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ABSTRACT We perform a generalized-ensemble simula-
tion of a small peptide taking the interactions among all atoms
into account. From this simulation we obtain thermodynamic
quantities over a wide range of temperatures. In particular, we
show that the folding of a small peptide is a multistage process
associated with two characteristic temperatures, the collapse
temperature Tu and the folding temperature Tƒ. Our results
give supporting evidence for the energy landscape picture and
funnel concept. These ideas were previously developed in the
context of studies of simplified protein models, and here are
checked in an all-atom Monte Carlo simulation.

It is well known that a large class of proteins fold spontaneously
into globular states of unique shape, yet the mechanism of
folding has remained elusive. The folding process may be
either thermodynamically or kinetically controlled. The ther-
modynamic hypothesis assumes that the folded state corre-
sponds to the global minimum in free energy and is supported
by the famous work of Anfinsen (1) and similar experiments.
On the other hand, Levinthal (2) has argued that because of
the huge number of local energy minima available to a protein
it is impossible to find the global free energy minimum by a
random search in biological time scales (of order seconds). His
argument rather suggests that the protein folds into a unique
metastable state, the kinetically most accessible structure. The
complexity and importance of the problem raised a lot of
interest in the subject over the last three decades, but no
complete solution is in sight to date. However, significant new
insight was gained over the last few years from the studies of
minimal protein models. Both lattice models (3–15) and
continuum models (16–22) have been extensively studied.
Common to all these models is that they capture only a few, but
probably dominant, interactions in real proteins. These include
chain connectivity, excluded volume, hydrophobicity as the
driving force, and sequence heterogeneity. For recent reviews
on minimal protein models and their applications, see refs.
23–26. From the numerical and analytical studies of these
models a different view of the folding process emerged. The
folding kinetics is seen to be determined by an energy land-
scape that for foldable proteins resembles a funnel with a free
energy gradient toward the native structure (8, 12, 13, 23, 25).
The funnel is itself rough, and folding occurs by a multistage,
multipathway kinetics. A common scenario for folding may be
that first the polypeptide chain collapses from a random coil
to a compact state. This coil-to-globular transition is charac-
terized by the collapse transition temperature Tu. In the second
stage, a set of compact structures is explored. The final stage
involves a transition from one of the many local minima in
the set of compact structures to the native conformation.
This final transition is characterized by the folding temper-
ature Tƒ (# Tu). It was conjectured that the kinetic acces-

sibility of the native conformation can be classified by the
parameter (9,14)

s 5
Tu 2 Tf

Tu
, [1]

i.e., the smaller s is, the more easily a protein can fold. If Tu

' Tƒ (i.e., s ' 0), the second stage will be very short or not
exist, and the protein will fold in an all or nothing transition
from the extended coil to the native conformation without any
detectable intermediates. On the other hand, for some pro-
teins the folding process may involve further stages. A more
elaborate classification of possible folding processes is dis-
cussed in ref. 23.

One can ask whether the picture outlined above is really
useful to describe the folding kinetics of real proteins, because
the underlying models are gross simplifications of real protein
systems. For instance, side-chain conformational degrees of
freedom that are important for packing are neglected. The
situation actually resembles a vicious circle. The energy land-
scape picture and the analogy to phase transitions were
developed from studies of the highly simplified description of
proteins by minimal models. However, only if these concepts
apply for proteins is it possible to argue that the broad
mechanism of phase transitions depends solely on gross fea-
tures of the energy function, not on their details. Only in this
case a law of corresponding states can be applied to explain
dynamics of real proteins from studies of the folding kinetics
in minimal models. It therefore is desirable to check the above
picture by comparison with more realistic energy functions,
namely with all-atom simulations of a suitable protein. This is
the purpose of this article. Although an attempt has been made
to study the free energy landscape of an all-atom protein model
by unfolding molecular dynamics simulations (27), the present
work starts from random initial conformations and rather is
concerned with obtaining characteristic temperatures of pro-
tein folding by a Monte Carlo simulation (and thus studying the
energy landscape indirectly).

Simulations of proteins where the interactions among all
atoms are taken into account have been notoriously difficult
(for a recent review, see ref. 28). The various competing
interactions yield to a much rougher energy landscape than for
minimal protein models. (In fact, one might question whether
the limitations of the current energy functions may lead to
rougher energy landscapes than the protein encounters in
nature.) Simulations based on canonical Monte Carlo or
molecular dynamics techniques will, at low temperatures, get
trapped in one of the multitude of local minima separated by
high energy barriers. Hence, only small parts of configuration
space are sampled, and physical quantities cannot be calcu-
lated accurately. However, with the development of general-
ized-ensemble techniques like multicanonical algorithms (29)
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and simulated tempering (30, 31), an efficient sampling of
low-energy configurations and calculation of accurate low-
temperature thermodynamic quantities became feasible. The
first application of one of these techniques to the protein
folding problem can be found in ref. 32. Later applications of
multicanonical algorithms include the study of the coil-
globular transitions of a simplified model protein (11) and the
helix-coil transitions of homo-oligomers of nonpolar amino
acids (33). A formulation of multicanonical algorithm for the
molecular dynamics method also was developed (34, 35). A
numerical comparison of three different generalized-ensemble
algorithms can be found in ref. 36.

The generalized-ensemble technique we use in this article
was first introduced in refs. 37 and 38 and is related to Tsallis
generalized mechanics formalism (39). In this algorithm, con-
figurations are updated according to the following probability
weight:

w~E! 5 S1 1
b~E 2 E0!

nF
D2nF

, [2]

where E0 is an estimator for the ground-state energy, nF is the
number of degrees of freedom of the system, and b 5 1ykBT
is the inverse temperature with a low temperature T (and kB

is the Boltzmann constant). Obviously, the new weight reduces
in the low-energy region to the canonical Boltzmann weight
exp(2bE) for b(E2E0)ynF ,, 1. On the other hand, high-
energy regions are no longer exponentially suppressed but only
according to a power law, which enhances excursions to
high-energy regions. In contrast to other generalized-ensemble
techniques where the determination of weights is nontrivial,
the weight of the new ensemble is explicitly given by Eq. 2. One
only needs to find an estimator for the ground-state energy E0,
which can be done by a procedure described in ref. 38, and is
much easier than the determination of weights for other
generalized ensembles. Because the simulation by the present
algorithm samples a large range of energies, we can use the
reweighting techniques (40) to construct canonical distribu-
tions and calculate thermodynamic average of any physical
quantity ! over a wide temperature range:

^!&T 5

Edx !~x! w21 ~E~x!! e2bE~x!

Edx w21 ~E~x!! e2bE~x!

, [3]

where x stands for configurations.
Here, we use these techniques to examine the picture for the

folding kinetics as proposed from the simulations of minimal
models. Limitations in available computational time force us
to restrict ourselves on the simulation of small molecules, and
we have, in addition, neglected explicit solvent interactions.
The system of our choice is Met-enkephalin, one of the
simplest peptides, with which we are familiar from earlier work
(32, 36, 41). Met-enkephalin has the amino acid sequence
Tyr-Gly-Gly-Phe-Met. The potential energy function Etot (in
kcalymol) that we used is given by the sum of the electrostatic
term Ees, 12–6 Lennard–Jones term ELJ, and hydrogen-bond
term Ehb for all pairs of atoms in the peptide together with the
torsion term Etors for all torsion angles:

Etot 5 Ees 1 ELJ 1 Ehb 1 Etors, [4]

Ees 5 O
~i, j!

332qiqj

«rij
, [5]

ELJ 5 O
~i, j!

SAij

rij
12 2

Bij

rij
6 D , [6]

Ehb 5 O
~i, j!

SCij

rij
12 2

Dij

rij
10D , [7]

Etors 5 O
l

Ul~1 6 cos~nlxl!!, [8]

where rij (in Å) is the distance between the atoms i and j, and
xl is the l-th torsion angle. The parameters (qi, Aij, Bij, Cij, Dij,
Ul, and nl) for the energy function were adopted from
ECEPPy2 (45). The dielectric constant « was set equal to 2. In
ECEPPy2 bond lengths and bond angles are fixed at experi-
mental values. We further fix the peptide bond angles v to their
common value 180°, which leaves us with 19 torsion angles (f,
c, and x) as independent degrees of freedom (i.e., nF 5 19).
The computer code KONF90 (46, 47) was used. We remark
that KONF90 uses a different convention for the implemen-
tation of the ECEPP parameters (for example, f1 of ECEPPy2
is equal to f1 2 180° of KONF90). Therefore, our energy
values are slightly different from those of the original imple-
mentation of ECEPPy2. The simulation was started from a
completely random initial conformation (Hot Start). One
Monte Carlo sweep updates every torsion angle of the peptide
once.

It is known from our previous work that the ground-state
conformation for Met-enkephalin has the KONF90 energy
value EGS 5 212.2 kcalymol (41). We therefore set E0 5 212.2
kcalymol and T 5 50 K (or, b 5 10.1 [1ykcal/mol]) (and nF 5
19) in our probability weight factor in Eq. 2. The ground-state
structure, exhibiting a II9-type b turn, is shown in Fig. 1. It is
a superposition of ball-and-stick and space-filling representa-
tions. The latter representation was added to give a rough idea
of the volume of the peptide as discussed below.

All thermodynamic quantities then were calculated from a
single production run of 1,000,000 Monte Carlo sweeps, which
followed 10,000 sweeps for thermalization. At the end of every
fourth sweep we stored the energies of the conformation, the
corresponding volume, and the overlap of the conformation
with the (known) ground state for further analyses. Here, we
approximate the volume of the peptide by its solvent excluded
volume (in Å3), which is calculated by a variant (the program
for calculation of solvent-excluded volume was written by
M.M. and will be described in detail elsewhere) of the double
cubic lattice method (48). Our definition of the overlap, which

FIG. 1. Ground-state conformation of Met-enkephalin for
KONF90 energy function. The figure was created with MOLSCRIPT (42)
and RASTER3D (43, 44).
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measures how much a given conformation differs from the
ground state, is given by

O~t! 5 1 2
1

90nF
O
i51

nF

uai
~t! 2 ai

~GS!u, [9]

where ai
(t) and aj

(GS) (in degrees) stand for the nF dihedral
angles of the conformation at t-th Monte Carlo sweep and the
ground-state conformation, respectively. Symmetries for the
side-chain angles were taken into account and the difference
ai

(t) 2 ai
(GS) always was projected into the interval [2180°,

180°]. Our definition guarantees that we have

0 # ^O&T # 1, [10]

with the limiting values

H ^O~t!&T3 1,
^O~t!&T3 0,

T3 0,
T3 `. [11]

Let us now present our results. In Fig. 2a we show the time
series of the total potential energy Etot. It is a random walk in
potential energy space, which keeps the simulation from
getting trapped in a local minimum. It indeed visits the
low-energy region several times in 1,000,000 Monte Carlo
sweeps. The visits are separated by excursions into high-energy

regions, which ensures de-correlation of the configurations.
This can be seen in Fig. 2 b and c, where time series of the
excluded volume and the overlap function are displayed. The
large changes in these quantities imply the large conforma-
tional changes that happen in the course of the simulation.
Because large parts of the configuration space are sampled,
the use of the reweighting techniques (40) is justified to
calculate thermodynamic quantities over a wide range of
temperatures by Eq. 3.

We expect the folding of proteins and peptides to occur in
a multistage process. The first process is connected with a
collapse of the extended coil structure into an ensemble of
compact structures. This transition should be connected with
a pronounced change in the average potential energy as a
function of temperature. At the transition temperature we
therefore expect a peak in the specific heat. Both quantities are
shown in Fig. 3. We clearly observe a steep decrease in total
potential energy around 300 K and the corresponding peak in
the specific heat defined by

C ;
1

N kB

d~^Etot&T!

dT
5 b2

^Etot
2 &T 2 ^Etot&T

2

N
, [12]

where N (5 5) is the number of amino acid residues in the
peptide. In Fig. 4 we display the average values of each of the
component terms of the potential energy (defined in Eqs. 5–8)
as a function of temperature. As one can see in the figure, the
change in average potential energy is mainly caused by the
Lennard–Jones term and therefore is connected to a decrease
of the volume occupied by the peptide. This can be seen in Fig.
5, where we display the average volume as a function of
temperature. As expected, the volume decreases rapidly in the
same temperature range as the potential energy. The average
volume is a natural measure of compactness, but the change
from extended coil structures to compact structures with
decreasing temperature also can be observed in other quan-
tities like the average end-to-end distance ^de2e&T (here,
defined to be the distance between N of Tyr1 and O of Met5).
In Table 1, we give some of the values of ^de2e&T as a function
of temperature. The results imply again that the peptide is
quite extended at high temperatures and compact at low
temperatures.

If both energy and volume decrease are correlated, then the
transition temperature Tu can be located both from the
position where the specific heat has its maximum and from the
position of the maximum of

FIG. 2. Time series of total potential energy Etot (kcalymol) (a),
volume V (Å3) (b), and overlap O (defined by Eq. 9) (c) as obtained
by a generalized-ensemble simulation of 1,000,000 Monte Carlo
sweeps.

FIG. 3. Average total potential energy ^Etot&T and specific heat C
as a function of temperature. The dotted vertical line is added to aid
the eyes in locating the peak of specific heat. The results were obtained
from a generalized-ensemble simulation of 1,000,000 Monte Carlo
sweeps.
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d^V&T

dT
; b2~^VEtot&T 2 ^V&T^Etot&T!, [13]

which also is displayed in Fig. 5. The second quantity measures
the steepness of the decrease in volume in the same way as the
specific heat measures the steepness of decrease of potential
energy. To quantify its value we divided our time series in four
bins corresponding to 250,000 sweeps each, determined the
position of the maximum for both quantities in each bin and
averaged over the bins. In this way we found a transition
temperature Tu 5 280 6 20 K from the location of the peak
in specific heat and Tu 5 310 6 20 K from the maximum in
d^V&TydT. Both temperatures are indeed consistent with each
other within the error bars.

The second transition that should occur at a lower temper-
ature Tƒ is that from a set of compact structures to the native
conformation that is considered to be the ground state of the
peptide. Because these compact conformations are expected
to be all of similar volume and energy (systematic comparisons
of such structures were tried in previous work; refs. 49–51), we
do not expect to see this transition by pronounced changes in
^Etot&T or to find another peak in the specific heat. Instead this
transition should be characterized by a rapid change in the
average overlap ^O&T with the ground-state conformation (see
Eq. 9) and a corresponding maximum in

d^O&T

dT
; b2~^OEtot&T 2 ^O&T^Etot&T! . [14]

Both quantities are displayed in Fig. 6, and we indeed find the
expected behavior. The change in the order parameter is
clearly visible and occurs at a temperature lower than the first
transition temperature Tu. We again try to determine its value
by searching for the peak in d^O&TydT in each of the four bins
and averaging over the obtained values. In this way we find a
transition temperature of Tƒ 5 230 6 30 K. We remark that the
average overlap ^O&T approaches its limiting value zero only
very slowly as the temperature increases. This is because ^O&T
5 0 corresponds to a completely random distribution of
dihedral angles, which is energetically highly unfavorable
because of the steric hindrance of both main and side chains.

One characterization of the folding properties of a peptide
or protein is given by the parameter s of Eq. 1. With our values
for Tu and Tƒ, we have for Met-enkephalin s ' 0.2. Here, we
have taken the central values: Tu 5 295 K and Tƒ 5 230 K. This
value of s implies that our peptide has reasonably good folding
properties according to refs. 9 and 14. We remark that the
characterization of Met-enkephalin as a good folder has to be
taken with care: Low-temperature simulations of the mole-
cules with conventional methods are still a formidable task and
a low value of s may not necessarily indicate easy foldability
in a computer simulation.

Although the collapse temperature Tu is roughly equal to
room temperature, the transition temperature Tƒ is well below
room temperature. Consequently, contributions of ground-
state conformers are not dominant at room temperature for
Met-enkephalin, as was observed in our earlier work (32, 41).
This is due to the small size of the peptide. However, it still can
be regarded as a good model for a small protein, because it has
a unique stable structure below Tƒ. It was shown in refs. 32 and
41 that Met-enkephalin remains mainly in the vicinity of the
ground state without getting trapped in any of the local-
minimum structures below Tƒ ('230 K).

We also performed a generalized-ensemble simulation with
the same statistics for a second peptide, Leu-enkephalin (data
not shown). We found: Tu 5 300 6 30 K and Tƒ 5 220 6 30
K. These transition temperatures are essentially the same as for

FIG. 5. Average volume ^V&T and its derivative d^V&TydT as a
function of temperature. The dotted vertical line is added to aid the
eyes in locating the peak of the derivative of volume. The results were
obtained from a generalized-ensemble simulation of 1,000,000 Monte
Carlo sweeps.

FIG. 6. Average overlap ^O&T and the absolute value of its deriv-
ative d^O&TydT as a function of temperature. The dotted vertical line
is added to aid the eyes in locating the peak of the derivative of overlap.
The results were obtained from a generalized-ensemble simulation of
1,000,000 Monte Carlo sweeps.

Table 1. Average end-to-end distance ^de2e&T (Å) of
Met-enkephalin as a function of temperature T (K)

T 50 100 150 200 250 300 400 700 1,000

^de2e&T 4.8 4.8 4.9 5.2 5.8 6.8 8.6 11.0 11.5

FIG. 4. Average potential energies as a function of temperature.
The results were obtained from a generalized-ensemble simulation of
1,000,000 Monte Carlo sweeps.
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Met-enkephalin. Both peptides are very similar, differing only
in the side chains of the Met (Leu) residue. Our results indicate
that indeed the general mechanism of the transition does not
depend on these details and a law of corresponding state can
be applied for similar peptides.

Let us summarize our results. We have performed a gen-
eralized-ensemble simulation of a small peptide taking the
interactions among all atoms into account and calculated
thermodynamic averages of physical quantities over a wide
range of temperatures. We found for this peptide two char-
acteristic temperatures. The higher temperature is associated
with a collapse of the peptide from extended coils into more
compact structures, whereas the second one indicates the
transition between an ensemble of compact structures and a
phase that is dominated by a single conformation, the ground
state of the peptide. Our results support pictures for the
kinetics of protein folding, which were developed from the
study, both numerical and analytical, of simplified protein
models. It is still an open question whether these minimal
models can be used for predictions of protein conformations.
However, our analyses, performed with an energy function
that takes much more of the details of a protein into account,
demonstrate that these models are indeed able to describe the
general mechanism of the folding process. Hence, the study of
simplified models may in this way guide further simulations
with more realistic energy functions. The present paper aims
to be a step in this direction.

Our simulations were performed on computers of the Institute for
Molecular Science, Okazaki, Japan. This work is supported by Grants-
in-Aid for Scientific Research from the Japanese Ministry of Educa-
tion, Science, Sports, and Culture.
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