and

diastolic dysfunction and increased mortality at 28 days

(Scherrer-Crosbie et al. 2001). This points to a beneficial

effect of eNOS-derived NO on ventricular remodelling

after myocardial infarction, as evidenced recently with the

eNOS-mediated cardioprotective effects of corticoids

(Hafezi-Moghadam et al. 2002; Thiemermann, 2002),

possibly by increasing coronary collateralization and

limiting myocyte hypertrophy. Double eNOS and apoE

knockout mice with spontaneous coronary atherosclerosis

revealed depressed contractility and increased infarct

lesions at 4 months compared with apoE_/_ mice

(Kuhlencordt et al. 2001). A chronically reduced coronary

reserve by eNOS ablation may again account for this result.

In more chronic post-infarction remodelling conditions

(6 months) (Liu et al. 2002), no difference has been found

between eNOS_/_ and wild-type, suggesting an adaptation

through compensatory mechanisms (prostacyclin, nNOS,
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Table 2. Inotropic, lusitropic and chronotropic effects of NO in stressed hearts, under basal
conditions, with correspondant infarct size and mortality

Model+stress Time Inotropic Lusitropic Chronotropic MI size Mortality

eNOS_/_ +I/R H0.5–1 , 1 , 1, 4 = 2, 5–7 , 2, 3

= 2, 4 . 5 = 6, 8

. 4, 5 . 3, 4

not . 6, 8

+MI D28–M6 = 9 . 10 = 10 = 9, 10 , 10

. 10 = 9

not , 9

+apoE_/_11 M4 . = ,
b, beta-adrenergic; _/_, knockout; I/R, ischaemia–reperfusion; MI, myocardial infarction; Time: H, D or M,
number of hours, days or months after stress on which parameters are recorded; ,, enhanced post-ischaemic
recovery in genetically deficient mice compared with wild-type/control (better function or relaxation) or
enhanced infarct size/mortality; =, similar effect;  ., decreased effect; not ., (MI size) not decreased by ACE
inhibitors6 or early ischaemic preconditioning8 in genetically deficient mice, while decreased in wild-type;
not ,, (function) not increased by ACE inhibitors9 nor angiotensin AT1 receptor antagonist9 in genetically
deficient mice, while increased in wild-type. References: 1, Flogel et al. 1999; 2, Sumeray et al. 2000; 3, Sharp
et al. 2002; 4, Kanno et al. 2000; 5, Hannan et al. 2000; 6, Yang et al. 1999; 7, Jones et al. 1999; 8, Bell & Yellon,
2001; 9, Liu et al. 2002; 10, Scherrer-Crosbie et al. 2001; 11, Kuhlencordt et al. 2001.
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adaptation of remote myocardium), so that the influence

of eNOS in the development and progression of chronic

ischaemic heart failure may be considered less prominent,

at least in the mouse model. However, the absence of

eNOS significantly decreased the long term cardio-

protective effects of an ACE inhibitor and an angiotensin II

type I receptor antagonist (Yang et al. 1999; Liu et al. 2002),

emphasizing the importance of eNOS-derived NO in

modulating the growth/remodelling effects of mediators

of the renin–angiotensin system.

Conclusion
The regulatory role of eNOS on various aspects of cardiac

contraction, relaxation and rate has become exceedingly

complex since its initial identification in cardiac myocytes.

The availability of mouse strains with genetic deletion (or

overexpression) of specific NOS (e.g. eNOS) allowed a

critical re-examination of previous paradigms, including

at the whole organ level in vivo, both in normal and

stressed conditions. It appears that endogenous

production of NO by eNOS has little influence on the

inotropic or lusitropic state of the heart under basal

conditions, but that it consistently opposes the inotropic

response to b-adrenergic stimulation. The latter is

mediated by eNOS activation through b3-adrenergic

receptors, which were identified in cardiomyocytes from

several species, including man. This countervailing

influence of the b3-adrenergic eNOS pathway on the more

classical b1-2-adrenergic positive inotropic effect may

protect the heart against the toxicity of excessive cate-

cholamine stimulation. The influence of b3-adrenergically

stimulated eNOS must be contrasted with that of

cardiomyocyte stretch, which also activates eNOS with a

resultant increase in EC coupling gain, calcium transient

and contraction force that participates in the length-

dependent contractile reserve of the heart. These

apparently contrasting effects of eNOS may coordinately

influence overall cardiac function depending on the

specific stimulus that activates the enzyme and the

subcellular compartment where it is activated.

The majority of studies examining the role of eNOS in

‘stressed’ (mostly ischaemic) hearts conclude that eNOS is

protective, both through its vasodilating and anti-

thrombotic actions in the coronary vasculature and its

critical triggering of iNOS expression and subsequent

essential NO production for late preconditioning. Likewise,

eNOS opposes the adverse remodelling after myocardial

infarction on the short term, but does not influence

mortality on longer term, probably owing to alternative

compensatory mechanisms. The challenge is now to

translate the substantial body of experimental evidence

accumulated over the past 10 years into useful therapies by

exploiting the beneficial properties of eNOS-derived NO

adapted to specific clinical situations.
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