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SUMMARY

In survival analysis, it is of interest to appropriately select significant predictors. In this paper, we
extend the AIC selection procedure of Hurvich and Tsai to survival models to improve the traditional
AIC for small sample sizes. A theoretical verification under a special case of the exponential
distribution is provided. Simulation studies illustrate that the proposed method substantially
outperforms its counterpart: AIC, in small samples, and competes it in moderate and large samples.
Two real data sets are also analyzed.
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1 Introduction

In clinical trials, biological and biomedical applications, many variables may be available for
the initial analysis, and spurious covariates may increase prediction error. Deciding which
covariates to be kept in the statistical model has always been a tricky task for data analysis.
Conventional variable selection techniques, such as AIC (Akaike, 1974), BIC (Schwarz,
1978), and Cp (Mallows, 1973), have widely been used to select an appropriate model. These
criteria work well and are implemented in the most well-developed statistical software such as
R and SAS. Their deficiency in small samples was pointed out by Sugiura (1978) and
emphasized by Hurvich and Tsai (1989). The latter authors showed that AIC may be drastically
biased for the linear model, and developed a modified version, AIC¢, which is nearly unbiased
for estimating Kullback-Leibler information and provides better model choices than AIC in
small samples. Tsai and his colleagues generalized Hurvich and Tsai's criterion to diverse
situations like the extended quasi-likelihood model (Hurvich and Tsai, 1995), the
nonparametric regression (Hurvich et al., 1998), and the semiparametric regression (Hurvich
and Tsai, 1999).

Traditional variable selection criteria such as AIC and BIC have been extended to survival
analysis. Faraggi and Simon (1998) proposed a Bayesian variable selection method, which is
an extension of Lindley's (1968) variable selection criterion for the linear model, for censored
data based on the sufficiency and asymptotic normality of the maximum partial likelihood
estimator. Volinsky and Raftery (2000) extended the BIC to the Cox model. They proposed a
modification of the penalty term in the BIC so that it is defined in terms of the number of
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uncensored events instead of the number of observations. Tibshirani (1997) extended his
LASSO variable selection procedure to the Cox model. More recently, Fan and Li (2002)
derived a nonconcave penalized partial likelihood for the Cox model and the Cox frailty model.
Although all of these approaches have been demonstrated to be promising, they may not be
accepted in practice because (i) the computation of some methods is not simple and sometimes
has a requirement of determining prior information, and (ii) few existing computation packages
(to the best of our knowledge, there is a package glmpath for the LASSO algorithm) have been
developed for practitioners' use. The aim of this paper is to fill this gap. We propose here an
improved AIC variable selection method for survival analysis. This work is motivated by
Hurvich and Tsai (1989), whose focus is on linear models. We extend Hurvich and Tsai's
approach to survival models and numerically justify the superiority of the proposed criterion
over other traditional criteria in small sample sizes. The proposed method can be implemented
in the existing software, such as R/Splus and SAS. This availability may make the method
easily implement in practice.

The rest of the paper is organized as follows. In Section 2 we propose an improved AIC
selection procedure for survival models. A particular case of the exponential distribution for
the survival time is considered, which serves as a theoretical justification of the proposed
criterion. Section 3 gives the results of extensive simulation experiments to illustrate the
proposed method, and compare it with its competitors. Two real examples are examined in
Section 4. We conclude the paper with some discussions in Section 5. Technical details are
given in the Appendix.

2 Improved AIC for survival analysis data

(X, Z,B) = Z (—x,.Tﬁ + log [ho {Z,- exp (—X;rﬁ)}]) + Zlog |S0 {Zi exp (—x,Tﬁ)”
i=1

Let T, C, and x be the survival time, censoring time, and the associated p x 1 covariates
respectively. Let Z=min(T, C) be the observed time and ¢ = I(T <C) be the censoring indicator.
Let h(t]x) and S(t|x) be the conditional hazard and survival functions of T given x, respectively.
The complete likelihood of the data is given by

L= [r@ix) ﬁs (Zilx)),
u i=1

where n is the total number of observations, and the subscript u denotes the product over the
uncensored data. In this paper, we focus on the accelerated life time (ALT) model, one of the
most useful parametric life models, of form

log(T) =a+ xTﬁ + e (2.2)

(2.1)

Let Sg(t) denote the survival function of T when x = 0, and hy(t) be the hazard risk of Sg(t). It
follows that

S@x) =Soft exp(—x"B)},
h(lx) = ho{z exp (—xTﬁ)} exp (—XT,B).

In a consequence, we obtain the log-likelihood of the observed data {(x;, Z;, §;),i=1,...,n}

(2.3)

u

Collett (1994) suggested that the AIC for survival models should be
AIC = -2 log (likelihood) + 2 (p + 2 + k),
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where k = 0 for the exponential model, k = 1 for the Weibull, log-logistic and log-normal
models, and k = 2 for the generalized gamma model. Following Hurvich and Tsai (1989), we
propose an improved AIC as follows
AIC,,, = AIC + 222D WP +3)

n—-p-3 (2.4)
Different choices for the error distribution of ¢ yield different regression models, and then
different log-likelihood functions given in (2.3). The routines to finish the calculations on the
log-likelihood functions and AICs (and then AICgyRs) are available in the most statistical
packages like R/Splus and SAS.

A commonly used criterion of measuring the difference between the candidate model and the
true model is the Kullback-Leibler information A = Eg(—2 log L), where Eq denotes the
expectation with respect to the true model, and L is the likelihood function under the candidate
model. In the remainder of this section, we use this measure to derive a more precise model
selection criterion for the special case of the exponential distribution to demonstrate the
rationality of the proposed AICsyr given in (2.4).

Consider the ALT model (2.2) with ¢ = 1 and ¢ following an extreme value distribution whose
density function is exp (v — €¥). Then the survival time T has the exponential distribution with

) o _ T
the density function e, where 1 = exp{—(a + x"/)}. If we denote i = €XP { (o +x] 'B)}
then h(Z; | x;) = 4;, and S(Z; | x;) = exp(—4iZ;). So the log-likelihood function from (2.1) is given
by

n
log L = Zlog A+ Z (—=AZ).
u i=1

From this, we see that the Kullback-Leibler information is
n
A(a,B) =-2XlogA; +2Y LEy(Z)
u i=1

_ X & A _ ,—AioC
= 2% log 4; + 23 4% (1 — e~HC)
u i=1""

_ _ T
where the censoring time is assumed to be a constant, 110 = €XP { (a0 + XOI'BO)}, and ag and
Po are the parameters in the true model.

Following Akaike (1974) and Hurvich and Tsai (1989) (see also Burnham and Anderson,
1998), a reasonable measure representing the discrepancy between the candidate and true

models would be £02 (“"E), where @ and B are the estimators of « and S under the candidate

model. That is, we would choose those candidate models which minimize EOA(E,E)_ In the
Appendix we derive an (approximately) unbiased estimator, AlCeyp given in (A.4), of

EoA (""E) and this can be used to obtain a feasible model selection criterion.

We now numerically demonstrate the rationality of the proposed AICgyr in (2.4) by comparing
it with AlCgyp in (A.4) under the exponential distribution which is regarded as more precise.

Generate data from the model y = x"S + ¢, where 8 = (1, 2, 3, 4)T, x follows a 4-dimensional
normal distribution with the mean zero and covariance matrix l4x4, and ¢ follows an extreme
value distribution with the density function exp (v — €V). We consider the combinations of n =
20, 30, 40, 50 and the censoring variable C =5, 10, 15, 20, 25, 30, and repeat 500 simulations
for each combination. Table 1 presents the means and standard errors of AlCgyg and
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AlCeyp. Itis seen from the table that the values of AICsyr and AlCey,, are very close, suggesting
that the difference between the two model selection criteria would often be quite minor. This
implies the rationality of AICgyg from one aspect. Of course, the above demonstration is based
on a special distribution-exponential distribution. So in the following section, we conduct some
simulations to study the behavior in selecting true models of AICgyr under various
distributions.

3 Simulation study

Example 1

In this section, we investigate the finite sample performance of the proposed procedure
AICgyRr by Monte Carlo simulations, and illustrate the proposed methodology by analyzing
two real data sets in next section.

Generate data from the model
y= xT,B + e,

where f=(1,2,3,4,0,0,0,0)7, x follows an 8-dimensional normal distribution with the mean
zero and covariance matrix Igxg. We consider three scenarios: (i) ¢ follows a logistic
distribution, (ii) ¢ follows a log-normal distribution, and (iii) ¢ follows an extreme distribution.
We take the location and scale parameters 0 and 1, respectively. The value of the censoring
random variable C is generated by the uniform distribution U(0, 10) for each observation. For
each scenario, we take n = 12, 20, 30, and ¢2 = 0.1, 0.5, 1. At each of 27 configurations, 500
independent data sets are generated. Similar to Hurvich and Tsai (1989), our candidate models
are those whose predictors are sequential columns of X; i.e., consist of columns 1, - - -, r of X.
The true model consists of the first 4 columns of X. We use three criteria: AIC, BIC, and
AICgR to select a value of r for each configuration, respectively. Tables 2-4 summarize the
frequencies of the order selected by the specified criterion for scenarios 1-3, respectively. It
is observed that AICgRr consistently provides the best selection of r =4 among the three criteria
studied, regardless of sample sizes and variances. Even when n = 12, AICgyg generally selects
at least 250 times of the correct model, while AIC selects only around 200 times of the correct
model. When n = 20, the number of the correct times selected by AlCgg is double to that of
AIC. Usually, the best model can be identified more frequently when n = 30. However,
AICgp still substantially outperforms AIC. It is also seen from Tables 2 -4 that BIC is usually
better than AIC but substantially inferior to AlCgyr for the cases considered here.

4 Real Data Analysis

Example 2

We fit the motor data set, which was obtained by Nelson and Hahn (1972) and studied by
Kalbfleisch and Prentice (1980), using the exponential, Weibull, log-logistic, and log-normal
models. The response variable and covariate are the hour to the failure of motorette and
operating temperature, respectively. Nelson and Hahn (1972) used the log-normal model, while
Kalbfleisch and Prentice (1980) used the Weibull model for the analysis of this dataset because
the latter authors thought that the Weibull model generates a larger likelihood value. On the
basis of our simulations (data not shown), this evidence may be not enough to be convinced.
We therefore apply the proposed method to the analysis of this dataset. To compare with the
results of Nelson and Hahn (1972) and of Kalbfleisch and Prentice (1980), we make the
transformation x = 1000/(273.2 + temperature) and exclude the ten observations at the
temperature level of 150% because the experiment was an accelerated process to speed up the
failure time. A total of 30 observations are used in our analysis. We fit the four models and
present the AIC and AlICggr values in Table 5. The results of the two criteria uniformly indicate
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that the Weibull model is most appropriate. This confirmation convinces that Kalbfleisch and
Prentice's choice is appropriate. The estimates and their related quantities for the four models
are presented in Table 6. Shown in Table 6 are the estimates, their corresponding standard
deviations, the z-ratios, and the p-values obtained by testing the null hypothesis that the
corresponding parameter is zero.

In this example, we apply the proposed method to analyze the data set from a study of the bone
marrow transplantation (BMT) for leukemia. This study was designed in 1984 as a single
institution (Ohio State University Hospitals, OSU) study and was modified in 1987 to include
the five institutions known to be using this preparative regimen in all patients with the acute
myelocytic leukemia (AML). All patients who underwent the marrow transplantation for the
AML using this preparative regimen at the participating institutions were reported. One
hundred twenty-seven patients were with the AML aged 7 to 55 (median 30) who were treated
from March 1, 1984 through June 30, 1989 at the five separate centers with the allogeneic BMT
following preparation with Bu and Cy. Fifty-five of them underwent their transplantation at
Ohio State University Hospitals (OSU; Columbus), 23 at Wilford Hall at Lackland Air Force
Base (San Antonio, TX), 22 at Hahnemann University (Philadelphia, PA), 17 at St Vincent's
Hospital (Sydney, Australia), and 10 at Alfred Hospital (Melbourne, Australia). More details
of the study are referred to Copelan et al. (1991).

Our response variable is the disease free survival time, T, and the disease free survival indicator
(1-dead or relapsed, 0-alive and disease free), ¢ . The potential covariates in this study include
the following variables:

X1: patient age in year;

Xo: donor age in year;

X3: patient sex (1-male, 0-female);

X4: donor sex (1-male, 0-female);

Xs: patient cytomegalovirus (CMV) immune status (1-CMV positive, 0-CMV negative);
Xg: donor CMV status (1-CMV positive, 0-CMV negative);

X7: waiting time to transplant in day;

Xg: French-American-British (FAB, 1-FAB grade 4 or 5 and AML, 0-otherwise);

Xg: hospital (1-Ohio State University, 2-Alferd , 3-St. Vincent, 4-Hahnemann);

X10: methotrexate (MTX) used as a graft-versus-host-prophylactic (1-yes, 0-no).

For an illustration, we consider only the observations of ALL the patients. The Xg values are
all zeros and therefore excluded in our analysis. A total of 79 combinations of the covariates
is considered. We fit the exponential, Weibull, log-logistic, and log-normal models to the data
for each combination, and select the corresponding best model by AIC and AICgyg.

Using the Weibull and exponential models, AIC and AlCgyg select the model with the
covariates (X1, Xo, Xg, Xg) as the best one, and AIC = 358.19 (Weibull) and 358.21 (exponential)
and AlCgyr = 360.07 (Weibull) and 360.08 (exponential). It is clear that the values of both
AIC and AlCgyg under the Weibull and exponential models are very close. The corresponding
estimates under these two setups are given in Table 7. Although both AIC and AlICgr suggest
the Weibull model, the p-value of log(scale) indicates that the exponential model is appropriate.
For the log-logistic model, AIC and AlCgyr select the model with the covariates (X1, Xo, Xg,
X10) as the best one, and AIC = 361.70 and AICgyr = 363.55. The p-value of the log(scale)
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indicates that the scale is not significantly different from 1. For the log-normal model, AIC
selects the model with the covariates (X1, X2, Xg, X10) as the best one with AIC = 363.99, while
AlCgr selects the model with the covariates (X1, Xg, X10) as the best one with AICgyr =
363.15. Seeing the p-value of testing the parameters in the model selected by AIC, one may
notice that X, and X1 are not statistically significant, and the model selected by AlCgr Seems
more reasonable. In summary, we recommend to use the exponential model to fit the data with
the covariates (X1, X5, Xg, Xg) on the basis of the above analysis. AICgyr makes us confident
to this selection.

5 Discussion

To select an appropriate model for survival analysis, we generalized Hurvich and Tsai's
(1989) approach and developed an improved AIC selection procedure, AICsr. The proposed
method was shown to be superior to the traditional AIC and BIC through simulation studies.
It is interesting to observe from our simulations that when the sample size is not small (n = 20
and 30), the efficiency of AICgg can be greatly increased if we use the total number of
uncensored observations instead of the total number of observations n in the extra penalty term
of AICgyR (data not shown). Our method was also applied to analyze two real data sets.

The proposed AlCgr is a general criterion of selecting survival models. It can be applied to
the exponential, Weibull, log-logistic, log-normal and generalized gamma models etc. As a
theoretical verification for AICgyR, we derived a more precise model selection criterion
AlCeyp for the particular scenario of the exponential distribution for the survival time with
constant censoring. The calculation results showed that the discrepancy between the two model
selection criteria is quite minor under the exponential distribution. Of course, the further
justification is necessary under the more general cases of the distributions for the survival time
and this warrants our future research.

Unlike other advanced selection procedures, the proposed method is very easy to implement
and computationally efficient. These features make the method promising in practice. The
efficient R/Splus computation codes were developed and are available from the authors upon
request. Extension of the idea to the goodness-of-fit and semiparametric survival models would
be possible and will also be studied in our future work.
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APPENDIX

An estimator of £0A (""E) under the exponential distribution

First note that

EO {% (1 _ e—/l,-()C)} — EL’.E— {’/?i(ihoz—i) (1 _ —/l,()C>}

Aio

o5 o
% f { l(C Z_i) ( /l,-OC) i Aioef’lior"}dti]
= Ez,, {u+Vv),

X 07 .y
_ E fo { i(min(#;,C), )(1 —p ’l‘OC)-/l,'oe Ot’}dl‘]
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where 4 (a,b) denotes the estimated value of i based on the data (a, b) and is assumed to be
continuous, and Z_j means the vector consisting of Z4, ..., Zi—1, Zj+1, -.-» Zn.

It is readily seen that
Vo= et .z e e
=eC . E, [22:(C,2.)|.

(A1)
On the other hand, it can be shown that
U =(1-e)- f oA (1, Z_j) e wid
- (1) oo twia 53,02
~(1- e‘”‘oc)[ “C [T (0, Z-) dw
+ f(f { 8’/?, (w, Z_,') dW] . /l,-oe_'l"""'dt,-]
= (1= e 0) | [ {5 . Z) dw} - dwe ot
Tt fg{ tr/-l\' (W Z_ ,') dW} . /l,'()e‘f’l"ot"dt,']
= (1-eC). [ { g‘"“" % w, 2. dw} Aipe0lidy;
= (1-eC).E, { 127 o, Z_,-)dw} . e
From formulas (A.1) and (A.2), we obtain
E() {;{% (1 = e"‘i"c)}
~, (1= ) £, {[0nZop) + e - £, (2 C.2.0)|
= (1= &) - Eo{ [ 00, Z-) dw} + € - Eo (Z2,(C,Z.0). o

Therefore,
EoA(@.B) = Eo {—2§1og7,} = 22150 {jl (1-e roC)}
= Eo [—2§1og2» 4 2;1 {(1- ). TR,z dw + € - Z C, z_,-)}]
+E, ({-2zlog7i 4 2_&2,-7,-} + 22 [(1 — ). {fo"j- W, Z_) dw — z,ﬁ,-}
' - + e~ HC . {Z/i (€. Z-) - ZiAil]).

Thus, we propose to select the best ALT model which minimizes the following Kullback-
Leibler information:

AlC¢p = —2log (likelihood) + 2% l(l 4 /L'o)) . {fgijf,- w,Z_))dw — Z;ii}
i=1
+0 () {Zidi(C.2-) - zidi)|, (A4)

where ‘”@"’) is an estimator of exp(—4jgC), for which we provide some estimation methods

below. Noting that Z;, Z_; and 4 are all known, the calculation on the integral in AlCgy; is
easy.

Observing that
Eo(Z) = {1 —exp (-ioO)} / dio, (A.5)
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and
Eo(2}) = ~ 2 feeme - L (1 - e C)
' Aio Aio '
we have
1072
. (2z, A, ) e
2C (A.6)
Therefore, combining (A.5) and (A.6), we can obtain an estimator of ;g as
~ _2(C-Z)
T zeC-7) (A7)

Thus, a natural estimator of exp(—4;oC) is “*P (=€) with o given in (A.7). On the other
hand, by virtue of (A.6) and (A.7), we can get another estimator of exp(—1jgC) as
22 - W2}z
2 20-7Z (A.8)
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Table 5

Values of AIC and AlCgR for the Motor data set under various models
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AIC AlCgur
Weibull 294.69 296.29
Exponential 309.61 311.21
Log-logistic 295.68 297.28
Log-normal 297.73 299.33
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