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Biofilm Formation, and Host Cell Invasion�
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The putative global posttranscriptional regulator csrA was mutated in Campylobacter jejuni 81-176. The csrA
mutant was attenuated in surviving oxidative stress. CsrA also contributed to biofilm formation and adherence
to and invasion of INT407 intestinal epithelial cells, suggesting a regulatory role for CsrA in C. jejuni
pathogenesis.

Diarrheal diseases represent an immense burden to both the
developing and the industrial world, and the gram-negative
pathogen Campylobacter jejuni is recognized around the world
as a leading bacterial cause of gastroenteritis (3, 13, 16). Al-
though C. jejuni requires very specific growth conditions in the
laboratory, it persists in the environment. As it passes from
host (commonly avian species) to human, C. jejuni must survive
a great range of hostile environmental stresses, including lim-
ited carbon sources, suboptimal growth temperatures, and ex-
posure to atmospheric oxygen. During infection, C. jejuni must
withstand changes in pH and the host inflammatory response.
In order to survive these stresses, C. jejuni must be able to
sense these changes and respond accordingly. However, rela-
tively little is known about the molecular mechanisms of
Campylobacter pathogenesis and even less is known about how
its virulence properties are regulated. While C. jejuni possesses
several predicted global regulatory systems, including regula-
tors of flagellar assembly and function (28, 67), iron homeosta-
sis (58), heat shock (33), cold shock (45; W. A. Agee and S. A.
Thompson, unpublished data), and the stringent response (19),
its complement of regulators is dramatically less than that of
enteric pathogens such as Salmonella enterica. Furthermore, C.
jejuni has only three sigma factors (�70 [rpoD], �54 [rpoN], and
�28 [fliA]), seven histidine kinases, and 10 response regulators
(44, 45). The small number of sigma factors and other global
regulators in C. jejuni suggests that there may be other unchar-
acterized mechanisms of gene regulation.

C. jejuni genome sequences (18, 45) revealed orthologs of
the Escherichia coli global posttranscriptional regulator csrA
(carbon starvation regulator). In E. coli, CsrA was identified as
a posttranscriptional regulator of translation (49, 50) respon-
sible for repression or activation of many important processes.
CsrA is a homodimeric RNA-binding protein that typically
binds the 5� untranslated regions of target mRNAs at one or
more sites that are often adjacent to or overlapping the ribo-
some binding site, thus inhibiting ribosome access to the ribo-
some binding site and inhibiting translation initiation, which

can either increase or decrease mRNA half-life (5, 7, 15, 39, 40,
48, 61).

In E. coli, CsrA is involved in regulating stationary-phase
metabolism, represses glycogen biosynthesis, gluconeogenesis,
peptide transport, and biofilm formation (2, 15, 27, 37, 51, 52,
61), and activates glycolysis, acetate metabolism, and motility
(52, 63, 64). Analysis of bacterial genomes has revealed wide-
spread distribution of csrA throughout the eubacteria (65).
Subsequently, the role of CsrA in the life cycles of several
pathogenic bacteria has been studied, revealing that CsrA not
only regulates stationary-phase metabolism but also is an im-
portant regulator of virulence determinants, including host cell
invasion, quorum sensing, biofilm formation, iron acquisition,
type III secretion systems, and outer membrane protein ex-
pression (4, 11, 12, 17, 25, 26, 34, 37, 38, 42, 43, 46, 47, 66). In
the gastric pathogen Helicobacter pylori, a close relative of C.
jejuni (21), CsrA is reported to play a role in the regulation of
several virulence phenotypes, including motility, oxidative
stress resistance, and mouse colonization (8).

Considering the limited contingent of regulatory effectors
found in C. jejuni genomes, we suspected that CsrA might play
a vital role in the regulation of stress responses and virulence
determinants in this enteric pathogen. In this study, we sought
to examine the role of CsrA in C. jejuni pathogenesis. We
therefore constructed a C. jejuni 81-176 csrA mutant and com-
plemented mutant strains for use in studies of survival and
virulence-related phenotypes. We report that mutation of csrA
reveals a potential role for CsrA in the regulation of C. jejuni
genes required for survival of oxidative stress. Furthermore,
CsrA plays a role in the activation of biofilm formation, mo-
tility, and adherence to host cells in vitro; however, it contrib-
utes to the repression of invasion of human cells.

Mutation of csrA in C. jejuni 81-176. A nonpolar mutation in
csrA was constructed by inverse-PCR mutagenesis (68).
Briefly, by use of primers JAF44 and JAF45, Cj1103 (csrA)
including 500 bp upstream and downstream was amplified us-
ing PCR and cloned into pCRII-TOPO (Invitrogen). The new
construct, pJF06, was then subjected to inverse PCR using
primers JAF50A and JAF51, digested with NheI, and self-
ligated to yield pJF07. pJF07 was digested with NheI and XmaI
and ligated with the chloramphenicol acetyltransferase (cat)
cassette amplified from pRY111 (69) by use of primers JAF52
and JAF53 and digested with the same enzymes to generate
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the plasmid pJF09. This plasmid contained a deletion of 75%
of the csrA gene (replaced with cat) while maintaining the
translation initiation signals of the downstream Cj1104 gene to
avoid polarity. This construct was then introduced into C.
jejuni 81-176 by electroporation (62), and a chloramphenicol-
resistant (20 �g/ml) csrA mutant was verified by PCR and
DNA sequencing (data not shown).

Complementation of the csrA mutant in trans. Complemen-
tation of the csrA mutant was accomplished by introducing the
csrA gene under the control of its native promoter on the
Campylobacter shuttle vector pRY107 (69). Briefly, csrA was
amplified with primers JAF60 and JAF43 and cloned into
pCRII-TOPO, producing pJF10A. Next, the csrA promoter
(upstream of Cj1097) was amplified with primers JAF61 and
JAF62, digested with XmaI and NdeI, and cloned upstream of
csrA in pJF10A to create pJF10B. The csrA promoter cassette
was then digested with EcoRI and subcloned into pRY107,
giving the csrA complementation vector pJF11. pJF11 was then
introduced into the csrA mutant by triparental mating (36).
Transconjugants were recovered on chloramphenicol (15 �g/
ml) and kanamycin (50 �g/ml), and the presence of pJF11 was
confirmed by plasmid midi-prep (Qiagen) (data not shown).

Mutation of csrA decreases swarming ability. The swarming
ability of the csrA mutant was determined on Mueller-Hinton
(MH) media containing 0.4% agar (22) and confirmed via light
microscopy of wet mounts (data not shown). After inoculation,
the strains were incubated at 37°C for 24 h (Fig. 1A) and 48 h
(Fig. 1B). The swarming ability of the mutant was �30% less
than that of the parent strain after 24 h (P � 0.009) and 48 h
(P � 0.0007), despite highly similar growth characteristics in
MH broth (Fig. 1C). This was consistent with reported obser-
vations for E. coli and H. pylori (8, 64) and suggests that C.
jejuni CsrA contributes to the regulation of motility or chemo-
taxis, as either can affect swarming ability.

CsrA is required for resistance to oxidative stress. Resis-
tance of the 81-176, 81-176 csrA, and 81-176 csrA/pJF11 strains
to oxidative stress was determined by assessing killing by at-
mospheric oxygen (19) and hydrogen peroxide (60). Aerotol-
erance was determined by transferring bacteria grown in MH
broth to early log phase (optical density at 600 nm [OD600] of

�0.1) from a microaerobic environment to atmospheric and
microaerobic growth conditions and incubating the bacteria for
9 h at 37°C. At 0, 3, 6, and 9 h, viable counts were measured by
serial dilution and plating on MH plates. This experiment (Fig.
2A) showed that the csrA mutant was highly sensitive to atmo-
spheric oxygen, resulting in greater than 99% loss of viability
by 9 h (P � 0.0005). The strains grown under microaerobic
conditions remained viable and grew to stationary phase (data
not shown), indicating that the loss of viability under atmo-
spheric conditions was specific to atmospheric oxygen expo-
sure. For hydrogen peroxide resistance, cells were grown on
blood agar overnight at 37°C, harvested in phosphate-buffered
saline, and diluted to an OD600 of �1.0. A 100-�l portion of
each strain was spread on MH agar, onto which filter discs (6
mm) inoculated with 10 �l of 1 mM, 10 mM, 100 mM, or 1 M
hydrogen peroxide were placed and then incubated at 37°C

FIG. 1. CsrA is required for full motility. Swarming ability was assessed on MH agar containing 0.4% agar. Strains were inoculated into MH
motility agar and incubated for 24 h (A) and 48 h (B) at 37°C under microaerobic conditions. (C) Growth of the 81-176 and 81-176 csrA strains
was observed in MH broth and measured by determining the OD600. The assay was carried out in triplicate, and one representative of three
experiments is shown (**, P � 0.005) with error bars.

TABLE 1. Strains and plasmids used in this study

Strain or
plasmid Description Resistancea Source or

reference

Strains
E. coli

JM109
Cloning host Promega

C. jejuni
81-176

Wild type 10

Plasmids
pCRII-

TOPO
Cloning vector Amp, Kan Invitrogen

pRY107 C. jejuni shuttle vector Kan 69
pRY111 C. jejuni shuttle vector Cm 69
pJF06 1.2-kb csrA locus in

pCRII-TOPO
Amp, Kan This study

pJF07 Self-ligated inverse-PCR
product of pJF06

Amp, Kan This study

pJF09 pJF07::csrA�cat Amp, Kan, Cm This study
pJF10A csrA in pCRII-TOPO Kan This study
pJF10B pJF10A and pcsrA Kan This study
pJF11 csrA and promoter in

pRY107
Kan This study

a Amp, ampicillin; Kan, kanamycin; Cm, chloramphenicol.
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under microaerobic conditions for 48 h. These studies (Fig.
2B) revealed greater sensitivity of the csrA mutant to all doses
tested (P � 0.01). Taken together these data suggest that, as in
H. pylori, CsrA contributes to the regulation of oxidative stress
responses in C. jejuni.

CsrA is an activator of biofilm formation. By use of previ-
ously described methods (14), biofilms were quantitated via
crystal violet (CV) staining of static biofilm formation in 24-
well, flat-bottomed polystyrene tissue culture dishes at 48 h.
Briefly, strains were inoculated in MH broth at an OD600 of
0.05 and incubated statically at 37°C for 48 h. Biofilms were
visualized by staining with CV, washed with distilled H2O, and
photographed, and CV binding was quantitated by determin-
ing the OD570 after solubilization in 80% dimethyl sulfoxide
for 24 h (Fig. 3). The csrA mutant formed a very sparse biofilm
on the bottoms and sides of the wells (Fig. 3A). Conversely,
both the wild type and the complement formed dense biofilms;
however, a great deal of the matrix formed by the comple-
mented mutant was present on the sides of the wells and is not
represented in the aspect shown. Quantification of CV staining

(Fig. 3B) revealed that the csrA mutant formed nearly 50% less
biofilm than 81-176 (P � 0.0001); however, the complemented
mutant formed twice as much biofilm as the wild type. It has
been demonstrated that flagellar function and responses to
both general and oxidative stress are critical to biofilm forma-
tion (24, 30, 31, 57, 59). These results suggest that CsrA is an
activator of biofilm formation, possibly via regulation of mo-
tility and oxidative stress responses in C. jejuni. This conclusion
is noteworthy considering that CsrA represses biofilm forma-
tion in several gammaproteobacteria (1, 2, 27, 54, 61). Biofilm

FIG. 2. Deletion of CsrA results in reduced resistance to sources of oxidative stress. The 81-176 (f), 81-176 csrA (F), and 81-176 csrA/pJF11
(}) strains were subjected to oxidative stress by exposure to atmospheric oxygen, whereby the strains were inoculated in flasks at an OD600 of �0.1
and a 6:1 surface-to-volume ratio and then incubated at 37°C and 100 rpm in an air incubator (A), and various concentrations of hydrogen peroxide
in filter discs on MH agar plates (B). One representative, in triplicate, of three experiments is shown (*, P � 0.05; **, P � 0.005) with error bars.

TABLE 2. Primers used in this study

Primer Sequence (5� 3 3�)a

JAF43 ...........................TCA TTT GAT TAG TTT TTT GC
JAF44 ...........................ATG CAA GGA ATT ATC TCC TA
JAF45 ...........................GGT ATG TCA TCT TCA AAT TC
JAF50A........................CTC TGC TAG CAC CCG GGT GTT GTT

CAG AAT GAT ATT AAA C
JAF51 ...........................AGA GGC TAG CTT AAC ATT TTT CAA

CCT TAT T
JAF52 ...........................CTC TGC TAG CGG AGG ATA AAT GAT

GCA ATT
JAF53 ...........................AGA GCC CGG GTT ATT TAT TCA GCA

AGT CTT
JAF60 ...........................CTA CCC GGG ATT CAT ATG TTA ATA

TTA TCA
JAF61 ...........................GAT CCC GGG TAA TCA GCT TTA CTA

AGT TTG TGA TTT GAC
JAF62 ...........................GCT CAT ATG AAA AAC CTT ATT AAA

TAT TTT TTA TAT CAA AAG

a Underlined nucleotides indicate restriction sites introduced for cloning pur-
poses.

FIG. 3. CV staining of C. jejuni biofilms. CV-stained biofilms were
solubilized in 80% dimethyl sulfoxide (A) and quantitated by deter-
mining the OD570 (B). One representative, in triplicate, of three ex-
periments is shown (**, P � 0.005) with error bars.

VOL. 190, 2008 NOTES 3413



formation in C. jejuni is poorly understood but is certainly
complex and requires flagellar function (30). Therefore, re-
duced biofilm formation by the C. jejuni CsrA mutant is con-
sistent with the observation of reduced motility (Fig. 1) and
also suggests that CsrA-mediated control of biofilm formation
may be inherently different in C. jejuni and E. coli.

Adherence and invasion of intestinal epithelial cells. The
role of CsrA in adherence and invasion of host cells in vitro
was determined as previously described (9, 41, 62). The csrA
mutant exhibited a 5.4-fold decrease in the ability to adhere to
INT407 cells (Fig. 4A) (P � 0.002). This attenuation of adher-
ence was contrasted by a 20-fold increase in invasion by ad-
herent C. jejuni csrA mutant cells (Fig. 4B) (P � 0.01) despite
reduced motility, a factor known to influence invasion (20, 23,
29, 70). There was no difference in susceptibility to gentamicin
among the strains. This is the first report to implicate CsrA in
the regulation of host cell adherence. Previous studies have
reported that CsrA functions in both the activation and the
repression of invasion (4, 17, 37). Our data suggest that in C.
jejuni the role of CsrA in epithelial cell invasion is primarily
carried out via repression of invasion-specific genes. This con-
clusion introduces a paradox because both motility and adher-
ence are important for host cell invasion in C. jejuni (20, 23, 29,
62, 70); however, the csrA mutant displays defects in both.
However, while both motility and adherence are certainly pre-
requisites for invasion, the adherence and invasion processes
involve different proteins. For example, molecules that are
involved uniquely in the invasion step but not in adherence
include the Campylobacter invasion antigens, gamma-glutamyl
transpeptidase, and the polysaccharide capsule (6, 9, 32). CsrA
may therefore directly or indirectly regulate these or other
invasion-specific Campylobacter proteins, and changes in the
expression of these proteins may override any effect of the
decrease in motility and result in the observed increase in
invasion.

Conclusions. Posttranscriptional regulation in C. jejuni has
not been studied previously, and many questions remain to be
considered in future studies to address how CsrA works in
Campylobacter and other epsilonproteobacteria. Presently, it is
not known how CsrA is regulated in C. jejuni. In E. coli and
many other bacteria, CsrA has been shown to be regulated by

the small noncoding RNAs csrB and csrC (5), which have not
been identified in Campylobacter (35). Furthermore, regulation
of E. coli csrBC is directed by the BarA/UvrY two-component
regulatory system (17, 53–56), which does not appear to have
an ortholog in C. jejuni (45). These data, therefore, represent
an important first step in elucidating the role of CsrA in C.
jejuni physiology and pathogenesis. In summary, we have con-
structed a C. jejuni mutant lacking the predicted posttranscrip-
tional regulator CsrA. The csrA mutant exhibits changes in
several virulence-related properties, including oxidative stress
resistance, motility, adherence, and invasion. These pleiotropic
effects suggest that CsrA is an important regulator involved in
C. jejuni pathogenesis.
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