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The Rho family of small GTPases constitute a branch of the

Ras superfamily that are essential regulators of actin

cytoskeleton organization, gene expression, cell cycle

progression and activation of NADPH oxidase (Hall, 1998;

Mackay & Hall, 1998; Kaibuchi et al. 1999). The Rho

family GTPases consist of more than 15 members that

include isoforms of Rho, Rac, Cdc42 and TC10. Like

related GTPases, Rho family GTPases are activated by

guanine nucleotide exchange factors (GEFs) that stimulate

GDP–GTP exchange, as well as inactivated by GTPase

activation proteins (GAPs) and by nucleotide dissociation

inhibitor proteins (RhoGDIs). Regulated by their

GTP/GDP bound state, RhoA, Rac1 and Cdc42 act as

molecular switches whose downstream effectors include

serine/threonine kinases (e.g. p21 activated kinase, PKN

and Rho kinase), tyrosine kinases (MLK3) and lipid

kinases (e.g. phosphatidylinositol 4-phosphate 5-kinase).

Rho family GTPases exhibit significant hierarchical and

regulatory interactions, although Rho, Rac and Cdc42

promote notably different morphological changes of cells

through selective actions on cytoskeletal reorganization

(Ridley & Hall, 1992; Hall, 1994; Nobes & Hall, 1995).

A dense network of F-actin filaments, termed cortical

actin, adjacent to the plasma membrane has been

proposed to act as a barrier that prevents access of

secretory vesicles to the membrane, but also to serve as a

structural component that is essential to orchestrate

recruitment and resupply of secretory vesicles to a readily

releasable pool (Cheek & Burgoyne, 1986; Nakata &

Hirokawa, 1992; Trifaro et al. 1992b; Trifaro & Vitale,

1993; Muallem et al. 1995; Chowdhury et al. 1999; Lang et
al. 2000). Activation of exocytosis in several secretory cell

types, including chromaffin cells (Vitale et al. 1995;

Tchakarov et al. 1998), mast cells (Norman et al. 1994),

synaptosomes (Bernstein & Bamburg, 1985), and

pancreatic acinar cells (Jungermann et al. 1995) results in

transient cortical F-actin disassembly followed by

reassembly. The reorganizing of cortical actin structure
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during the secretory process has implicated Rho family

GTPases as potentially critical regulators of calcium-

dependent secretory pathway(s) (Pinxteren et al. 2000).

Indeed, the effects of Rac, Cdc42 and Rho to regulate GTP-

and/or Ca2+-dependent degranulation in mast cells and in

the HL-60 mast cell line has been extensively investigated

(Norman et al. 1996; O’Sullivan et al. 1996; Prepens et al.
1996; Guillemot et al. 1997; Brown et al. 1998; Hong-

Geller & Cerione, 2000; Pinxteren et al. 2000). In neurons

and neuroendocrine cells evidence for a role of these

GTPases in neurosecretion is largely based on effects of

clostridial toxins that inhibit RhoGTPase family members.

Cdc42 and/or Rac have been implicated in regulation of

pancreatic b cell (Kowluru et al. 1997), PC12 cell (Frantz et
al. 2002) and adrenal chromaffin cell (Gasman et al. 1999)

secretion and in acetylcholine release from Aplysia
neurons (Doussau et al. 2000; Humeau et al. 2002). By

comparison, most evidence suggests Rho exerts little

regulatory influence on the secretory pathway (Kowluru et
al. 1997; Gasman et al. 1999). However, to date there has

been no evaluation of the extent to which these GTPases

are activated by secretory stimuli.

A focus of the present investigation was to determine if the

level of Rac1 or Cdc42 activation was altered in response to

secretagogue activation of secretion, as would be expected of

a dynamic mediator of the Ca2+-dependent neurosecretory

pathway. As Rac1, but not Cdc42, was activated we further

examined the relationship of Rac1 activation to functional

effects on Ca2+-dependent neurosecretion by expression of

mutants of Rac1 that are maintained in constitutively active

(GTP-bound) or inactive (GDP-bound) conformations.

Finally, we evaluated if Rac1-mediated regulation of the

secretory pathway was mechanistically related to

cytoskeletal reorganization by expression Rac1 effectors and

effector domain mutants as well as by pharmacological

alterations of cortical actin.

METHODS 
Materials
Phalloidin, latrunculin-A, jasplakinolide, Alexa Fluor 568-
conjugated phalloidin, tetramethylrhodamine-linked goat anti-
mouse IgG, Alexa 488-linked goat anti-rabbit IgG and Alexa 488-
conjugated goat anti-mouse IgG were from Molecular Probes.
Monoclonal antibody against human Rac1 was from Upstate
Biotechnology Inc. (Lake Placid, NY, USA) (c23A8). Anti-human
RhoGDI antibody (c7) was from Transduction Laboratories
(Lexington, KY, USA). Rabbit polyclonal anti-human Cdc42
(SC87) was from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). Mouse monoclonal antibody against c-myc epitope tag
(9E10) was from DSHB (Developmental Studies Hybridoma
Bank, Iowa City, IA, USA) while anti-HA epitope tag antibody was
from Berkeley Antibody Company (Richmond, CA, USA). The
rabbit polyclonal dopamine-b-hydroxylase (DBH) antibody was
from Dr Patrick J. Fleming (Georgetown University Medical
Center, Washington, DC, USA). All the other chemicals were
obtained from Sigma.

Plasmids
Mammalian expression plasmid pcDNA/HA-Rac1-V12,
pEBG/GST–RacV12, pEBG/GST–RacN17 and pRK5/myc-RhoGDI,
were kindly provided by Dr L.-H. Tsai (Harvard Medical School;
Howard Hughes Medical Institute). pcDNA/3xHA-RacN17 was
purchased from Guthrie Research Institute (Sayre, PA, USA).
Effector domain mutants of pcDNA/HA-Rac1-V12 (T35S, Y40H,
F37L) were constructed using the PCR-based Quickchange Site-
Directed Mutagenesis kit from Stratagene (Cedar Creek, TX,
USA). pCR3.1/ADF wild-type from chicken was from Dr James R.
Bamburg. pcDNA/ANP–EmGFP, a granule-targeted ANP
protein gene fused to an emerald version of green fluorescent
protein (EmGFP) was from Dr Edwin Levitan (University of
Pittsburgh, Pittsburgh, PA, USA). The GST-containing bacterial
expression plasmid pGEX/GST–PAKPBD, which contains
glutathione-S-transferase fused to the GTPase binding domain of
human p21-activated kinase 1 (GST–PAKPBD) as well as
pCMV6M/myc-hPAK1 has been described previously (Benard et
al. 1999).

Preparation and culture of bovine chromaffin cells
Bovine adrenal glands were rinsed by gentle injection via the renal
vein of a divalent metal-ion-free Locke’s (DMF-Locke’s) which
contained (mM): 145 NaCl, 10 Hepes, 10 glucose, 5.6 KCl, 3.5
NaHCO3, with 100 units ml_1 penicillin, 100 µg ml_1

streptomycin, pH 7.4. Each gland was then injected with 5 ml of a
pre-warmed 0.5 % collagenase–DMF-Locke’s and gently shaken
for 0.5 h at 37 oC. This collagenase digestion step was repeated
once. The medullary tissue was then isolated into 15 ml of a 0.5 %
(w/v) collagenase solution and the tissue minced prior to gentle
shaking for 30 min at 37 oC. The digested tissue was then passed
through a 250 µm gauge nylon mesh and diluted in cold DMF-
Locke’s. The cells were then pelleted (100 g, 3 min, 4 oC), washed
twice in DMF-Locke’s and resuspended into 100 ml of 14 % (v/v)
sterile renograffin (Bracco Diagnostics, Princeton, NJ, USA). The
cell suspension was loaded under 7.25 % renograffin in DMF-
Locke’s and centrifuged at 1500 g for 10 min at room
temperature. The interface was collected and mixed with an equal
volume of sterile saline containing (mM): 2.2 CaCl2, 1 MgCl2,
145 NaCl, 10 Hepes, 10 glucose, 5.6 KCl, 3.5 NaHCO3, with
100 units ml_1 penicillin, 100 µg ml_1 streptomycin, pH 7.4. The
cell suspension was pelleted (500 g, 3 min, 20 oC), washed once
and then resuspended in Dulbecco’s modified Eagle’s
medium–F-12 containing 10 % fetal bovine serum (GIBCO BRL
Life Technologies), 100 units ml_1 penicillin, 100 µg ml_1

streptomycin, 10 µg ml_1 gentamicin, 1 µM cytosine b-D-arabino-
furanoside and 2.5 µg ml_1 fungizone. Cells were plated into
collagen-coated 35 mm wells at a density of 3 w 106 cells per well.
All experiments were performed on cells cultured between 3 and
8 days. One day prior to use, medium was replaced with
fungizone-free DMEM–F-12.

Cell fractionation
Chromaffin cells (8 w 106 cells) were placed in Ca-PSS (mM:
118 NaCl, 25 NaHCO3, 1.13 MgCl2, 5 KCl, 1 Na2HPO4, 10 glucose
and 2.2 CaCl2, pH 7.4) and stimulated with 20 mM of the nicotinic
acetylcholine receptor agonist 1,1-dimethyl-4-phenyl-
piperazinium iodide (DMPP) for 3 min at 30 °C. Control cells
received no stimulation. The Ca-PSS was then removed, ice-cold
fractionation buffer added (mM: 25 Tris-HCl, 50 NaCl, 1 EDTA,
pH 7.5) and the cells rapidly collected. The cells were then
sonicated on ice for 5 s at 7 W power output (Sonic
Dismembrator Model 100, Fisher Scientific). The lysate was then
subjected to centrifugation at 1000 g for 10 min and the resulting
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supernatant subjected to a further centrifugation at 100 000 g for
30 min. The 100 000 g pellet containing membrane fraction was
solubilized with lysis buffer (mM: 25 Tris-HCl, 100 NaCl, 5 MgCl2,
1 dithiothreitol (DTT), with 5 % glycerol, 1 % Nonidet P-40
(Sigma), and a protease inhibitor cocktail consisting of 4 µg ml_1

leupeptin, 4 µg ml_1 aprotinin, 4 µg ml_1 pepstatin (Roche
Diagnostics) and 1 mM phenylmethylsulfonyl fluoride (PMSF,
Sigma)). Both the solubilized membrane fraction (particulate)
and the 100 000 g supernatant containing the cytosol were
subjected to SDS-PAGE and immunoblotting.

Cell transfection
Chromaffin cells were transfected with plasmid coated 1.0 µm
diameter gold beads using a Helios Gene Gun (Bio-Rad
Laboratories). The gold beads were prepared according to the
manufacturer’s instructions. The level of recombinant protein
expression was achieved by controlling the plasmid concentration
applied to the gold beads. For each of the constructs used we
examined the effects of three plasmid concentrations on basal and
evoked secretion. For the constitutively active constructs, the
lowest plasmid concentration that gave an effect (0.5 µg per 20 mg
beads) was used. For dominant negative Rac1-N17, plasmid
concentrations up to 50 µg per 20 mg beads were tested. The time
allowed for protein expression following transfection was held
constant at 3 days.

GST-tagged fusion protein expression and purification
Recombinant GST–PAKPBD fusion protein was expressed in
E. coli (BL21 codon plus RIL) and purified by glutathione-linked
Sepharose 4B (Pharmacia Biotech Inc.) as previously described
(Shuang et al. 1998). GST fusion protein was eluted from the
Sepharose beads in 300 µl elution buffer (mM: 10 glutathione, 50
Tris-HCl, pH 8.0) and dialysed in a 10 kDa molecular weight
cutoff cassette (Pierce, Rockford IL, USA) overnight against
(mM): 25 Tris-HCl, 2 DTT, 1 MgCl2, with 2.5 % glycerol, pH 7.5.
The GST-fusion protein was then collected, diluted in
1.7 w storage buffer (mM: 50 Hepes, 150 NaCl, 5 MgCl2, 5 DTT,
with 50 % glycerol) and kept at _20 °C until use.

Rac and Cdc42 activation assay
Culture media were replaced with Ca-PSS and the cells
preincubated (5 % CO2, 37 oC) for 1 h. Cells were then stimulated
with 50 mM K+ in a modified Ca-PSS, or with 20 µM DMPP in Ca-
PSS. For 50 mM K+ stimulation, an equal volume of a 2 w 50K/Ca-
PSS solution (containing, mM: 23 NaCl, 25 NaHCO3, 1.13 MgCl2,
100 KCl, 1 Na2HPO4, 10 glucose and 2.2 CaCl2, pH 7.4) was added
to the dish. For 20 µM DMPP stimulation, an equal volume of Ca-
PSS containing 40 µM DMPP was added. The cells were then
incubated for a given time period. Aspiration of the stimulation
buffer and addition of 0.5 ml ice-cold lysis buffer containing
100 µg ml_1 GST–PAKPBD terminated stimulation. The cell
lysate was collected and immediately centrifuged at 5000 g for
5 min at 4 oC. The supernatant was removed and mixed with 0.5
ml binding buffer (mM: 25 Tris-HCl, pH 7.5, 40 NaCl, 30 MgCl2, 1
DTT, with 0.5 % Nonidet P-40) to which 12 µl of
glutathione–Sepharose 4B beads (Pharmacia Biotech) were
added. The tubes were rotated for 45 min at 4 oC prior to
collection of the beads (500 g, 3 min). The bead pellet was washed
twice with 1 ml binding buffer followed by two washes with TNM
buffer (mM: 50 Tris-HCl, pH 7.5, 50 NaCl and 5 MgCl2). The final
bead pellet was resuspended in Laemmli sample buffer (Laemmli,
1970) and boiled. Proteins were separated by 10 % SDS-PAGE,
transferred to nitrocellulose membrane and blots probed for the
GTPase (Rac1 or Cdc42). Immunoreactivity was detected using
the ECL chemiluminescence system (Amersham Pharmacia

Biotech) in conjunction with a Fluor-S Max Multi-lmager system
(Bio-Rad) running Quantity One software.

Chromaffin cell secretion assays
Human growth hormone (hGH) secretion was measured from
transfected chromaffin cells using a highly sensitive
chemiluminescence assay kit from Nichols Institute (San Juan
Capistrano, CA, USA) as described previously (Wick et al. 1993).
Secretion data were averaged between experiments or cell
preparations by normalization of test responses to responses of
control hGH-transfected cells within each experiment. In each
case, cells were cotransfected with the hGH expression plasmid
and an expression plasmid carrying the construct of interest
and/or an empty vector parent plasmid (Neo). In experiments
with the F-actin stabilizing drug jasplakinolide (100 nM), the drug
was added to cell cultures 8 h prior to initiation of the hGH assay.
Use of co-expressed hGH as a marker of the regulated secretory
pathway allowed examination of recombinant Rac1 effects on
secretion from only those cells expressing the recombinant
GTPase protein. An assumption implicit with the approach, and
well substantiated by prior studies, is that properties of hGH
secretion closely mimic those of endogenous catecholamines
(Wick et al. 1993; Holz et al. 1994).

Secretion from digitonin-permeabilized chromaffin cells was
performed as previously described (Wick et al. 1993; Holz et al.
1994). Cells were permeabilized by incubation in KGEP solution
(mM: 139 potassium glutamate, 20 Pipes (pH 6.6), 1 MgCl2,
5 EGTA, 2 Mg-ATP, 0.2 Li-GTP, with 2.5 mg ml_1 BSA, 20 µM

digitonin) for 2 min at 30 oC. Cells were then stimulated for the
time specified with Ca/KGEP solution that omitted digitonin and
added 4.685 mM CaCl2 to set a final free calcium concentration (in
combination with EGTA) to 30 µM. hGH secreted into the
medium and total cell hGH content from transfected cells were
determined from aliquots following centrifugation at 500 g, for
10 min at 4 oC. In experiments assessing effects of F-actin drugs
(phalloidin and latrunculin-A) on permeabilized cells the drug
was added to the KGEP during both the permeabilization and
secretion phase of the protocol.

Electrophysiological recording of calcium current (ICa) and
membrane capacitance (Cm)
Conventional whole cell patch-clamp recording methods were
used to evoke and record ICa and measure time-resolved changes
in Cm (DCm) from single adrenal chromaffin cells using an
Axopatch 200A amplifier (Axon Instruments, Union City, CA,
USA) and phase-tracking software (Pulse Control; Drs Jack
Herrington and Richard Bookman, University of Miami Medical
School, Miami, FL, USA). The DCm was measured by applying a
sine wave (60 mV peak to peak at 1201 Hz) to a holding potential
of –90 mV. Sixteen samples per sinusoidal period were used to
compute one Cm point. Calibration pulses (100 fF) were generated
at the beginning of each trace. Currents were filtered at 5 kHz and
sampled at 20 µs. Series resistance and resting membrane
capacitance were compensated electronically. Baseline leak
current was subtracted prior to integration and recording was
terminated when leak current exceeded 10 % of the
depolarization-evoked calcium current. No corrections were
made for linear leak during step depolarization. A train of eight
step depolarizations from –90 to +10 mV at 0.2 s intervals was
used to evoke ICa and DCm. The duration of the step
depolarizations used for each train was generally 50 ms, although
in two control cells longer pulse durations were applied (75 and
150 ms) to generate approximately 10 pC calcium influx per step
depolarization. No significant differences were found between the
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treatments with respect to current density (A F_1) using 50 ms step
depolarizations to +10 mV. Pipettes were constructed out of
1.5 mm outer diameter capillary glass (A-M Systems), coated with
Sylgard and fire polished to resistances of 1.5–4 MV. The pipette
soluion contained (mM): 128 N-methyl-D-glucamine-Cl, 40
Hepes, 10 NaCl, 2 Mg-ATP, 0.2 GTP, 0.25 Tris-EGTA, with pH
adjusted to 7.1. The extracellular solution contained (mM): 137
tetraethylammonium chloride, 10 CaCl2, 2 MgCl2, 10 Hepes and
19 glucose, with the pH adjusted to 7.2 with Tris. Chromaffin
cells were transfected 2–3 days prior to replating and
electrophysiological recording.

Immunocytochemistry and phalloidin staining
Chromaffin cells cultured on collagen-coated coverglasses were
fixed with 4 % paraformaldehyde–PBS for 30 min, quenched with
50 mM NH4Cl–PBS for 15 min, permeablized with 0.2 % Triton
X-100–PBS for 8–10 min, and blocked with 2 % BSA–PBS for
60 min. Following incubation in primary antibody at 1:200
dilution in 2 % BSA–PBS for 1 h, the cells were incubated with
fluorescein-labelled secondary antibody at 1:200 dilution for 1 h.
For co-staining of F-actin, 0.25 U ml_1 Alexa-conjugated
phalloidin was included in the secondary antibody solution.
Digital fluorescence images from cell cultures were viewed either
on a conventional Nikon epifluorescence microscope or with a
Zeiss LSM 510 confocal microscope, and processed using
Photoshop 6.0 software (Adobe Systems Inc., Mountain View,
CA, USA). Two controls were used to ensure specificity of
immunochemical reactivity. These include use of primary
antibody against relevant recombinant epitope tags in non-
transfected cells and use of secondary antibody alone on
transfected and non-transfected cells. Immunoreactivity and
fluorescent signals were quantified using NIH Image software.

Statistics
Data were generally calculated as a fraction of the control response
observed within each experiment. All data are plotted as the
mean ± S.E.M. All experiments were repeated on at least two, and
usually several different cell preparations. The n number refers to
the number of observations for each treatment/condition. For
normalization within experiments, all values were normalized
against the average value of the control group. Statistical
significance of treatments relative to control was determined
using Student’s unpaired t tests or for multiple comparisons using
ANOVA with Bartletts post hoc test on normally distributed data.
In the case of non-parametric data, a Mann-Whitney test was
performed using the original calculated values. Statistical analysis
was performed using GraphPad Instat software (GraphPad
Software Inc, San Diego, CA, USA).

RESULTS 
Effect of secretagogue stimulation of chromaffin
cells on activation of Rac1 and Cdc42
Figure 1A illustrates the presence of Rac1 and Cdc42 in

chromaffin cells from adrenal medulla. Chromaffin cells

were identified by co-localization of the catecholamine

biosynthetic enzyme dopamine-b-hydroxylase. Rac1 and

Cdc42 were predominantly localized to cytosol as well as

the plasma membrane. To investigate the level of Rac1 and

Cdc42 activation in chromaffin cells we used an assay based

on the protein binding domain (PBD) of human p21-

activated kinase 1 (PAK1) fused to GST. This protein

demonstrates selective affinity for the GTP-bound form

(i.e. active) of Rac1 and Cdc42, and does not bind Rho

(Benard et al. 1999). Figure 1B shows that a rapid and

transient activation of Rac1 occurred upon nicotinic ACh

(nACh) receptor activation with DMPP (20 µM), or

membrane depolarization with elevated K+ (50 mM).

Control cells showed no change in Rac1 activation.

Secretagogue-induced Rac1 activation peaked at

approximately 3 min and was followed by a return toward

baseline, where it remained elevated throughout a stimulus

period lasting up to 30 min. DMPP stimulation of the cells

also resulted in an increase in Rac1 immunoreactivity

found in a particulate fraction and decrease in the cytosolic

fraction relative to that of control cells (Fig. 1C). The shift

in distribution is consistent with activation being

coincident with translocation of activated Rac1 to

membrane-delimited compartments. Moreover, Rac1

activation was found to be Ca2+ sensitive. Stimulation with

elevated K+ (50 mM, 2 min) saline in the presence of Cd2+

(100 µM), a voltage-dependent Ca2+ channel blocker,

limited Rac1 activation to 28 ± 5 % (n = 6) of the level

observed without Cd2+ present. In comparison to Rac1, the

levels of GTP-bound Cdc42 were found not to significantly

increase in response to DMPP stimulation (Fig. 1D).

Transfection and expression of recombinant Rac1
To investigate the role of Rac1 in regulation of chromaffin

cell secretory responsiveness, we utilized transfection and

overexpression of dominant active (V12 and L61) and

dominant negative (N17) constructs of epitope-tagged

Rac1. Immunocytochemistry against the epitope tag

demonstrated successful transfection and expression of

the recombinant GTPase constructs (Fig. 2A). Co-

transfection of ANP–EmGFP, a fluorescent protein

directed to dense core secretory granules, demonstrated

that the recombinant Rac1 expression was localized to

chromaffin cells. Overexpression of specific Rho family

GTPases has the potential for binding upstream regulators

(e.g. GEFs) as well as downstream effectors of

corresponding members of this family. Therefore, care was

taken to limit levels of overexpression by initially titrating

the amount of plasmid DNA used for transfection in

chromaffin cells. As representative, Fig. 2B shows that the

concentration of plasmid DNA for RacV12 used in these

investigations resulted in modest levels of overexpression

(i.e. approximately 2.5-fold) of the recombinant protein

over endogenous Rac1.

Expressed recombinant Rac1 protein alters
secretory responsiveness in permeabilized
chromaffin cells
The effect of Rac1 on secretory responsiveness in

chromaffin cells was determined by expression of

dominant active (Rac1-V12, Rac1-L61) or dominant

negative (Rac1-N17) GTPases together with a plasmid

encoding human growth hormone (hGH), which acts as a

Q. Li and others434 J Physiol 550.2
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reporter for the regulated secretory pathway (Wick et al.
1993). A sensitive immunological assay for the detection of

secreted hGH allowed the properties of the secretory

response to be evaluated from the co-transfected cells

alone, despite low transfection efficiency. The effects of

mutant Rac1 protein on secretion were initially examined

in digitonin-permeabilized chromaffin cells. In this way,

effects of the overexpressed GTPases on secretion evoked

by directly increasing the free Ca2+ to 30 µM reflect an

effect of the mutant protein on the intracellular pathway

governing exocytosis and avert effects potentially

attributable to alteration in calcium signalling pathways.

Figure 3A compares a representative time course of hGH

secretion from cells expressing hGH alone or hGH in

combination with dominant active Rac1-V12. Expression

of Rac1-V12 enhanced the Ca2+-induced hGH secretory

response, but had no effect on Ca2+-independent (i.e.

basal) hGH secretion when compared to control cells

cotransfected with a parent pcDNA (Neo.) plasmid.

Figure 3B shows the averaged effects on evoked hGH

secretion measured at 15 min from cells expressing the

recombinant Rac1 proteins. Strong enhancement of Ca2+-

dependent secretion was found for cells expressing Rac1-

V12 and Rac1-L61 constructs. Rac1-N17, a dominant

negative Rac1 mutant, was found not to alter Ca2+-

dependent secretion relative to control. The enhancement

of Ca2+-dependent secretion by constitutively active Rac1

constructs indicates that Rac1 can act as a positive

Rac1 regulation of Ca2+-dependent exocytosisJ Physiol 550.2 435

Figure 1. Effect of nicotinic acetylcholine receptor (nAChR) activation and membrane
depolarization on the level of GTP-bound Rac1 and Cdc42 in chromaffin cells
A, confocal images showing localization of endogenous a-Rac1 and a-Cdc42 immunoreactivity in
chromaffin cells cultured for 3 days. Chromaffin cells were identified by anti-dopamine-b-hydroxylase
reactivity as visualized with Alexa488-conjugated secondary antibody. Scale bar = 10 µm. B, time course of
Rac1 activation in response to DMPP (20 µM)-mediated nAChR activation (0, n = 5) or elevated K+-
induced membrane depolarization (•, n = 9). Control cells (1, n = 8) from same cell preparations were
handled identically, but without stimulation. C, distribution of Rac1 immunoreactivity among cytosol and
membrane fractions (particulate) under control conditions and following stimulation with DMPP (20 µM,
2 min, n = 5). D, time course of Cdc42 activation in response to stimulation with DMPP (20 µM; 0, n = 7) as
compared to control (1, n = 7) cells. Asterisks represent significant differences (P < 0.05) from control.
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regulator of an intracellular pathway leading to regulated

exocytosis.

RhoGDI inhibits secretory responsiveness
The activity of the Rho family of GTPases is controlled in

part by RhoGDIs, which inhibit release of GDP from the

GTPase and also control partitioning of the GTPase

between cytosol and membrane compartments. Figure 4A
shows that RhoGDI and Rac1 interact in chromaffin cells,

as immunoprecipitation of endogenous Rac1 from lysate

of cultured chromaffin cells resulted in co-

immunoprecipitation of RhoGDI. In addition,

overexpression of recombinant RhoGDI was capable of

inhibiting Ca2+-dependent secretory responses from

digitonin-permeabilized chromaffin cells (Fig. 4B). The

overexpression of RhoGDI resulted in an approximately

50 % inhibition of hGH secretion monitored at 2 min and

20 % inhibition at 15 min. Figure 4C demonstrates a time-

dependent dialysis of RhoGDI from the permeabilized

cells into the media and correlates with the time-

dependent loss of inhibition by RhoGDI. The inhibitory

effects of RhoGDI on hGH secretion provide additional

Q. Li and others436 J Physiol 550.2

Figure 2. Transfection and expression of Rac1 mutants in chromaffin cells
A, chromaffin cells were co-transfected with plasmids carrying HA epitope-tagged Rac1 mutants, and a
reporter fusion gene (ANP–EmGFP) that is directed to secretory granules of the regulated exocytotic
pathway. Co-expression was evaluated by fluorescence detection of the green fluorescent protein and
immunofluorescent detection of the HA tag using an a-HA antibody. B, quantification of Rac1
immunofluorescence in non-transfected (control, n = 27) and Rac1-V12 (n = 10)-transfected chromaffin
cells. Scale bars = 10 µm.

Figure 3. Effect of co-expression of mutant Rac1 mutants with human growth hormone
(hGH) on hGH secretion in permeabilized chromaffin cells
A, time course of hGH secretion from digitonin-permeabilized chromaffin cells transfected with Rac1-V12
(squares) or an empty parent plasmid (Neo., circles). Secretion was elicited by addition of 30 µM free Ca2+

(filled symbols) and compared to secretion in the absence of Ca2+ (open symbols; n = 3). Co-expression of
hGH serves as a reporter of the regulated exocytotic pathway of transfected cells. B, effect of expression of
Rac1 mutant proteins on Ca2+-evoked hGH secretion at 15 min (n = 9, Rac1-V12 and Rac1-L61; n = 6,
Rac1-N17). Data were normalized to control (Neo.) for comparison between different cell preparations.
Asterisks represent statistically significant difference (P < 0.05) from control group.
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evidence that Rac1 plays a regulatory role in the secretory

pathway.

Rac1 modulates secretory responses from intact
chromaffin cells
The effect of expression of recombinant Rac1 on secretion

from intact cells was examined as a further test of

physiological relevance. Figure 5A demonstrates that

expression of dominant active Rac1-V12 or Rac1-L61

significantly enhanced DMPP-induced (20 µM, 2 min)

hGH secretion compared to the empty plasmid control.

The averaged increase in DMPP-induced secretion

mediated by the constitutively active Rac1 constructs

Rac1 regulation of Ca2+-dependent exocytosisJ Physiol 550.2 437

Figure 4. Effect of RhoGDI expression on Ca2+-dependent secretion from digitonin-
permeabilized chromaffin cells
A, co-immunoprecipitation of RhoGDI (RGDI) with Rac1 from chromaffin cell lysate. Cell lysates were
immunoprecipitated with Rac1 antibody and aliquots of samples subjected to SDS-PAGE and Western
blotting. Blots were probed with a RhoGDI. Lane 1, lysate; 2, immunoprecipitate; 3, supernatant of final
wash. B, effect of expression of RhoGDI on Ca2+-evoked (30 µM) hGH secretion, measured at 2 min (open
bars) and 15 min (filled bars) from permeabilized cells (n = 6). Asterisks represent statistically significant
difference (P < 0.05) from control (Neo.). C, dialysis of RhoGDI from permeabilized chromaffin cells.
Immunoblot lanes, 1, cell lysate; 2 and 3, aliquot of medium collected from permeabilized chromaffin cells
following 2 min and 15 min of Ca2+ stimulation (30 µM), respectively.

Figure 5. Rac1 mutants and RhoGDI alter secretion in intact chromaffin cells
A, effect of constitutively active (V12 and L61) or dominant negative (N17) Rac1 mutants on basal (open
bars) and evoked (filled bars) hGH secretion. Control (Neo.) cells were transfected with empty parent
plasmid. Secretion was evoked by addition of the nACh receptor agonist DMPP (20 µM, 2 min). B, effect of
recombinant RhoGDI expression alone and with Rac1-V12 on basal (open bars) and DMPP-induced
(20 µM, 2 min; filled bars) hGH secretion. Asterisks represent statistically significant difference (P < 0.05)
from control (Neo.). A, Neo, n = 15; Rac1-V12, n = 15; Rac1-L61, n = 3; Rac1-N17, n = 9; B , Neo, n = 21;
RhoGDI, n = 17; RhoGDI+Rac1-V12, n = 18.
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(approximately 20–40 %) was somewhat less than that

observed from permeabilized chromaffin cells (approx.

55 %). The Rac1-V12 effect was reduced by lengthening

the period of DMPP stimulation to 15 min (average of

13.7 % increase, n = 6). Expression of Rac1-N17 produced

no significant change from control in the DMPP-induced

hGH secretory response. The enhancement of secretion by

Rac1-V12 in intact cells is consistent with a rapid

activation of Rac1 observed in response to DMPP

stimulation in intact cells and of active Rac1 facilitating

Ca2+-dependent secretion from permeabilized cells. In

addition, expression of RhoGDI in the intact cells

inhibited DMPP-induced secretion by approximately

50 % (Fig. 5B), an effect that paralleled the inhibition

observed on Ca2+-stimulated secretion from

permeabilized cells. Co-expression of Rac1-V12 with

RhoGDI resulted in an amelioration of the inhibitory

effect of RhoGDI on DMPP-induced secretion in intact

chromaffin cells. These data show that Rac1-V12 remains

capable of facilitating secretion in the presence of RhoGDI

overexpression.

Our findings using digitonin-permeabilized cells

demonstrated that constitutively active Rac1 exerts

enhancing effects on secretion downstream of Ca2+. To

determine whether Rac1 expression in intact chromaffin

cells exerted effects on secretion by altering calcium influx

we compared changes in cytosolic calcium induced by

brief localized application of DMPP (20 µM, 10 s) to

control and transfected cells. No significant difference was

found in the averaged peak amplitude (control,

230 ± 47 nM, n = 7; Rac1-V12, 256 ± 26 nM, n = 10; Rac1-

N17, 374 ± 76 nM, n = 9; mean ± S.E.M.) or shape of the

elicited calcium responses monitored by the fluorescent

calcium indicator fura-2 (Molecular Probes, Eugene, OR,

USA). These data are in agreement with a previous report

on chromaffin cells demonstrating no effect of Rac1

inactivation by Clostridium sordellii lethal toxin on

nicotine-evoked Ca2+ responses (Gasman et al. 1999).

To evaluate the effect of Rac1 on the calcium

influx–secretion relationship in single chromaffin cells, we

recorded evoked changes in membrane capacitance

elicited by depolarization mediated calcium influx. Figure

6A shows the stimulus protocol used and a representative

evoked ICa and corresponding DCm recorded from a control

chromaffin cell expressing the ANP–EmGFP protein.

Repetitive depolarizing stimuli resulted in a repeating

cycle of induced ICa (i.e. Ca2+ influx) and associated

increases in Cm. Figure 6B presents averaged data that

demonstrate the relationship between Ca2+ influx and DCm

for control (ANP–EmGFP) cells with those expressing

recombinant Rac1-V12, and RhoGDI protein. Rac1-V12

expression resulted in a consistent enhancement in

secretory responsiveness with respect to control while

RhoGDI expression decreased responsiveness. No

differences were found in charge density between the

different treatments. Differences in the Ca2+-secretory

releationships were most apparent following the initial few

step-depolarizations, as the level of Ca2+ influx rose. These

data suggest that the primary effect of Rac1 signalling may

not be on an immediate release component. This

interpretation would be consistent with predominant

enhancing effects of Rac1-V12 on secretion being

observed in the slower kinetic assays of hGH secretion

from cell populations.

Q. Li and others438 J Physiol 550.2

Figure 6. Effect of Rac1-V12 and Rho-GDI on the relationship of Ca2+ influx to DCm

A , whole-cell patch clamp recording from a control ANP–EmGFP transfected cell illustrating evoked ICa andDCm responses to a train of repetitive step depolarizations (_90 to +10 mV, 50 ms duration). B, comparison
of relationships between cumulative Ca2+ influx and cumulative DCm for control (ANP–EmGFP, filled
squares, n = 9), Rac1-V12 (filled circles, n = 9) and recombinant RhoGDI (open circles, n = 4) chromaffin
cells. Continuous line represents the standard Ca2+-exocytosis relationship previously described for cultured
bovine chromaffin cells (Engisch et al. 1997).
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Stimulus-induced changes in cortical cytoskeleton
As Rac1 is a central regulator of cytoskeletal organization

the effects of constitutively active Rac1 on secretion may be

associated with localized cytoskeletal reorganization

triggered by the rise in intracellular [Ca2+]. Figure 7A
compares representative examples of the cortical actin

cytoskeleton of control and stimulated (20 µM DMPP,

2 min) chromaffin cells as visualized by Alexa568-

phalloidin labelling. Chromaffin cells were identified by

immunoreactivity to dopamine-b-hydroxylase, an

enzyme essential for noradrenaline synthesis, or by

localization of fluorescence to secretory granules in

ANP–EmGFP transfected cells. In control cells an intense

and nearly continuous band of cortical F-actin staining

was readily apparent adjacent to the membrane. Nicotinic

acetylcholine receptor stimulation resulted in only limited

disruption of perimeter actin staining. The most

prominent observed change to stimulation was an increase

in cytosolic staining for F-actin. Figure 7B shows

representative examples of the F-actin cytoskeleton in

Rac1-V12-transfected cells prior to and following DMPP

stimulation (20 µM, 2 min). Although Rac1-V12 is a

constitutively active GTPase, the cortical actin

cytoskeleton appeared of nearly identical morphology to

that of the non-transfected controls, with only a slight

increase in cytosolic F-actin labelling. Treatment of the

Rac1-V12 transfected cells with DMPP also resulted in

F-actin changes that reflected those of the stimulated, non-

transfected controls, but with an augmentation of

punctate F-actin labelling in the cytosol. Therefore,

transfection with active Rac1-V12 alone did not produce

dramatic alterations in the cortical cytoskeleton, but

increased DMPP-stimulated F-actin reorganization with

respect to control.

Effects of pharmacological modulators of F-actin on
regulated secretion
If Rac1 mediates its effects on secretion by alteration of

cytoskeletal organization then drugs that alter cortical F-

actin should modulate the actions of Rac1. Figure 8A and B
shows that phalloidin (40 µM) or jasplakinolide (100 nM)

treatment of chromaffin cells resulted in an enhancement

of Ca2+-induced secretory or DMPP-induced (20 µM,

2 min) responses, respectively, with respect to control.

Expression of Rac1-V12 strongly facilitated Ca2+-

dependent secretion in these same cell preparations.

However, combination of phalloidin or jasplkinolide with

Rac1-V12 expression resulted in Ca2+-induced secretory

responses that were not significantly different from either

the F-actin modifying drug or Rac1-V12 alone. In

complimentary investigations, treatment of permeabilized

chromaffin cells with latrunculin-A, which avidly binds

G-actin to promote loss of F-actin, resulted in a strong

inhibition of Ca2+-stimulated hGH secretion. Although

Rac1-V12 alone strongly enhanced secretion, latrunculin-

A treatment completely eliminated the ability of Rac1-V12

expression to facilitate hGh secretion.

Action of Rac1 effectors and Rac1 effector domain
mutants on secretion
A primary effector of activated Rac1 is the serine/

threonine protein kinase Pak1. Therefore, we examined if

expression of human Pak1 could mimic the secretory

effect of active Rac1-V12 in response to DMPP

stimulation. Figure 9A shows that overexpression of Pak1

significantly enhanced DMPP (20 mM) evoked secretion

Rac1 regulation of Ca2+-dependent exocytosisJ Physiol 550.2 439

Figure 7. Effect of nACh receptor activation on
cortical F-actin in bovine chromaffin cells
A, chromaffin cells were identified by dopamine-b-
hydroxylase immunoreactivity and the cortical cytoskeleton
visualized by Alexa568-phalloidin staining. A representative
example of a control and DMPP-stimulated (20 µM, 2 min)
cell is shown. B, visualization of the cortical actin
cytoskeleton by Alexa568-phalloidin in Rac1-V12-
transfected chromaffin cells under control conditions and
following DMPP stimulation (20 µM, 2 min). Chromaffin
cells were identified by cotransfection and expression of
ANP–EmGFP directed to secretory granules. Scale bar in A
and B = 10 µm.
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from intact chromaffin cells. A potential mechanism for

Rac1–Pak1-mediated enhancement of secretion is via

actions on cytoskeletal reorganization. ADF acts as an F-

actin depolymerization factor that is negatively regulated

by Rac1-Pak1 activation via Lim kinase. Overexpression of

ADF significantly promoted DMPP-induced secretion

relative to control (Fig. 9A). The effects of Pak1 and ADF

on secretion are consistent with an effect of F-actin

reorganization to modulate secretion. No effect was

observed on basal secretion in response to overexpression

of Pak1 or ADF.

Amino acid mutations in the Rac1 effector domain

decrease or eliminate the ability of Rac1 to activate specific

downstream effectors (Self et al. 1993; Joneson et al. 1996;

Lamarche et al. 1996; Tapon et al. 1998). Figure 8B shows

the effects of known effector domain mutations in Rac1-

V12 to alter Ca2+-evoked hGH secretion. Expression of the

T35S and Y40H mutants, which decrease Rac1 signalling

through Pak1, as well as JNK/SAPK, resulted in lowered

secretion compared to control Rac1-V12. Use of a F37L

mutant, which reduces signalling through POR1 and

STAT3, also lowered Ca2+-evoked secretion. As Rac1

effects are limited to evoked versus basal secretion, these

data are consistent with a rapid Ca2+-dependent effect

being mediated through cytoskeletal regulators such as

Pak1 or POR1.

Q. Li and others440 J Physiol 550.2

Figure 8. Effects of pharmacological modifiers of F-actin on secretion in transfected
chromaffin cells
A, effect of phalloidin on Ca2+-evoked hGH secretion from digitonin-permeabilized chromaffin cells (n = 6).
Phalloidin (40 µM) was present during the 2 min permeabilization period and the subsequent 15 min Ca2+

(30 µM) stimulation period. B, representative effect of the membrane-permeant F-actin stabilizing drug
jasplakinolide (100 nM) on hGH secretion from intact chromaffin cells stimulated with DMPP (20 µM,
2 min, n = 3). Effect was replicated in 3 separate cell preparations. C, effect of latrunculin-A on Ca2+-evoked
hGH secretion from digitonin-permeabilized chromaffin cells (n = 3). Latrunculin-A (10 µM) was present
during both the permeabilization period and the 10 min Ca2+ stimulation period. Chromaffin cells were
transfected with the constitutively active Rac1 construct (Rac1-V12) or an empty parent plasmid control
(Neo.), along with the reporter gene hGH, 3 days prior to initiation of secretion assays.

Figure 9. Effects of Rac1 effectors and Rac1-
V12 effector domain mutants on secretion
in transfected chromaffin cells 
A, effect of Pak1 and ADF overexpression on
DMPP-induced (20 µM, 2 min) hGH secretion
from intact chromaffin cells (n = 6). B, effect of
expression of Rac1-V12 and Rac1-V12 effector
domain mutants on Ca2+-induced (30 µM; 15 min)
hGH secretion from digitonin-permeabilized
chromaffin cells (n = 6).
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DISCUSSION 
A role of Rho family GTPases on regulated exocytosis in

chromaffin cells had been previously proposed based on

altered catecholamine secretion following differential

inhibition of Rho family members by clostridial toxins

(Gasman et al. 1999). In this study we provide further

insight on the activation and physiological relevance of

Rac1 in controlling regulated secretion in chromaffin cells.

We demonstrate that: (1) Rac1, but not Cdc42, is rapidly

activated in cells exposed to a nicotinic acetylcholine

receptor agonist or to membrane depolarization induced

by elevated K+; (2) expression of constitutively active

constructs of Rac1 led to enhancement of hGH secretion

in both digitonin-permeabilized and intact chromaffin

cells while recombinant RhoGDI expression inhibited

induced secretion; (3) Rac1 regulation of secretion occurs

downstream of Ca2+ influx; (4) expression of a primary

Rac1 effector, Pak1, also enhanced secretion suggesting

that Rac1 may act via effects on actin cytoskeletal

pathways; and (5) phalloidin and jasplakinolide enhanced

evoked secretion, while latrunculin-A inhibited secretion

and eliminated the enhancing effect of Rac1-V12. Taken

together, the data suggest that Rac1 is activated by

secretory stimuli and acts as a positive physiological

regulator of Ca2+-dependent secretion involving

regulation of the cytoskeleton.

Ca2+-dependent activation of Rac1 to secretory
stimuli
To date, although effects on secretion of endogenous Rho-

family GTPases have been reported from various cell types,

no one has yet examined if the activity of theses GTPases is

regulated by a secretory stimulus. We found that

endogenous Rac1, but not Cdc42, was subject to rapid

activation by secretory stimuli in our highly purified

preparation of cultured chromaffin cells. Furthermore,

activation of Rac1 in response to secretagogue stimulation

was dependent upon Ca2+ influx. The specific GEF

involved in Ca2+-dependent Rac1 activation in chromaffin

cells remains unknown, although a large number of Rho

family GEFs that catalyse exchange of bound GDP for GTP

have been identified (Boguski & McCormick, 1993;

Mackay & Hall, 1998). Support for Ca2+-dependent

activation of Rac1 exists, however, as the GEF Tiam 1 has

been reported to be activated in response to an ionophore-

mediated rise in cytosolic calcium in NIH 3T3 fibroblasts,

perhaps through a pathway involving calcium/calmodulin

kinase II (Fleming et al. 1999; Buchanan et al. 2000). Our

findings show that activation of endogenous Rac1 in

response to sustained secretagogue stimulation of

chromaffin cells was transient. Prolonged fMet-Leu-Phe

(fMLP) or phorbol-12-myristate-13-acetate (PMA)

stimulation of HL-60 cells has also been reported to elicit

only transient activation of Rac2 (Benard et al. 1999).

Activated Rac1 promotes secretion
Our results demonstrate that expression of constitutively

active constructs of Rac1 significantly enhanced stimulus-

induced, Ca2+-dependent secretion. The facilitating effect

on secretion was observed in both early and late phases of

hGH secretion and occurred in both intact and

permeabilized chromaffin cells. In comparison, Rac1-V12

had little effect on basal secretion. The ability of Rac1-V12

to enhance evoked secretion was also observed in Cm

measurements of single chromaffin cells. Indeed, the

electrophysiological results closely correlate to the effects

of Rac1-V12 seen in permeabilized cells, where for a given

calcium concentration a greater secretory response was

obtained. Differences in the Ca2+ influx–DCm relationships

between Rac1-V12 and control were most apparent

following the initial step-depolarizations, suggesting that

the primary effect of Rac1 signalling may be downstream

of an immediate release vesicle pool. The enhancement of

secretion by expression of constitutively active Rac1

mutants extends and promotes analysis of prior reported

results which demonstrated a strong inhibition of

catecholamine secretion following treatment with C.
sordellii lethal toxin, which inactivates endogenous Rac,

but may also target Ras, Ral and Rap1 (Gasman et al.
1999). Our results demonstrate consistently greater effects

of Rac1-V12 on secretion in permeabilized over intact

cells. The mechanism underlying this difference is not

understood. A time-dependent loss of RhoGDI from

permeabilized chromaffin cells may partially account for

the enhanced responsiveness. RhoGDI proteins interact

with GDP-bound Rho family GTPases to depress

nucleotide dissociation and, in general, to direct their

removal from membrane compartments. RhoGDI thus

acts as negative regulator of Rho-family GTPase activity.

Although loss of RhoGDI is unlikely to directly influence

Rac1-V12, this loss may reduce inhibition on endogenous

Rac1 and on other Rho family GTPases that may exert a

permissive or modulatory role on the secretory pathway.

We observed that expression of RhoGDI led to strong

inhibition of evoked secretion in both permeabilized and

intact chromaffin cells. Co-expression of Rac1-V12 with

RhoGDI partially offset the inhibitory effect of RhoGDI on

secretion. These data support an important role of Rac1 in

secretory regulation, but as co-expression did not result in

a full facilitatory effect they also indicate that other Rho

family GTPases may modulate the secretory pathway.

In comparison to Rac1-V12, expression of Rac1-N17 had

no effect on evoked secretion relative to control. One

explanation is that the level of expression of Rac1-N17 was

insufficient to fully inhibit Rac1 GEF activity. We believe

that this is unlikely, as cells were transfected with plasmid

encoding Rac1-N17 at 10 times the plasmid concentration

used to obtain significant enhancement by Rac1-V12, and

evoked secretory responses were still similar to control. In

Rac1 regulation of Ca2+-dependent exocytosisJ Physiol 550.2 441
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addition, it is possible that Rac1-N17 in chromaffin cells

exists as a GDP-bound protein (rather than nucleotide

free) and is tightly associated with RhoGDI. Since it is

unlikely that the Rac1 GTPase can interact with a GEF

while bound to RhoGDI, this may explain why it fails to

negatively regulate endogenous Rac1. Consistent with our

findings, Rac1-V12 has been reported to enhance calcium-

induced secretion in permeabilized mast cells, and this

secretory response was found to be relatively resistant to

inhibition by Rac1-N17 (Price et al. 1995). However, in

mast cells secretion is under regulatory control by multiple

GTPases, including Rac2 and Cdc42, which may also

explain a lack of effect of Rac1-N17 on secretion (Brown et
al. 1998).

Cdc42 has previously been proposed in chromaffin cells as

a key regulator coordinating Ca2+-dependent exocytosis

with reorganization of the cytoskeleton (Gasman et al.
1999). This was based largely on the effects of clostridial

toxin inhibition of members of the Rho-GTPase family.

We did not observe an increase of GTP-bound Cdc42 in

response to nicotinic acetylcholine receptor activation.

Therefore, although Cdc42 activity may be necessary for

secretion it may not dynamically regulate Ca2+-dependent

secretion. The relative contribution of the different Rho

family GTPases to regulate secretion may also be cell type

specific as expression of constitutively active and inactive

Rac and Cdc42 mutants in PC-12 cells was reported to

inhibit and enhance secretion for each GTPase,

respectively (Frantz et al. 2002).

Mechanisms of Rac1 action in the secretory pathway
Consistent with the Rho GTPase family as central

mediators of cytoskeletal reorganization in cells, the

facilitating actions of Rac1 on regulated secretion reported

here may operate in part via cytoskeletal regulation. The

sub-plasma-membrane cytoskeleton has often been

proposed to exert a regulatory role in the recruitment,

docking and fusion of secretory granules in chromaffin

cells (Cheek & Burgoyne, 1986; Nakata & Hirokawa, 1992;

Trifaro & Vitale, 1993; Vitale et al. 1995; Plattner et al.
1997; Tchakarov et al. 1998; Lang et al. 2000). For example,

phorbol ester-mediated disruption of the cortical F-actin

network increased the number of chromaffin granules

within 50 nm of the plasma membrane and the rate of

stimulated catecholamine release (Vitale et al. 1995). The

disassembly of the actin cytoskeleton with Clostridium
spiroforme toxin treatment also enhanced the rate of

secretory activity and frequency of unitary exocytic events

measured electrophysiologically in rat melanotrophs

(Chowdhury et al. 1999, 2002). Furthermore, using the

appearance of dopamine-b-hydroxylase on the surface

membrane of chromaffin cells as a marker of exocytotic

activity, DBH became exposed preferentially on plasma

membrane areas devoid of rhodamine–phalloidin staining

in response to stimulation (Nakata & Hirokawa, 1992). In

light of these reports, Rac1 provides a possible molecular

link between secretagogue activation and cytoskeletal

reorganization. A primary Rac1 effector pathway to

cytoskeletal remodelling in fibroblasts involves p21-

activated kinases (PAKs), which are serine/threonine

kinases. Interaction of GTP–Rac1 with Pak1 elicits a

conformational change in Pak1 that results in Pak1

autophosphorylation and activation. Recently, Pak1 has

also been shown to be an important downstream effector

of Rac1 in neurons (Hayashi et al. 2002). Rac1 activation of

Pak leads to phosphorylation of LIM kinase, which

negatively regulates ADF/cofilin, thereby altering the level

of F-actin assembly. In the present study, transfection of

chromaffin cells with Pak1 and ADF expression constructs

significantly enhanced secretion in response to

secretagogue stimulation. Moreover, expression of

effector domain mutants of Rac1-V12 that exhibit reduced

activation of the cytoskeletal regulators Pak and POR1

resulted in a loss of Rac1-V12-mediated enhancement of

evoked secretion. Pak and POR1 thus comprise two

mediators which may act in chromaffin cells to link

secretagogue-induced activation of Rac1 to cytoskeletal

reorganization.

The prevalent hypothesis about the role of cortical actin

cytoskeleton in adrenal chromaffin cells is that it forms a

physical barrier for secretory granule movement to release

sites and that stimulation of secretion induces cortical

actin disruption. However, the extent to which cortical

actin changes on stimulation differs considerably among

published reports, from minimal alterations (e.g. Nakata

& Hirokawa, 1992) to substantial reorganization (e.g.

Cheek & Burgoyne, 1986; Vitale et al. 1991). It also

remains unclear if cortical actin reorganization precedes

or follows exocytotic activity, as exocytotic addition of

vesicle membrane may be visualized as focal actin

reorganization. Moreover, block of nicotine-evoked

secretion with botulinum and tetanus toxins blocks

cortical actin disassembly (Vitale et al. 1991). In the

present study, resolution of cortical F-actin by phalloidin

staining suggested that actin disassembly in response to

brief secretagogue stimulation is of limited extent. This

raises the possibility of effects being very transient and

localized, and has made difficult a definitive assessment of

effects of the cortical cytoskeleton on secretion.

Pharmacological modulators of actin have also been used

to provide evidence that the cytoskeleton may modulate

evoked secretion in chromaffin cells. In general, agents

that stabilize F-actin, such as phalloidin (Lelkes et al. 1986)

and phosphatidylinositol 3-kinase inhibitors (Cheek,

1991; Chasserot-Golaz et al. 1998) have been reported to

inhibit secretion, while agents that disrupt F-actin such as

cytochalasin-D and DNase 1 (Lelkes et al. 1986; Sontag et
al. 1988), latrunculin A (Gil et al. 2000) and gelsolin or

scinderin (Trifaro et al. 1992a) enhance secretion. In the

Q. Li and others442 J Physiol 550.2



Jo
u

rn
al

 o
f P

hy
si

ol
og

y

present study, phalloidin and jasplakinolide, which bind

F-actin to prevent dissociation and to promote actin

monomer association, enhanced secretion and limited

further secretory enhancement by Rac1-V12. An opposite

effect was observed with latrunculin-A, which binds

G-actin to result in F-actin disassembly. The discrepancy

between the present results and those of prior

investigations may be reflective of differences in the

protocols utilized. In the present study, latrunculin A

effects were studied on permeabilized cells rather than on

intact cells (Gil et al. 2000) and in the case of phalloidin

treatment, the cell permeabilization time was limited to

2 min versus 20 min in the prior report (Lelkes et al. 1986).

In addition, treatment of chromaffin cells with clostridial

toxins that block activation of Rho family GTPases greatly

inhibited exocytosis and at the same time disrupted the

peripheral actin cytoskeleton (Gasman et al. 1999). These

results, together with those of the present study suggest

involvement of the cortical cytoskelton in regulation of

secretory responsiveness is likely to be more complicated

than a simple vesicle barrier model.

Recently, the quantification of granule movements in

PC-12 cells has demonstrated that cortical actin limits as

well as mediates secretory granule movement (Lang et al.
2000). Local rather than global reorganization of F-actin

would allow sustained physiological responsiveness while

simultaneously reducing the F-actin barrier to permit

granule fusion with the membrane. Cortical actin may be

required to designate release sites, to tether molecular

mediators, or to serve as a scaffold to provide directional

cues that facilitate supply of vesicles to available release

sites and the readily releasable pool. Notably, a recent

report on the calyx of Held synapse demonstrated that

latrunculin A treatment retards replenishment of

releasable vesicle pools, while phalloidin had no effect

(Sakaba & Neher, 2003). These data are consistent with

F-actin being important to maintenance of sustained

secretion.

Rac1 may enhance secretion through pathways in addition

to those involving the actin cytoskeleton. Indeed, Rac and

Cdc42 have been reported to act at multiple sites to

regulate antigen-stimulated degranulation of RBL-2H3

cells (Hong-Geller & Cerione, 2000). Additional targets of

Rac1 include mixed lineage kinases (MLKs) and the

mitogen activated protein kinases, JNK and p38 (Hall,

1998; Mackay & Hall, 1998; Kaibuchi et al. 1999), which

may have specific roles in regulating gene transcription.

Moreover, Rac and Cdc42 have been reported to directly

interact with specific phospholipases (e.g. PLCb2, PLCg1

and PLD1) and mediate GTP-dependent phospholipase

activation (Hammond et al. 1997; Illenberger et al. 1997,

1998; Hong-Geller & Cerione, 2000; Illenberger et al.
2000), which may further affect the vesicle and/or plasma

membrane configuration at release sites (Humeau et al.

2001). In addition to potential effects of these

phospholipases on PIP2 hydrolysis and second messenger

generation, secretion from chromaffin cells requires the

synthesis of polyphosphoinositides, with the generation of

PIP2 considered as particularly important (Eberhard et al.
1990; Eberhard & Holz, 1991; Hay & Martin, 1993; Holz et
al. 2000). The polyphosphoinositol phosphate synthetic

reactions comprise, in part, the ATP-dependent priming

steps of the secretory cycle and require activity of

phosphatidylinositol 4-phosphate 5-kinase (PIP5K) (Hay

et al. 1995). Of specific interest, Rac and Rho have been

reported to interact and specifically activate the type I

PIP5K (Tolias et al. 1995; Ren & Schwartz, 1998; Carpenter

et al. 1999). Only the type I PIP5K supports PIP2 synthesis

that is essential for ATP-dependent vesicle priming.

Consistent with a role late in the exocytotic pathway, Rac

activity has recently been proposed to be essential

following docking of synaptic vesicles in Aplysia neurons

(Humeau et al. 2002). Clearly, the elucidation of the

downstream signalling pathway(s) by which Rac1

regulates secretion is an important challenge for future

investigations.
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