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Abstract

Cytokines and microglia have been implicated in anxiety, depression, neurodegeneration as well
as the regulation of alcohol drinking and other consumatory behaviors, all of which are associated
with alcoholism. Studies using animal models of alcoholism suggest that microglia and
proinflammatory cytokines contribute to alcoholic pathologies (Crews et al., 2006). In the current
study, human postmortem brains from moderate drinking controls and alcoholics obtained from
the New South Wales Tissue Resource Center were used to study the cytokine, monocyte
chemoattractant protein 1 (MCP-1,CCL2) and microglia markers in various brain regions. Since
MCP-1 is a key proinflammatory cytokine induced by chronic alcohol treatment of mice, and
known to regulate drinking behavior in mice, MCP-1 protein levels from human brain homogenate
were measured using ELISA, and indicated increased MCP-1 concentration in ventral tegmental
area (VTA), substantia nigra (SN), hippocampus and amygdala of alcoholic brains as compared
with controls. Immunohistochemistry was further performed to visualize human microglia using
ionized calcium binding adaptor protein-1 (Iba-1), and Glucose transporter-5 (GluTsg). Alcoholics
were found to have brain region-specific increases in microglial markers. In cingulate cortex, both
Iba-1 and GluTs were increased in alcoholic brains relative to controls. Alternatively, no
detectable change was found in amygdala nuclei. In VTA and midbrain, only GluTs, but not Iba-1
was increased in alcoholic brains. These data suggest that the enhanced expression of MCP-1 and
microglia activities in alcoholic brains could contribute to ethanol-induced pathogenesis.
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Introduction

Alcohol (ethanol) is a common dietary constituent that modulates the immune system.
Although moderate alcohol consumption has a protective effect on heart diseases and
appears to have health benefits, heavy drinking increases mortality by escalating the risk of
many diseases, especially disorders of the central nervous system (Nelson and Kolls, 2002).
In humans, chronic alcohol consumption is associated with increases in serum
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proinflammatory cytokines including TNFa and IL-1p (McClain and Cohen, 1989; McClain
et al., 1999). Monocytes isolated from the blood of alcoholics produce greater amounts of
TNFa, a proinflammatory cytokine, spontaneously and in response to endotoxin challenge
(McClain et al., 2004). The current study is designed to further investigate the roles of
microglial recruitment and activation in alcohol induced inflammatory neurodegeneration
(Lee et al., 2004; Crews et al., 2006; Pascual et al., 2007).

Microglia, as the resident monocyte/macrophage in CNS parenchyma (Gehrmann et al.,
1995), play an important role in the brain having both a beneficial healing and a toxic
inflammatory role. Under resting conditions, microglia exhibit a quiescent phenotype as
indicated by a ramified morphology, and constitutive expression of macrophage antigens
such as ionized calcium binding adaptor protein —1 (Iba-1) (Ladeby et al., 2005). In response
to a multitude of CNS pathological conditions and systemic infectious processes, microglia
transform from a resting to an active state characterized by cellular enlargement, amoeboid
morphology, increased membrane ruffles and projections and upregulation of several cell
surface molecules and proteins (Block et al., 2007). Iba-1 is a microglia/macrophage-
specific protein that participates in the ruffling and phagocytosis of activated microglia in
human, rats and mice (Ohsawa et al., 2004). Glucose transporter type 5 (GIuTs) is another
microglia specific protein (Horikoshi et al., 2003; Sasaki et al., 2004), whose expression
contributes to the kinetics of cerebral metabolism (Vannucci et al., 1997). Thus, studying the
expression of Iba-1 and GluTsg can provide critical information on microglia recruitment,
morphological transformation and functional activation after life-long alcohol exposure in
human alcoholic brains.

Furthermore, monocyte chemoattractant protein-1 (MCP-1, also known as CCL)) is a key
cytokine mediating CNS inflammation and alcohol drinking behavior (Blednov et al., 2005).
As a predominant chemoattractant, MCP-1 causes the migration and activation of microglia
(McManus et al., 2000), whose secretions of proinflammatory cytokines can be neurotoxic
(Kaul et al., 2001; Little et al., 2002; Mahad and Ransohoff, 2003; Persidsky and
Gendelman, 2003). As a potential neurotoxin, enhanced expression of MCP-1 increases the
volume of an infarct after middle cerebral artery (MCA) occlusion (Chen et al., 2003),
whereas MCP-1 knockout mice have smaller infarcts and less neuronal loss compared to
their wild-type controls (Hughes et al., 2002). The production of the proinflammatory
cytokines such as IL-1p (interleukin-1 beta) and TNFa (tumor necrosis factor alpha) is
significantly reduced in MCP-1 knockout mice challenged with LPS (lipopolysaccharide)
(Rankine et al., 2006). These knockout mice also exhibit a substantial reduction in alcohol
consumption and preference (Blednov et al., 2005). Therefore, the level of MCP-1
expression in human alcoholic brain is critical for further understanding the mechanisms of
alcohol-induced neuroinflammation.

The current study was designed to investigate the inflammatory status in postmortem
alcoholic brains by determining microglial activities using Iba-1 and GluTg labeling, and the
key inflammatory cytokine, MCP-1, expression. Results indicate increased MCP-1 protein
levels in ventral tegmental area (VTA), substantia nigra (SN), hippocampus and amygdala
of alcoholic brains compared to controls. Furthermore, increased microglia expressions of
Iba-1 and/or GluTs in specific regions of alcoholic brain were found.

Tissue Source

Human postmortem brain tissue was obtained from the New South Wales Tissue Resource
Center in Australia [ethics committee approval number: HREC2002/2/3.14 (1441) and
X03-0117]. Both paraffin sections for microglial staining and fresh frozen brain tissue for
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ELISA were used in this study. The detailed patients’ medical history is presented in tables
land 2.

Enzyme-Linked Immunosorbent Assay (ELISA)

Frozen brain samples were homogenized in the buffer containing: 20mM Tris, 0.25mM
sucrose, 2mM EDTA, 10mM EGTA, and 1% Triton X-100. One protease inhibitor cocktail
tablet (Roche Diagnostics, Germany) was added into each 10ml of the homogenization
buffer. The homogenate was then centrifuged at 100,000g (Beckman Ultracentrifuge) for 45
min at 4°C and supernatants were collected and total protein content was determined by
using BCA protein Assay Reagent Kit (Pierce, Rockfold, IL) to ensure that an equal amount
of protein from each sample was used for the assay. The MCP-1 ELISA was conducted
using Human MCP-1 immunoassay kit (R&D systems, Minneapolis, MN) and the
manufacture’s protocol was followed. The optical density of each sample was determined
using Spectra Max microplate reader (Molecular Devices, Sunnyvale, CA) and the
concentration of MCP-1 was calculated based on standards and expressed in pg/mg of total
protein content.

Immunohistochemistry

Paraffin sections were deparaffinized in Xylene for 30 min and rehydrated in a series of
ethanol from 100% to 50%. The slices were then washed in Tris-buffered saline (TBS)
buffer for 15min. Antigen retrieval was done by incubating the section in Citra solution
(BioGenex, San Ramon, CA) in a steamer for 30min. The antibodies against rabbit Iba-1
(Wako Pure Chemical Industries, Japan) or rabbit-GluTs (IBL, Japan) were used at a
dilution of 1:400 and 1:20 respectively with overnight incubation at 4°C. Sections were then
rinsed TBS, and incubated with biotinylated goat anti-rabbit secondary antibody (Vector
Laboratories, Burlingame, CA, USA) at a dilution of 1:200 at room temperature for 2hr.
Subsequently, avidin-biotin-peroxidase complex (ABC Elite Kit, VVector Laboratories) was
applied for 1hr at room temperature. Finally, the positive cells were visualized using nickel-
enhanced diaminobenzidine (DAB) as a chromagen.

Microscopic Quantification

Statistics

Results

Both Iba-1 and GluTsg (Glucose transporter 5) positive cells were quantified using image
analysis software (Bioguant Nova Advanced Image Analysis, R&M Biometric, Nashville,
TN). Images were captured on an Olympus BX50 microscope and Sony DCX-390 video
camera at 40X. Light levels were normalized to preset levels and the microscope, camera,
and software were background corrected to ensure reliability of image acquisition (Crews et
al., 2004). In each region (cingulate cortex, midbrain, VTA, and amygdala), three random
images from each brain sample were captured within a standard ROL (Region of Interest),
and staining density was measured in pixels within this area (pixels/mm?2). Subsequently, the
average of the three measurements was used to represent the immunoreactivity of each
sample.

All values were reported as mean + SEM, and analyzed by ANOVA, and Pearson
correlation test using SPSS. Differences were considered significant if the p value was
smaller than 0.05.

The demographic characteristics of control and alcoholic subjects are given in Table 1 and 2.
Mean ages in MCP-1 study using frozen brain homogenates were not significantly different
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being 60.8 + 3.6 years old in controls and 63.8 + 3.1 years old in alcoholics. The mean
postmortem interval (PMI) was 29.0 £ 3.0 in controls and 36.6 + 6.0 in alcoholics. One-way
ANOVA analyses indicated no significant differences in age (F(;,13) = 0.38, p=0.55), or PMI
(post-modem interval) (F(1,13) =0.96, p=0.35) between alcoholics and controls. For the study
using cingulate cortex paraffin sections, the mean ages of the subjects were 47 = 3.8yr in the
control group and 49 + 4.4yr in the alcoholic group. The average PMIs in these populations
were 24.5 = 1.8hr in controls and 24.5 * 4.4hr in alcoholics. ANOVA indicated no
significant differences in age (F(1,7) =0.89, p=0.77) or PMI (F(y,7) =0.00, p=1.0) between
control and alcoholic groups. The mean ages of the subjects providing paraffin sections for
VTA, midbrain, and amygdala were 64.1 £+ 3.7yr in control group and 63.4 £ 3.5yr in
alcoholic group. The average PMIs for these subjects were 25.4 + 3.6hr in controls and 31.4
+7.9hr in alcoholics. No significant differences were found in age (F(1,14) =0.02, p=0.86) or
PMI (F(1,14) =0.48, p=0.50) between control and alcoholic groups. In addition, we looked at
smoking history and gender as factors. However, we were not able to analyze these variables
separately due to the small sample size. These results suggest that neither age nor PMI were
different between control and alcoholic groups.

Increased MCP-1 Protein Concentration in Various Regions of the Alcoholic Brains

The MCP-1 protein concentration (pg/mg of total protein) determined by ELISA was
compared in each brain region between alcoholics and control brains (Fig. 1). In VTA, the
average MCP-1 concentrations were 212.6 + 43.5 pg/mg in alcoholic brains (n=7), and 90.2
+20.9 pg/mg in controls (n=6), and a significant two-fold increase in MCP-1 in alcoholic
brains was detected by ANOVA (F(1,11) =5.8, p=0.035). In the substantia nigra (SN), the
MCP-1 concentration was 314.04 + 59.6 pg/mg in alcoholics (n=6), which is significantly
higher than controls (121.0 + 14.3 pg/mg in controls, n=5) [ANOVA (F(1,9) =8.3, p=0.018)].
In the hippocampus, MCP-1 levels were 243.14 + 40.0 pg/mg in alcoholics (n=8) and
106.46 + 24.1 pg/mg in controls (n=6) [ANOVA (F(1,13) =6.6, p=0.023]. Similarly, in the
amygdala nuclei, the MCP-1 concentration in alcoholics was 322.55 + 70.5 pg/mg (n=8),
which is almost three-fold higher than that of the controls (113.26 + 25.6 pg/mg, n=6)
[ANOVA (F(,12) =6.0, p=0.03)]. In addition, Pearson tests indicted no significant
correlations were found between MCP-1 concentrations and age or PMI in all regions
studied (p values > 0.05). These data indicate that alcoholic brains have significantly higher
MCP-1 levels than those of controls across multiple limbic brain regions.

Increased Microglial Expression of Iba-1 and GluTs in Different Brain Regions of the
Alcoholic Brains

To investigate microglia in various brain regions, the immunoreactivity of two specific
microglia markers: Iba-1 and GluTsg were determined. Stages of microglia activation were
assessed based on their morphological characteristics from ramified resting stage to bushy-
looking early activation, and then to activated ameboid-like brain macrophages (Ladeby et
al., 2005). In both controls and alcoholic brains, microglia were found in all stages of
activation (Fig.2). Within all brain regions examined, many of the microglia had a variable
morphology but there were no clear differences between control and alcoholic brains in
degree of microglial activation, as indicated by morphology. However, alcoholic brains had
considerable upregulation in microglial marker immunoreactivity in several brain regions
when measured with image analysis software (BioQuant). In cingulate cortex (Fig. 3, Table
3), the immunoreactive density (pixel/mm?) of alcoholics was significantly increased for
214 £ 11% in Iba-1 (F(1,7) =11.7, p=0.01) and 194 + 25% in GluTs (F(1,7) =9.9, p=0.016). In
VTA (Fig. 4, Table 3), GluTs immunoreactivity was increased significantly in alcoholics for
175 £ 17% (F(1,14) =12.5, p=0.003) compared to controls, but no statistical difference in
Iba-1 was found (F(y,14) =1.18, p=0.30). Similarly, in the midbrain (Fig. 5, Table 3),
alcoholics had increased GluTs immunoreactivity for 156 + 13% (F(1,9) =22.66, p=0.01), but
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not Iba-1 (F(y,9) =0.48, p=0.51) as compared with controls. In amygdala nuclei (Fig. 6, Table
3), the immunoreactivity to neither I1ba-1 (F(1,14) =0.32, p=0.58) nor GluTs (F(1,14) =0.58,
p=0.46) was significantly different between alcohol and control brains. In addition, none of
these immunoreactive measures was significantly correlated with either age or PMI by
Pearson tests (p values > 0.05). Taken together, these data indicated that the expression of
the specific microglial markers in alcoholics is increased in cingulate cortex, but not in
amygdala, as compared to controls. In VTA and midbrain, enhanced GluTg staining was
found in alcoholic brains.

Discussion

We report here, for the first time, significantly increased MCP-1(CCL2) across multiple
alcoholic brain regions. MCP-1 is a member of the Beta chemokine subfamily that signals
through a G protein coupled receptor, CCR2 (Banisadr et al., 2002). Within the brain,
MCP-1 is produced mostly by activated astrocytes and microglia (Glabinski et al., 1996).
The impact of MCP-1 on neuroinflammation involves multiple pathways. As a classic
chemoattractant, MCP-1 plays an important role in driving monocyte recruitment to injured
tissue (Lu et al., 1998), possibly by increasing the permeability of the blood-brain-barrier
(BBB) (Yamamoto et al., 2005; Stamatovic et al., 2003; Stamatovic et al., 2005). The
subsequent migration and activation of these monocytes (microglia in the brain) leads to
excessive production of proinflammatory/neurotoxic cytokines such IL-1p and TNFa (Kaul
et al., 2001; Mahad and Ransohoff, 2003; Persidsky and Gendelman, 2003). Mice that
overexpress MCP-1 show increased Iba-1 immunoreactivity and accelerated senescent
neurodegeneration (Yamamoto et al., 2005). Moreover, the upregulation of MCP-1 in CNS
tissue can exacerbate neuronal death and other pathologies occurs before the detectable
monocyte recruitment (Rankine et al., 2006), indicating that the contributions of MCP-1 to
neuroinflammation are far beyond its role as a chemoattractant (Hughes et al., 2002;
Rankine et al., 2006). A recent study found that trimethyltin induced hippocampal
degeneration involved marked MCP-1 induction, without TNFa, IL-1, IL-6, or other
proinflammatory cytokines (Little et al., 2002). Endogenous MCP-1 is also known to
directly induce neuronal apoptosis (Kalehua et al., 2004). Thus, increased MCP-1 in
alcoholic brains could directly cause neuronal damage, and could be one of the mechanisms
contributing to alcohol-related neuronal loss and brain atrophy (Brooks, 2000; Harper et al.,
2003; Ikegami et al., 2003). Lastly, it has been proposed that MCP-1 can act as a “priming”
stimulus for microglia (lowering their “threshold sensitivity”), enhancing their synthesis of
proinflammatory cytokines in response to subsequent stimulation (Rankine et al., 2006).
This priming of microglia can occur as a consequence of a wide range of CNS diseases and
other stressors including alcohol exposure. Interestingly, transgenic mouse studies have
indicated that downregulation of MCP-1 expression increases hypnotic response and
decreases alcohol preference (Blednov et al., 2005). These data consistently indicate an
association between the level of MCP-1 expression and alcoholic pathologies. Taken
together, the current findings of increased MCP-1 in human alcoholic brain further support
the critical involvement of neuroinflammation in both behavioral and neurodegenerative
pathologies associated with alcoholism.

Since enhanced levels of MCP-1 expression can lead to activation or migration of microglia,
we chose two specific microglial markers, Iba-1 and GluTs to identify and study microglia
in alcoholic brains as compared to controls. Microglia undergo a series of characteristic
morphological transformations that are thought to represent stages of increasing
proinflammatory and phagocytic activity that coincide with induction of many proteins,
including the constitutively expressed microglial markers, Iba-1 and GluTs.
Morphologically, we observed all forms of microglia: ramified (resting), activated, and
ameboid (phagocytic) microglia in both alcoholic brains and controls across multiple brain
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regions. Microglia are known to have increasingly diverse morphologies, including the
highly activated phagocytic phenotypes in normal senescent brains as well as increased
numbers of activated monocytes in degenerative diseases. Our tissues used for
histochemistry are from patients with ages ranging from 52-82 years at death. We could not
detect differences between alcoholic and control brains in the spectrum of microglial
morphologies. However, the advanced age of our subjects may have masked alcohol
induced changes.

We found increased microglial markers, both Iba-1 and GluTs immunoreactivity, in
cingulate cortex of alcoholics. Cingulate cortex, along with prefrontal areas, contribute to
the frontal attention system with cingulate cortex representing a cross road between the
limbic system and frontal cortex (Fuster, 1997). It has been suggested that the disruption of
cognitive function by alcohol exposure could be due to its effects on frontal cortical areas
(Tuetal., 2007). Increases in microglial immunoreactivity indicate the enhanced microglia
number or their activation in this region. Increases in microglial specific staining could be
due to more microglia and/or larger activated microglia. Since we did not see significant
changes in morphology, these findings likely indicated that the cingulate cortex of alcoholics
has about 2-fold more microglia than moderate drinking controls. This could at least
partially result from the increased MCP-1 expression, which in turn leads to the migration
and/or proliferation of microglia in cingulate cortex.

In VTA and midbrain, we found a significant increase in GluTs staining, but not Iba-1. This
discrepancy could be the result of the higher sensitivity with human-specific GluTg antibody
as compared to Iba-1, which identifies microglia from human, mouse and rat (Ohsawa et al.,
2004). Microglia are known to alter expression of multiple proteins as they progress through
various states of activation. However, both Iba-1 and GluTg are microglia markers that are
expressed at all stages of microglial activation, although their expression increases with
activation. It is possible that alcohol-induced changes in VTA and midbrain GluTs are
relatively subtle, which can be detected only by the more sensitive GluTg marker, but not by
Iba-1. Regardless, the increase in VTA and midbrain GluTg staining is consistent with
increased microglia activation. Although the precise role of VTA in drinking behavior is not
known, studies have suggested the dopamine D5 receptors in VTA neurons are responsible
for drinking behaviors (Eiler and June, 2007). However, these receptors are also expressed
on microglia in VTA (Farber et al., 2005), which imply the involvement of VTA microglia
in alcohol-related pathogenesis. Thus, increased VTA microglia activation could one of the
mechanisms contributing to alcoholism. In amygdala, no detectable differences were found
in the immunoreactivity of either GluTsg or Iba-1 between alcoholic and control groups.
Although studies have shown that amygdala is a key region medicating anxiety-like
behaviors associated with chronic alcohol exposure and withdrawal (Knapp et al., 2007;
Lack et al., 2007), the functional roles of the microglia in this region are unknown.

Taken together, the current findings indicate a region specific increase in microglia
activities. Although the exact mechanisms of this regional discrepancy are unclear, we
speculate that the increase in microglia in the cingular cortex reflexes higher vulnerability of
this region to alcohol-induced inflammatory changes. Chronic alcohol exposure to mice has
been shown to cause cellular changes in cingular cortex (Marrero-Gordillo et al., 1998) and
to disrupt cognitive function (Tu et al., 2007). Furthermore, although the exact mechanism
of increased microglial activation is not known, our data suggest that elevated MCP-1 levels
could at least partially, contribute to increased microglia staining intensity. As the first
responder to environmental insults, microglia are believed to play dual roles in both
neurodegeneration and neuroprotection (Nimmerjahn et al., 2005). While local microglia
activation at the injured site might be neuro-destructive by releasing cytotoxins (Meda et al.,
1995; Brown et al., 1996; Barger and Harmon, 1997; McDonald et al., 1997), the delayed
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accumulation and activation of microglia resulting from MCP-1 could contribute to
elimination of cellular debris and may be involved in neuroprotection by producing
neurotrophic factors (Hermann et al., 2001; Laurenzi et al., 2001; Hashimoto et al., 2005; Lu
et al., 2005 ). Although the relationship between microglia activation and MCP-1 expression
in humans requires further investigation, our animal studies have found that chronic ethanol
induces brain MCP-1 in mice (Qin et al., 2007) and binge alcohol withdrawal increases
microglia in rat brains (Nixon and Crews, 2004). Even though many studies have found
volume reduction in alcoholic brain, the specific loss of neurons in humans remains
controversial (Harper, 1998). One study using unbiased sampling found a selective loss of
superior frontal cortical neurons, particularly large pyramidal neurons in alcoholics (Kril et
al., 1997). Our findings of increased MCP-1 and microglial markers could either contribute
to or result from alcoholic neurodegeneration indicated by brain shrinkage and neuronal loss
in human alcoholics. Altogether, our current findings support the role of inflammatory
neurodegeneration in alcohol-related neuropathology of humans.
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Fig. 1.

Increased MCP-1 protein concentrations in alcoholic brains. MCP-1 protein concentrations
(pg/mg of total protein) from brain homogenate were measured using ELISA represented as
mean + SEM. Using ANOVA, significantly increased MCP-1 expression was detected in
alcoholics as compared to control of in VTA (ventral tegmental area) of alcoholics as
compared with controls (*, p<0.05, N=5 controls, N=7 alcoholics), in substantia nigra (SN)
(* p<0.05, N=5 controls, N=6 alcoholics), in hippocampus (*, p<0.05, N=6 controls, N=8
alcoholics), and in amygdala (*, p<0.05, N=6 controls, N=8 alcoholics).
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Resting Bushy Ameboid

Fig.2.
Representative pictures of different stages of microglia activation. Ramified microglial cells

are believed to be in the resting stage; the bushy-looking microglia indicates early
activation; ameboid microglia represent fully activated brain macrophages.
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Fig. 3.

In cingulate cortex, the expression of both Iba-1 and GluTs was significantly increased in
the alcoholic brains (N=5) as compared to the controls (N=4). The level of immunoreactive
density was quantified by BioQuant Nova analysis system as described in the Methods and
presented as mean + SEM in pixel/mm2. ANOVA indicated significant differences in
immunoreactive density of both Iba-1 and GluTsg between control and alcoholic groups (*,
p<0.05).
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Fig. 4.

In VTA, the expression of GluTs, but not Iba-1 was significantly higher in the alcoholic
brains (N=8) than controls (N=8). The immunoreacitve density was measured by BioQuant
Nova analysis system as described in the Methods and presented as mean + SEM in pixel/
mm2. ANOVA indicated a significant increase in GluTs immunoreactivity, but not Iba-1, in
alcoholics as compared to controls (*, p<0.05).
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In Midbrain, the expression of GluTs, but not Iba-1 was significantly higher in the alcoholic
brains (N=6) as compared to controls (N=5). The immunoreactive density was measured by
BioQuant Nova analysis system as described in the Methods and presented as mean = SEM

in pixel/mm?2. ANOVA indicated a significant increase in GluTs immunoreactivity, but not

Iba-1, in alcoholics as compared to controls (*, p<0.05).
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In Amygdala, no significant difference was detected in either Iba-1 or GluTg expression
between alcoholic (N=8) and control brains (N=8). The immunoreactive density measured
by BioQuant Nova systems as described in the Methods and presented as mean + SEM in
pixel/mm?2. ANOVA indicated no significant differences in either marker between alcoholic
and control groups.
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Table 3

Immunoreactivity of Iba-1 and GluTs in various brain regions

Page 19

Regions Control Group Mean + SEM; N

Alcoholic Group Mean = SEM; N

P value T Test

1ba-1 Immunoreactivity(pixel/mm?2 X103)

Cingulate 700+ 137 150.1+12.3 P=001*
N =4 N=5
VTA 277.9+31.4 340.9 +48.8 P=0.30
N=8 N=8
Midbrain 172.8+21.9 152.7+17.4 P =0.50
N=6 N=5
Amygdala 217.7+185 230.3+12.7 P=0.58
N=8 N=8
GluTs Immunoreactivity (pixel/mm?2 X103)
Cingulate 13.4+1.4 26.0+3.3 P=0027%
N=4 N=5
VTA 25.7+3.3 450+43 P=0.003"
N=8 N=8
Midbrain 32132 50.1+1.6 P-001*
N=6 N=5
Amygdala 284 +36 321+33 P =0.46
N=8 N=8

The immunoreactive density measured by BioQuant Nova systems as described in the Methods and presented as mean + SEM in pixel/mm#<.

ANOVA was conducted in each region and p values are reported.

2

*
: p<0.05 indicating statistical significance. Iba-1: ionized calcium binding adaptor protein-1; GluTg: Glucose transporter-5; VTA: ventral

tegmental area.
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