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Abstract
We consider a general class of purely inhibitory and excitatory-inhibitory neuronal networks, with
a general class of network architectures, and characterize the complex firing patterns that emerge.
Our strategy for studying these networks is to first reduce them to a discrete model. In the discrete
model, each neuron is represented as a finite number of states and there are rules for how a neuron
transitions from one state to another. In this paper, we rigorously demonstrate that the continuous
neuronal model can be reduced to the discrete model if the intrinsic and synaptic properties of the
cells are chosen appropriately. In a companion paper [1], we analyze the discrete model.
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1 Introduction
Oscillatory behavior arises throughout the nervous system. Examples include the
thalamocortical system responsible for the generation of sleep rhythms [2–5], networks within
the basal ganlgia that have been implicated in the generation of Parkinsonian tremor [6,7], and
networks within the olfactory bulb of mammals, or antennal lobe of insects [8–10]. Each of
these systems has been modeled as an excitatory-inhibitory neuronal network and each model
displays complex firing patterns. Thalamocortical models, for example, may generate clustered
activity in which the network breaks up into subpopulations of cells, or clusters; neurons within
each cluster fire in near synchrony, while cells within different clusters fire out-of-phase with
each other. A recently proposed model for neuronal activity within the antennal lobe of insects
[9] displays dynamic clustering: cells fire during distinct episodes and during each episode
some subpopulation, or cluster, of cells fire in near synchrony. However, the membership of
clusters may change so that two cells may fire together during one episode but they do not fire
together during some other subsequent episode.
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Several papers have used dynamical systems methods to analyze synchronous and clustered
activity in excitatory-inhibitory networks [11–18]. However, very few papers have studied
mechanisms underlying dynamic clustering. Moreover, previous papers have typically
considered small networks with very simple architectures. It remains poorly understood how
population rhythms depend on the network architecture.

Here we consider a general class of excitatory-inhibitory networks, with a general class of
architectures, and characterize the complex firing patterns that emerge. Our strategy for
studying these networks is to first rigorously reduce them to a discrete model. In the discrete
model, each neuron is represented by a finite number of states and there are rules for how a
neuron transitions from one state to another. In particular, the rules determine when a neuron
fires and how this affects the state of other neurons.

The goal of this paper is to demonstrate that certain types of neuronal models can, in fact, be
rigorously reduced to the discrete model. In a companion paper [1], we analyze the discrete
model. By studying the discrete model, we are able to characterize properties of the dynamics
of the original neuronal system. We demonstrate in [1], for example, that these networks
typically exhibit a large number of stable oscillatory patterns. We also determine how
properties of the attractors depend on network parameters, including the underlying
architecture.

This paper is organized as follows. In the next section, we describe the neuronal model and
introduce the two types of networks we are going to study: purely inhibitory and excitatory-
inhibitory networks. In Section 3, we introduce the basic fast/slow analysis that will be used
throughout the paper. We also consider some simple networks that will motivate the discrete
dynamics. The discrete model is formally defined in Section 4. In Section 5, we briefly describe
why it may not be possible, in general, to reduce a purely inhibitory network to the discrete
model. The main analysis is given in Section 6 where we find conditions on parameters for
when an excitatory-inhibitory network can be rigorously reduced to the discrete model. The
results of numerical simulations are presented in Section 7 and there is a discussion of our
results in the last section.

2 The neuronal model
A neuronal network consists of three components. These are: (1) the individual cells within
the network; (2) the synaptic connections between cells; and (3) the network architecture. We
now describe how each of these components is modeled. The models are written in a rather
general form since the analysis does not depend on the specific forms of the equations. A
concrete example is given in Section 7.

Individual Cells
We consider a general two-variable model neuron of the form

(1)

Here, v represents the membrane potential of the cell, w represents a channel gating variable
and ε is a small, positive, singular perturbation parameter. We assume that the v-nullcline {f =
0} defines a cubic-shaped curve and the w-nullcline {g = 0} is a monotone increasing curve.
Moreover, f > 0 (f < 0) below (above) the v-nullcline and g > 0 (< 0) below (above) the w
nullcline.
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We further assume that the v- and w-nullclines intersect at a unique fixed point p0. If p0 lies
along the left branch of the v-nullcline, then p0 is stable and the cell is said to be excitable. In
the oscillatory case, p0 lies along the middle branch and, if ε is sufficiently small, then the cell
exhibits stable oscillations. In the limit ε → 0, the limit cycle approaches the singular trajectory
shown in Figure 1. For most of this paper, we will assume that individual cells, without any
coupling, are excitable.

Synaptic Connections
A pair of mutually coupled neurons is modeled as:

(2)

where i and j are 1 or 2 with i ≠ j. Moreover, gsyn represents a constant maximal conductance,
sj corresponds to the fraction of open synaptic channels, and α and β represent rates at which
the synapse turns on and turns off. Note that sj depends on the presynaptic cell. To simplify
the discussion, we will assume H(v) is the Heaviside step function.

Note that the coupling between cells is through the synaptic variables si. Suppose, for example,
that cell 1 is the presynaptic cell. When cell 1 fires a spike, its membrane potential v1 crosses
the threshold θ and this results in activation of the synaptic variable s1. More precisely,

 at the rate α + β This then turns on the synaptic current to cell 2. When cell 1 is silent,
so that v1 < θ, then s1 turns off at the rate β.

Synapses may be either excitatory or inhibitory. This depends primarily on the synaptic reversal
potential vsyn. We say that the synapse is inhibitory if vsyn < vi(t), i = 1, 2, along solutions of
interest. In the excitatory case, vsyn > vi(t).

Synapses may also be either direct or indirect. In a direct synapse, the postsynaptic receptor
contains both the transmitter binding site and the ion channel opened by the transmitter as part
of the same receptor. In an indirect synapse, the transmitter binds to receptors that are not
themselves ion channels. Direct synapses are typically much faster than indirect synapses. The
synapses we have considered so far are direct since they activate as soon as a membrane crosses
the threshold. We model indirect synapses as described in [13]. We introduce a new
independent variable xi for each cell, and replace (2) with the following equations for each
(xi, si):

(3)

The constants αx and βx are assumed to be independent of ε. The variable x corresponds to a
secondary process that is activated when transmitters bind to the postsynaptic cell. The effect
of the indirect synapses is to introduce a delay from the time one cell jumps up until the time
the other cell feels the synaptic input. For example, if cell 1 fires, a secondary process is turned
on when v1 crosses the threshold θ. The synapse s1 does not turn on until x1 crosses some
threshold θx; this takes a finite amount of time since x1 evolves on the slow time scales, like
the wi.

Network Architecture
We will be interested in two types of networks; these are purely inhibitory (I-) networks and
excitatory-inhibitory (E-I-) networks. First we consider I-networks. Then the network
architecture can be viewed as a directed graph D = <VD, AD>. The vertices correspond to the
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neurons; for convenience of notation, we assume that VD = [n] ≡ {1, …, n}. If there is an arc
(or directed edge) e = <i, j>, then cell i sends inhibition to cell j. This network is modeled as:

(4)

We are assuming that the cells are homogeneous so that the nonlinear functions f and g do not
depend on the cell i. The sum in (4) is over all presynaptic cells; that is, {j: <j, i> ∈ AD}. Here
we assume that vsyn is chosen so that the synapses are inhibitory.

Now consider E-I-networks. We assume that there are two populations of cells. These are the
excitatory (E-) cells and the inhibitory (I-) cells. The E-cells send excitation to some subset of
I-cells. The I-cells send inhibition to some subset of E-cells as well as to I-cells. In the analysis
which follows, We will need to assume that inhibitory synapses, corresponding to I →E and
I →I connections, are indirect, while E →I connections are realized by direct synapses. Figure
2 shows the network. In Section 6.1, we write the equations.

3 Some example networks
We now consider some rather simple examples of inhibitory networks. These examples will
be used to describe the sorts of solutions that we are interested in. The examples will also allow
us to explain how the dynamics corresponding to the system of differential equations will be
reduced to a discrete model. It will first be necessary to introduce some notation.

3.1 Some notation
Let Φ(v, w, s) ≡ f(v, w) − gsyns(v − vsyn). Then the right hand side of the first equation in (4) is
Φ (vi, wi, Σsj) where the sum is over all cells presynaptic to cell i. If gsyn and s are not too large,
then each  defines a cubic-shaped curve. We will sometimes write  to
denote the cubic corresponding to synaptic input from K other active cells. We express the left
branch of  as {v = ΦL(w, K)} and the right branch of  as {v = ΦR(w, K)}. Suppose
that the left and right knees of  are at w = wL(K) and w = wR(K), respectively.

Throughout this paper, we will use geometric singular perturbation methods to analyze
solutions. That is, we construct singular trajectories for the limit when ε = 0. Recall, for
example, the singular trajectory for the single oscillatory cell shown in Figure 1. While the cell
is in either the silent or active phase, the singular trajectory lies on either the left or right branch
of the cubic-shaped v-nullcline, respectively. The jump-up to the active phase or the jump-
down to the silent phase occurs when the singular trajectory reaches the left or right knee of
the v-nullcline.

In larger networks, the singular trajectory corresponding to each cell will also lie along either
the left or right branch of a cubic-shaped v-nullcline during the silent or active phase. The
jumps up and down between the silent and active phases occur when a singular trajectory
reaches the left or right knee of some cubic. One can view the synaptic input as moving the
cubic-shaped nullcline up or down, meaning that there is a family of cubic-shaped nullclines,
depending on the synaptic inputs si. Which cubic a cell lies on depends on how many active
cells it receives synaptic input from.

3.2 Post-inhibitory rebound
It is well known that two cells coupled through mutual inhibition can generate antiphase
oscillations through the mechanism known as post-inhibitory rebound. This phenomenon arises
in a variety of neuronal systems [19,20]. Along an antiphase solution, the cells take turns firing
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action potentials; when one cell jumps down, it releases the other cell from inhibition and that
other cell then jumps up. This mechanism will play a central role in our analysis of larger
networks. For this reason, we will briefly describe the geometric construction of a singular
trajectory corresponding to the antiphase solution.

The singular trajectory is shown in Figure 3. There are two trajectories; these correspond to
the projections of (v1, w1) and (v2, w2) onto the (v, w)- phase plane. Note that each cell, without
any coupling, is excitable. The w-nullcline intersects both  and  along their left branches.
Moreover, cells cannot fire unless they receive inhibitory input first.

We now step through the construction of the singular trajectory corresponding to the antiphase
solution. We begin with cell 1 at the right knee of  ready to jump down. We further assume
that cell 2 is silent and lies along the left branch of  below the left knee of . When cell 1
jumps down, s1 → 0. Note that s1 → 0 instantaneously with respect to the slow time scale.
Since (v2, w2) lies below the left knee of , cell 2 exhibits post-inhibitory rebound and jumps
up to the right branch of .

Cell 2 then moves up the right branch of  and cell 1 moves down the left branch of  towards
p1. Eventually, cell 2 reaches the right knee of  and jumps down. If at this time, cell 1 lies
below the left knee of , then it jumps up due to post-inhibitory rebound. The roles of cell 1
and cell 2 are now reversed. The cells continue to take turns firing when they are released from
inhibition. Note that the time each cell spends in the active phase must be sufficiently long.
This gives the silent cell enough time to evolve along the left branch of  to below the left
knee of  so that it is ready to jump up when it is released from inhibition.

3.3 A larger inhibitory network
The next example network consists of seven cells and the network architecture is shown in
Figure 4. All connections are assumed to be inhibitory with direct synapses. Two different
responses, for the same parameter values but different initial conditions, are shown in the figure.
Each response consists of discrete episodes in which some subset of the cells fire in near
synchrony. These subsets change from one episode to the next; moreover, two different cells
may belong to the same subset for one episode but belong to different subsets during other
episodes. These solutions correspond to dynamic clustering. Note that cells fire due to post-
inhibitory rebound.

Consider, for example, the solution labeled (A). During the first episode, cells 1 and 6 fire
action potentials and the cells that fire during the second episode are 4 and 5. After this transient
period, the response becomes periodic. Note that the cells which fire during the third episode
are cells 2, 3 and 7. These are precisely the same cells that fire during the eighth episode. This
subset of cells continues to fire together every fifth episode.

Now consider the solution labeled (B). This solution has the same periodic attractor as the
solution shown in the first panel, although the initial response is different. These two solutions
demonstrate that two responses may have different initial transients but approach the same
periodic attractor. There are, in fact, many periodic attractors. In the next section, we will
demonstrate that this example exhibits seven periodic attractors.

4 The discrete model
As the examples presented in the previous section illustrate, solutions of the neuronal model
may consist of discrete episodes. During each episode, some subset of cells fire in near
synchrony; moreover, this subset changes from one episode to another. This suggests that we
can reduce the neuronal model to discrete dynamics that keeps track of which cells fire during
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each discrete episode. In this section, we shall formally define the discrete dynamics. We then
define what it means that the neuronal system can be reduced to the discrete model. We will
then state the main result of this paper. In later sections, we shall describe conditions for when
the neuronal model can be rigorously reduced to the discrete model. In [1], we embark upon a
rigorous analysis of the discrete model.

4.1 Definition of the discrete model
First we consider a purely inhibitory network. In order to derive the discrete dynamics, we
need to make two assumptions on solutions of the neuronal model. Later we will describe when
parameters in the neuronal model can be chosen so that these assumptions are satisfied. The
first assumption is that there is a positive integer p such that every cell has refractory period
p. That is, if a cell fires during an episode then it cannot fire during the next p subsequent
episodes. The second assumption is that a cell must fire during an episode if it received
inhibitory input from an active cell during the previous episode and if it has not fired during
the previous p episodes.

Consider, for example, the example shown in the first panel of Figure 4. Here, p = 1. Cells 1
and 6 fire during the first episode. Both of these cells send inhibition to cells 4 and 5 so, by the
second assumption, both of these cells must fire during the second episode. During the third
episode, cells 2, 3 and 7 fire. Note that cell 2 sends inhibition to cell 7; however, cell 7 cannot
fire during the fourth episode because it fired during the third. Continuing in this manner, we
can determine which subset of cells fire during each subsequent episode.

We now formally define the discrete model. Assume that we are given a directed graph D =
<VD, AD> and a positive integer p. The vertices of D signify neurons and an arc <v1, v2> ∈
AD signifies a synaptic connection from neuron v1 to neuron v2. We associate a discrete-time,
finite-state dynamical system SN with a network N = <D, p>. A state s→ of the system at the
discrete time κ is a vector s→ (κ) = [P1(κ), …, Pn(κ)] where Pi(κ) ∈ {0, 1, …, p} for all i ∈
[n]. The state Pi(κ) = 0 of neuron i is interpreted as firing at time κ.

The dynamics on SN is defined as follows:

(D1) If Pi(κ) < p, then Pi(κ + 1) = Pi(κ) + 1.

(D2) If Pi(κ) = p, and there exists a j ∈ [n] with Pj(κ) = 0 and <j, i> ∈ AD, then Pi(κ + 1)
= 0.

(D3) If Pi(κ) = p and there is no j ∈ [n] with Pj(κ) = 0 and <j,i> ∈ AD, then Pi(κ + 1) =
p.

Recall that a cell ‘fires’ when Pi(κ) = 0. (D1) implies that after a cell fires, its state Pi increases
by one unit each episode until Pi = p; at this time, the cell is ready to fire again. (D2) implies
that if a cell is ready to fire at time κ, then it will do so at time κ + 1 if it receives input from
some cell that has fired at time κ. Finally, (D3) states that even if a cell is ready to fire, it will
not do so unless it receives input from some active cell.

Note that the dynamical system SN can be viewed as a directed graph on its state space. This
state transition digraph is different from D, the network connectivity graph. If there are n cells,
then there are (p + 1)n states. For the example discussed in Section 3.3, there are seven cells
and p = 1. Hence, there are 128 states. The entire directed graph corresponding to the discrete
dynamics is shown in Figure 5. In the figure we have changed notation in order to simplify it.
At each node, we list those cells which fire; these are the cells with Pi = 0.

Now consider an E-I-network. We formally reduce this to an I-network by constructing a
directed graph D whose nodes correspond to the E-cells. Suppose that there are n E-cells which
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we label as {Ei: i ∈ [n]}. For any i, j ∈ [n], we assume that there is an edge <i, j> ∈ D if there
is an I-cell, say Ik, such that there exist both Ei → Ik and Ik → Ej connections. Now that we
have the network connectivity graph D, we can consider the discrete-time dynamical system
SN = <D, p> defined above.

The definition of the discrete dynamics for the E-I-network is based on two assumptions.
Suppose that Ei and Ej are any E-cells and Ik is any I-cell such that there exist both Ei → Ik and
Ik → Ej connections. The first assumption is that if Ei fires during an episode, then so will Ik.
The second assumption is that if Ik fires during an episode, then Ej will fire during the next
episode if and only if it has not fired during the previous p episodes.

4.2 Reduction from the neuronal model to the discrete model
Our goal is to find conditions on parameters for when the neuronal system generates dynamics
that is consistent with a discrete model. Here we give a more precise definition for what it
means that the neuronal system can be reduced to the discrete model. We only consider purely
inhibitory networks in this subsection; a similar definition holds for E-I-networks.

Consider any network with any fixed architecture and fix p, the refractory period. We can then
define both the continuous neuronal and discrete models, as was done in the preceding sections.
Let s→ be any state of the discrete model. We then wish to show that there exists a solution
of the neuronal system in which different subsets of cells take turns jumping up to the active
phase. The active cells during each subsequent episode are precisely those determined by the
discrete orbit s→(κ), and this exact correspondence to the discrete dynamics remains valid
throughout the trajectory of the initial state. We will say that such a solution realizes the orbit
predicted by the discrete model. This solution will be stable in the sense that there is a
neighborhood of the initial state such that every trajectory that starts in this neighborhood
realizes the same discrete orbit.

4.3 The main result
We now formally state our main result.

Theorem—Suppose we fix n, corresponding to the size of the network, and p, the refractory
period. Consider any excitatory-inhibitory network such that both the number of E-cells and
the number of I-cells are bounded by n. Assume that the E-cells and the I-cells are modeled by
the equations that satisfy the assumptions spelled out in Subsection 6.4. We further assume
that there is all-to-all coupling among the I-cells, the excitatory synapses are direct and the
inhibitory synapses are indirect. Finally, we consider any architecture of E → I and I → E
connections. We can then define both the continuous and the discrete models, as was done in
the preceding sections. Then there are intervals for the choice of the intrinsic parameters of the
cells and the synaptic parameters so that:

1. Every orbit of the discrete model is realized by a stable solution of the differential
equations model.

2. Every solution of the differential equations model eventually realizes a periodic orbit
of the discrete model. That is, if X(t) is any solution of the differential equations model,
then there exists T > 0 such that the solution {X(t):t > T} realizes a periodic orbit or
a steady state of the discrete model.

We remark that the intrinsic and synaptic parameters will not depend on the network
architecture. Hence, every orbit of the discrete model, for any network architecture, can be
realized by a solution of the neuronal model. Moreover, every attractor of the differential
equations model corresponds to a periodic orbit of the discrete model.
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In Section 7 we give a concrete example of equations that satisfy the assumptions spelled out
in Subsection 6.4. As we shall see in the proof of the theorem, what is important are the positions
of the left and right knees of the cubic-shaped nullclines, the rates at which the slow variables
evolve during the silent and active phases and the strengths of the synaptic connections.

The proof of the Theorem is constructive in the sense that we give precise bounds on the
parameters. In particular, the proof leads to an estimate for the time-duration corresponding to
each episode of the discrete model (see inequality (16)).

5 A problem with inhibitory networks
We now discuss an example that illustrates difficulties that arise in I-networks. This example
suggests that it is not possible, in general, to reduce the dynamics of an I-network to a discrete
model. In the next section, we demonstrate that these difficulties can be overcome in E-I-
networks.

Consider the inhibitory network shown in Figure 6. The discrete dynamics predicts that there
is a solution in which the network breaks up into two clusters; Cluster A consists of cells 1 and
2 and cluster B consists of cells 3 and 4. There is actually no problem in demonstrating that
such a solution exists. This solution is very similar to the antiphase solution described in the
preceding section. The clusters take turns jumping up to the active phase when they are released
from inhibition by the other cluster.

We next consider the stability of this solution. The following analysis will, in fact, suggest that
this solution is not stable. In order to discuss stability, we need to define a notion of distance
between two cells. Here, we define the distance between cells (v1, w1) and (v2, w2) to be simply
|w1 − w2|.

Suppose we start so that cells within each cluster are very close to each other as shown in Figure
7. Note that Cluster A is active and lies along the right branch of . Cell 1 is at a right knee
ready to jump down. Cluster B is silent and lies along the left branch of  very close to the
point p1 where  intersects the w-nullcline. We now step through what happens once cell 1
jumps down. We will demonstrate that instabilities can arise in both the jumping-down and
jumping-up processes.

When cell 1 jumps down, it stops sending inhibition to cells 2 and 3. Cell 3 responds by jumping
up to the active phase. Cell 2, on the other hand, moves to the right branch of . During the
next step, cells 2 and 3 move up the right branch of , while cell 1 moves down the left branch
of  and cell 4 move down the left branch of . During this time, both the distances between
cells 1 and 2 and between cells 3 and 4 increase. This continues until cell 2 reaches the right
knee of  and jumps down. At this time, cell 4 jumps up. Then both cells 1 and 2 lie in the
silent phase and cells 3 and 4 are active. However, cells within each cluster are further apart
from each other than they were initially. This expansion in the distance between cells within
each cluster may continue and destabilize the clustered solution.

Note that we have not rigorously demonstrated that the network shown in Figure 6 cannot
reproduce the dynamics predicted by the discrete model for some choice of parameter values.
The analysis shows that instabilities can arise in the singular limit as ε →0. On the other hand,
numerical simulations indicate that it may be possible to choose parameters (with ε bounded
away from zero) so that this network does reproduce the discrete dynamics. However, the
dynamics is quite sensitive to changes in parameter values. In contrast, for the excitatory-
inhibitory networks described in the next section, we are able to rigorously prove that under
certain conditions the network will always reproduce the dynamics of the discrete model.
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6 E-I-networks
We now consider E-I-networks and find conditions when they generate dynamics
corresponding to that of the discrete model.

6.1 The equations
The architecture of E-I-network is shown in Figure 2. Recall that the E-cells send excitation
to some subpopulation of I-cells, while the I-cells inhibit some subpopulation of E-cells. We
will need to assume that each I-cell sends inhibition to every I-cell, including itself. The
excitatory synapses are direct, while the inhibitory synapses are indirect.

The equations for the E-cells can then be written as:

(5)

and the equations for the I-cells can be written as:

(6)

Here,

where each sum is taken over the corresponding presynaptic cells. The reversal potentials
 and  correspond to inhibitory and excitatory synapses, respectively. Note that we are

assuming that all of the excitatory cells are the same, as well as all of the inhibitory cells;
however, the excitatory cells need not be the same as the inhibitory cells.

6.2 Strategy
Suppose we are given an E-I-network as described in Section 6.1 and a positive integer p,
corresponding to the refractory period. Let SN be the discrete-time dynamical system as defined
in Section 4. Here we describe our strategy for showing that the neuronal model reproduces
the dynamics of the discrete model. The analysis will be for singular solutions. Along the
singular solution, all of the cells lie on either the left or right branch of some cubic during the
silent and active phase, respectively, except when a cell is jumping up or down. In order to
construct the singular solutions, we first introduce a slow time variable η = εt and then set ε =
0. This leads to reduced equations for just the slow variables. The reduced equations determine
the evolution of the slow variables as a cell evolves along the left or right branch of some cubic.
Once we construct the singular solutions, it is necessary to demonstrated that these singular
solutions perturb to actual solutions of (5) and (6) with ε > 0. This analysis is straightforward
but rather technical and we will not present the details here. A similar analysis can be found
in [14].

We will construct disjoint intervals , k = 1, …, p, and J0 = (0, W0) with the following
properties. Let s→(0) = (P1, P2, …, Pn) be any state of the discrete model. Assume that when
η = 0,
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(A1) If Pi(0) = k, then wi(0) ∈ Jk.

(A2) If Pi(0) = 0, then Ei lies in the active phase.

(A3) If Pi(0) > 0, then Ei lies in the silent phase.

(A4) Every I-cell lies in the silent phase ready to jump up.

(A5) Each .

Then there exists T* > 0 such that when η = T*,

(B1) If Pi(1) = k, then wi(T*) ∈ Jk.

(B2) If Pi(1) = 0, then Ei lies in the active phase.

(B3) If Pi(1) > 0, then Ei lies in the silent phase.

(B4) Every I-cell lies in the silent phase ready to jump up.

(B5) Each .

(B6) The only E-cells that are both active and jump down in the interval [0, T*] are those
with Pi(0) = 0.

In (A4) and (B4), we state that the I-cells are “ready to jump up.” By this we mean that each
I-cell will jump up to the active phase if it receives excitatory input from some active E-cell.
A more precise condition that the I-cells must satisfy will be given shortly, once we introduce
some more notation.

Note that we can then keep repeating this argument to show that the solution of the neuronal
model realizes the orbit predicted by the discrete model.

6.3 Slow equations and some notation
The first step in the analysis is to reduce the dynamics of each cell to equations for the slow
variables. We introduce the slow variable η = εt and then let ε = 0 to obtain the reduced
equations:

(7)

Differentiation is with respect to η.

We assume that αx is sufficiently large; in particular, αx ≫ βx. It follows that if , then
, while if , then  decays at the rate βx. Note that once an I-cell stops

firing, there is a delay, which we denote as Δ, until it releases other cells from inhibition. This
delay is determined by the slow variables, ; if αx is sufficiently large, then

(8)
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The first and fourth equations in (7) state that the E- and I-cells lie on some cubic. Which cubic
a cell lies on depends on the number of inputs it receives from active presynaptic cells. Note
that if Ei is active, so that vi > θi, then si = α/(α + β) ≡ σE. If Ii is active, and , then

. Suppose that Ei receives input from J active I-cells, and Ii receives input
from K active E-cells and M active I-cells. Then

Let

Then the first and fourth equations in (7) can be written as

If gIE, gEI and gII are not too large, then these define cubic-shaped curves denoted by  and
, respectively. We express the left and right branches of  as {v = ΦL(w, J)} and

{v = ΦR(w, J)} and the left and right knees of  as w = wL(J) and w = wR(J), respectively.
The left and right branches, along with the left and right knees, of  can be expressed
as wL(K,M) and wR(K,M), respectively.

We can now write the second and fifth equations of (7) as

(9)

Here, ξ = L or R depending on whether the cell is silent or active. These are scalar equations
for the evolution of the slow variables wi and .

6.4 Assumptions
In many neuronal models, the nonlinear function g(v, w) is of the form

(10)

where w∞(v) is nearly a step function. We assume that g(v, w) is of this form. Moreover, there
exist V1 < V2 and constants τ1 and τ2 such that if v < V1, then w∞(v) = 0 and τ(v) = τ1; if v >
V2, then w∞(v) = 1 and τ(v) = τ2.

We need to assume that the nullclines are such that E-cells can fire due to post-inhibitory
rebound. We assume that  intersects the w-nullcline at some point, pA = (vA, wA), where
V1 < vA < V2. Moreover, the left knee of  is at some point (vL(0), wL(0)) where wL(0) > 0.

We also assume that the left branches of the inhibited cubics lie in the region where v < V1.
Finally, we assume that the right branches of each cubic  for J ≥ 0 lie in the region v >
V2.

These assumptions imply that the slow dynamics (9) do not depend on which cubic the cell
lies on, unless the cell is on the uninhibited cubic . That is, if Ei lies in the silent phase,
and this cell receives some inhibitory input, then wi satisfies the simple equation
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(11)

We will assume that V2 − V1 is small. Hence, even if Ei does not receive any inhibitory input,
then, except in some small neighborhood of the fixed point pA, wi also satisfies (11). If Ei is
active, then wi satisfies

(12)

Similarly, we assume that gI(v, w) can be written as

Moreover, there exist constants  and  such that if , then  and
; if , then  and . For each cubic  that is inhibited (M > 0)

or does not receive excitation (K = 0), the part of the left branch above the v-axis lies in the
region . The right branch of each cubic lies in the region .

Finally, we need to assume that an I-cell will fire only when it receives excitatory input from
an E-cell and it does not receive inhibitory input from some other I-cell. This will be the case
if the nullclines corresponding to the I-cells are as shown in Figure 9. Suppose that the left
knee of  is at ; recall that K and M are the number of excitatory and inhibitory
inputs that the I-cell receives. We assume that  if either K = 0 or M ≥ 1. Moreover,

 if K ≥ 1.

We can now give a more precise statement of (A4). We assume that when η = 0, every I-cell
lies in the silent phase with . For the assumptions just given, this implies that
each I-cell will jump up to the active phase if it receives input from an active E-cell. A more
precise statement of (B4) is that when η = T*, every I-cell lies in the silent phase with

.

6.5 Analysis
We now step through the solution keeping track of where cells are in phase space. We must
keep track of where and when cells jump up and down and where they lie along the left branches
of cubics in the silent phase. The sets Jk and the constant T* will be defined as they are needed
in the analysis.

When do I-cells jump up?—We note that when one I-cell jumps up, it sends inhibition to
every I-cell, including itself. However, because the inhibitory synapses are indirect, there is a
delay from when one I-cell jumps up or down and other I-cells receive or are released from
the resulting inhibition. These delays are modeled by the auxiliary variables xi. At time η = 0,
the last of these variables crosses the threshold for releasing all I-cells from inhibition. For this
reason, all of the I-cells are able to jump up when η = 0, as long as they receive excitatory input.
Let I0 be those I-cells that receive input from at least one Ei with Pi(0) = 0. We have assumed
in (A4) that each of these cells lies below the left knee of . It follows that every cell in
I0 is induced to jump up precisely when η = 0.

We note that one potential problem is that when an I-cell, say , jumps up and  crosses
the threshold θI, then inhibition to all of the I-cells is turned back on. Hence, some of the I-
cells that receive excitatory input may be induced to “turn around” and return to the silent
phase. Note that it is the middle branch of the corresponding cubic that separates those I-cells
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that will return to the silent phase from those that will continue to jump up to the active phase:
I-cells that lie to the left of the middle branch will return to the silent phase, while I-cells to
the right of the middle branch will continue to jump up. For this reason, we need to choose
θI so that it is to the right of the middle branch of the corresponding cubics. This will guarantee
that inhibition is not turned back on until the I-cells are committed to fire.

When do I-cells jump down?—Note that active I-cells may lie on different cubics and
jump down at different right knees. Choose constants  so that when an I-cell
jumps down, it does so with . Each I-cell in I0 jumps up at η = 0 with

. Moreover, while in the active phase, wI(η) satisfies

It follows that every I-cell in I0 jumps down at some time Tijd that depends on the cell and
always satisfies

(13)

where

(14)

We will need to assume that δI < Δ. Later we will find conditions on parameters for when this
is the case. Let  be the time when the last I-cell in I0 jumps down.

The set J0 and the constant T*—Let W0 = 1 + (wL(0) − 1)e−δI/τ2

(15)

It follows from (13) that

(16)

Note that T* corresponds to time-duration of an episode in the discrete model. Hence, (16),
together with (14) and (8), gives a precise estimate on the lengths of these episodes.

When do E-cells jump down?—Consider those E-cells, Ei, with Pi(0) = 0. Recall that
these E-cells are initially active. Here we estimate when these E-cells jump down. Suppose
that the maximum number of I-cells that an E-cell receives input from is M. Then when an E-
cell jumps down, it does so with wR(M) ≤ w ≤ wR(0). Moreover, when η = 0, each wi ∈
[0,W0] and, while in the active phase, the slow variables wi satisfy (12). It follows that the E-
cells jump down at some time Tejd that satisfies

(17)

where

(18)
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We will need to assume that E-cells that jump up remain active until time T* when all I-cells
are released from inhibition. This will be the case if the following inequality holds.

(19)

We also need to assume that all E-cells that are active in a given episode jump down before
the end of the episode, which translates into

(20)

Later, we find conditions on parameters for when this is the case.

The sets Jk—We now define the sets Jkfork > 0. To do this, we need to estimate the positions
of the E-cells at time T*. Let .

First consider a cell Ei = (vi, wi) that initially lies in . Note that Ei jumps down at some
Tejd and then lies in the silent phase for all times η with Tejd < η < T*. While in the silent phase,
wi satisfies (11). Hence,

The position at which Ei jumps down satisfies wR(M) ≤ wi(Tejd) ≤ wR(0). Moreover, Tejd
satisfies (17) and T* satisfies (16). Therefore,

where ,

Let . We have shown that if , then wi(T*) ∈ J1.

We now consider the other E-cells. For 1 ≤ k < p, let

Similarly, let

If k ≠ p, let . If k = p, let . Here, we assume that

(21)

(Recall that the fixed point along  lies at pA = (vA, wA).) This assumption will be verified
later (see inequality (23) or Step 4 of Section 6.7). We also assume that as long as ,
(vi,wi) lies in the region where wi satisfies (11); that is, vi < V1. The latter will be the case if
V1 is sufficiently close to V2, as we assumed in Section 6.4.

Suppose that , 1 ≤ k < p, and wi(0) ∈ Jk. It follows from (21) that Ei lies in the silent
phase for 0 ≤ η ≤ T*. Using (16) and the definition of Jk+1, we conclude that wi(T*) ∈ Jk+1.
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It remains to consider those E-cells in . Suppose that wi(0) ∈ Jp. There are two cases to
consider. First suppose that Ei does not receive inhibitory input from an I-cell in I0. Then, using
(21), (vi, wi) approaches the fixed point pA and wi(η) remains in Jp.

Now suppose that Ei does receive inhibitory input from an I-cell in I0. We need to show that
Ei jumps up at some time η < T* and then lies in J0 when η = T* To do this, we estimate the
time at which Ei is released from inhibition. Recall that the I-cells in I0 jump down at some
time Tijd that satisfies (13). Moreover the last I-cell in I0 jumps down at . Hence, E-cells are
released from inhibition at some time Teju that satisfies

(22)

From the definitions, . It then follows from (21) that Ei jumps up at some η ∈
[TI + Δ, T*].

Finally, we need to show that wi(T*) ∈ J0. Note that when Ei jumps up, wi(Teju) < wL(0).
Moreover, wi(η) satisfies (12) for Teju ≤ η T*. It follows from (22) and (16) that T* − Teju <
δI. Hence,

Clearly, wi(T*) > 0. It now follows that wi(T*) ∈ J0.

Property (B2)—As remarked above, T* − Teju < δI, thus all E-cells that are induced to jump
up between times 0 and T* do so in the interval (T* − δI, T*]. By (19), these cells will still be
in the active phase at time T*, and Property (B2) follows.

Where are the I-cells when η = T*?—For the proof of (B4), recall that the last I-cell jumps
down when . Hence, all of the I-cells are released from inhibition when . From
the assumption of Section 6.4 it follows that since all I-cells still receive inhibitory input
between times  and , the I-cells cannot fire in this interval, and must remain in the silent
phase, for . In order to guarantee that when η = T*, all the I-cells lie below the
left knee of , we assume that the I-cells have fast refractory periods. In particular, the
time it takes for the I-cells to evolve in the silent phase from their jump-down positions to
below the left knee of  is less than Δ. This will be the case if  is sufficiently small.

Properties (B5) and (B6)—Property (B5) follows from our choice of  as the time when
the last I-cell jumps down and the assumption that αx ≫ βx. The latter implies that the xi for
the last I-cell to jump down can be assumed to cross the threshold at time .

Property (B6) follows from the fact that the next E-cell to jump up after time η = 0 can do so
only after the first I-cell that jumped up at time 0 has released its inhibition.

6.6 Choosing parameters
Here we demonstrate how to estimate the various constants needed in the analysis in terms of
parameters in the model. These estimates will demonstrate how one needs to choose the
positions of the left and right knees of the cubic-shaped nullclines, the time-constants τ1, τ2,

 and , and the delay Δ defined in (8).
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First consider TE and δE, which are given in (18). We must choose parameters so that δI <
TE < TE + δE < TI + Δ − δI and δI < Δ. We note that in many neuronal models, the right knees
depend weakly on synaptic coupling. An example is given in the next section. If this is the
case, then

If we further assume that wL(0) and  are both close to 0, it follows that both δE and δI
can be made to be as small as we please. In particular, δI < Δ. We can guarantee that TE + δE
< TI by choosing the time constants τ2 and  appropriately.

We next compute the  and . After some calculation, we find that

We need to choose parameters so that

(23)

To get some idea when this is the case, we will consider, as above, the limiting case in which
δE = δI = 0. In particular, all of the E-cells jump down at the same position, which we denote
as wR, and all of the I-cells jump down at the same position, which we denote as . We further
let wL(0) = wL. Then (23) becomes

This is satisfied if

or

(24)

Note that τ1ln(wR/wL) is the time it takes for a solution of (11) starting at wR to reach wL. Hence,
one can interpret (24) as saying that p is roughly the ratio of the times that an E-cell spends in
the silent phase and an I-cell spends in the active phase.

We have shown that in the limiting case when all right knees coincide and thus δE = δI = 0, we
can have δI < TE < TE + δE < TI < TI + Δ − δI and δI < Δ. Since these numbers depend continuously
on the positions of the knees, the inequalities will continue to hold if wR(0) ≈ wR(M) and

.

Positions of the right knees—We have assumed that the positions of the right knees
depend weakly on the synaptic inputs. This is often the case in neuronal models and here we
demonstrate why. Consider an E-cell, (v,w). Recall that along a cubic-nullcline,
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(25)

where S now represents the total synaptic input. If we let w = W(v, S) denote the cubic-nullcline,
plug this into (25) and differentiate with respect to v, then we find that at (v, w) = (v, w(v, S)),

At the right knee, and, therefore,

(26)

We now write the position of the right knee as (vR(S), wR(S)). Plugging this into (25) and
differentiating with respect to S, we find that

Together with (26), this implies that

We need to choose parameters so that  is small. To do this, we need to estimate fw(vR,
wR). To get a sense of how large fw is, we now consider the concrete example presented in the
next section. For that example,

It follows that we can make  as small as we please by choosing gsyn sufficiently small
and choosing either gNa or gK, or both, sufficiently large. For the example presented in the next
section, we find that at the right knees, w ≈ .5, v ≈ 0, and w∞(v) ≈ 1. It then follows that

.

6.7 An alternative way of choosing parameters
Here we describe an alternative way of choosing suitable parameters. Rather than having
nullclines with all right knees close together, we will only require that their positions are
bounded away from 0 and 1. Specifically, we assume that there are positive numbers 0 < a <
c and 0 < b so that for every ρ > 0 we can choose the nullclines for the E-cells in such a way

that a < wR(0) < c,  and 0 < wL(0) < ρ. Let . Note that our assumptions imply that
d < wR(M) < c.

On the other hand, we may need very small values for the parameter βx, which is consistent
with the rest of our argument, but places a restriction of a very slow release from inhibition on
E-I-networks.

The construction focuses on the choice of five parameters: τ1, τ2, , , Δ. The parameter Δ
does not depend on any of the other four parameters; according to equation (8), we can make
Δ any positive number we want if we choose a suitably small βx for a given threshold θx.
Moreover, the parameters τ1, τ2, ,  do not influence the shapes or relative positions of the
nullclines and their knees.
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We choose parameters in the following sequence of steps:

Step 1—Choose parameters so that the v- and w-nullclines for the I-cells have the desired
shapes and are in the correct relative positions; in particular, so that the knees are in the required
relative positions. This does not place constraints on τ1,τ2, ,  Δ.

Step 2—We will initially require that the nullclines for the E-cells satisfy our assumptions
regarding the bounds a, b, c and are such that . Let τ2 = 1, and choose  small enough
so that . In particular, δI < −ln(1 − d/2). In view of the definition of W0, the latter
implies that 1−W0 > 1−d/2. In view of (18) and the bounds on the knees this in turn implies
that

(27)

and

(28)

Note that . Thus , and in view of the first inequality in (27), this will ensure
that δI < TE. After this step, TI and δI are fixed.

Step 3—The refractory period p was fixed at the outset. Now fix τ1 sufficiently small so that
. Eventually we will have −ln b > lnwR(0) − lnwR(M). This will ensure that
 for all k. Now choose a preliminary value of Δ that is sufficiently large so as to ensure

that  for all k < p and . Here Δ > 4p(TI + TE + δI + δE) will do for a quick and
dirty estimate, where TE and δE can be replaced by the upper bounds in (27) and (28). Finally,
let ρ be sufficiently small so that  and  after this initial
choice of Δ. In order to assure the inequality , we can replace wR(0) by its lower bound
a and TE by its upper bound −ln(1 − c).

Step 4—Choose the v-nullclines for the E-cells in such a way that , a < wR(0) < c, and

0 < wL(0) < Δ. This assures that  and the endpoints  of our intervals are in the
correct relative position. If  after this initial choice of Δ we are done; if not, increase
the Δ a little bit more (which will move both  and  down without changing the strict order
relation between the interval endpoints) until we have . Choose the w-nullclines
for the E-cells in such a way that  and V2 − V1 is sufficiently small.

Step 5—Fix  “sufficiently small” as required in the last line of the proof of (B4) in Section
6.5.

6.8 Completion of the proof of the Theorem
We have so far shown that every orbit of the discrete model is realized by a stable solution of
the differential equations model. In particular, the continuous dynamics realizes the discrete
dynamics on trajectories that start in some open subset of the state space of the ODE model.
This open subset is characterized by the conditions (A1)–(A6) given in Section 6.2. It is still
not clear how solutions that start outside of this subset behave. We now prove that every solution
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of the differential equations model eventually realizes a periodic orbit of the discrete model.
This then will complete the proof of the Theorem.

We start from any initial state at time η = 0 and define time η1 as follows: If no I-cell is active
at time 0, let η1 = 0. If some I-cells are active at time 0, then all I-cells receive inhibition, and
no additional I-cells can jump up until the last currently active I-cell jumps down. Let η1 be
the time when the last I-cell that was active at time 0 jumps down. Now let η2 ≥ η1 be the
earliest time when the last I-cell releases its inhibition. If at that time no E-cells are active or
jump up exactly at η2, then no I-cells will jump up at time η2, and no E-cells will jump up
subsequently to η2. In this case, there will be no subsequent firing, and the system will reach
a state with all E-cells in the interval Jp, which corresponds to the steady state of the discrete
system.

If at time η2 some E-cells are active or jump up, then those I-cells that are ready to fire and
receive excitation will jump up at time η2. Let η2 < η3 <… < η2+p be the subsequent times when
all I-cells are released from inhibition. If at any of these times no E-cells are active, then we
are back to the situation described in the previous paragraph. Notice that for every i = 1, …,
p we must have

This implies that at time η2+p all I-cells will have moved to the region where they are ready to
fire if they are released from inhibition and receive excitation.

Now consider the E-cells at time η2+p. We distinguish two cases. If an E-cell has never been
active between times [η2, η2+p] it will have had plenty of time to move to the interval Jp. The
same is true for the E-cells that were active at time η2 and did not fire again before η2+p. If an
E-cell did jump up at any time in the interval (η2, η2+p], it must have received inhibition from
an I-cell that was active in this interval and whould have jumped up at some time in an interval
(η2+i − δI, η2+i] for some i = 1, … p. Now our previous analysis applies to such cells and shows
that at time η2+p this E-cell must be in the interval Jp−i. We have now shown that (A1) – (A6)
given in Section 6.2 are satisfied at time η2+p. We can now use the analysis given in the previous
sections to conclude that the continuous model realizes the discrete model for η > η2+p.

7 A concrete example
Here we give a concrete example of a neuronal model. Even though the connectivity of this
network is much weaker than the connectivity assumed in proving the results of Section 6,
numerical experiments indicate that this network still reliably generates firing patterns
consistent with the predictionsof the discrete dynamics. The model consists of populations of
both excitatory and inhibitory cells. The equations for each can be written as:

(29)

where gL = 2.25, gNa = 37.5, gK = 45, vL = −60, vNa = 55 and vK = −80 represent the maximal
conductances and reversal potentials of a leak, sodium and potassium current, respectively.
Moreover, ε = .04, I = 0, m∞(v) = 1/(1 + exp(− (v + 30)/15)) and w∞(v) = 1/(1 + exp(− (v + 45)/
3)). The function τ(v) can be written as τ(v) = τ1 + τ2/(1 + exp(v/.1)) where τ1 = 4 and τ2 = 3 for
each E-cell and τ1 = 4.5 and τ2 = 3.5 for each I-cell. The synaptic connections are modeled as
in (3); however, in this model, we do not have the I-cells send inhibition to each other. We also
assume that both the excitatory and inhibitory synapses are indirect. Here we take gsyn = .15,

, vsyn = 0 and . Moreover, αx = 1.2 and βx = 4.8 for both the inhibitory and
excitatory indirect synapses. To simplify the equations, we assume that the synaptic variables
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si and  turn on and off instantaneously; that is, each si satisfies  where H is the
Heaviside step-function and θ = .1 is some threshold. A similar equation holds for each .

Figure 10 shows an example in which there are 100 excitatory and 100 inhibitory cells. Each
E-cell has a refractory period of one and sends excitation to one I-cell and each I-cell sends
inhibition to nine E-cells, chosen at random. We show solutions of both the neuronal model
and the corresponding discrete model. Note that the cells that fire during each episode are
exactly the same. After a transient of 2 cycles, there appears to be a stable attractor of 19
episodes.

8 Discussion
In this paper, we have demonstrated that it is possible to reduce a large class of excitatory-
inhibitory networks to a discrete model. In a companion paper [1], we analyze the discrete
dynamics and characterize when these networks exhibit a large number of stable firing patterns.
Analysis of the discrete model also allows us to determine how the structure of firing patterns
depend on the refractory period, the firing threshold, and the underlying network architecture.

The class of E-I-networks considered in this paper arises in many important applications. These
include models for thalamocortical sleep rhythms [2–5], models for synchronous activity in
the basal ganglia [6,7] and models for oscillations seen in a mammal’s olfactory bulb or an
insect’s antennal lobe (AL) [8,9]. Each of these systems may exhibit rhythmic activity in which
some subpopulation of cells fires in synchrony. Experimental recordings from neurons within
the AL demonstrate that the network may exhibit dynamic clustering in which different
subpopulations of cells take turn firing; moreover, the membership of these subpopulations
may change from one episode to another. As the examples in Section 3.3 and Section 7
demonstrate, this sort of firing pattern arises naturally in the neuronal networks considered
here. The analysis of the discrete model given in [1] examines how the tendency of the network
to exhibit dynamic clustering depends on network architecture.

In order to reduce the neuronal model to the discrete model, we needed to make a number of
assumptions on the network. In particular, we assumed that the inhibitory connections are
indirect and the inhibitory cells have a very short refractory period. These assumptions are
motivated by previous models for excitatory-inhibitory networks in the thalamus responsible
for the generation of sleep rhythms [3]. In those models, the indirect synapses correspond to
slow GABAB inhibition and the inhibitory cells do indeed have a very short refractory period.
In fact, the concrete model presented in Section 7 is based on models for sleep rhythms
generated by excitatory-inhibitory networks within the thalamus [3,4].

The analysis in Section 6 gives precise estimates on the parameter values so that the differential
equations model reproduces the discrete dynamics. One may expect that it becomes
increasingly more difficult to satisfy these estimates as the refractory period, p, or the size of
the network, n, increases. This is true for p; however, the results are robust for a large class of
arbitrarily large networks. For larger values of p, we must keep an increasing number of clusters
separated along the left branch of the cubic-nullclines. Numerical simulations suggest that the
largest value of p for which we can robustly reproduce the discrete dynamics is p = 5. Of course,
the Theorem states that this is possible for any value of p. However, this result requires that
the singular parameter ε be very small. If p is too large, then we may have to choose ε so small
that it is impossible to generate the desired behavior.

The estimates given in Section 6 do not depend as crucially on the size of the network. Note
that p is an intrinsic parameter of individual cells and does not depend on n. The only potential
problem is if two cells within the same active cluster receive a significantly different amount
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of synaptic input from other active cells. The amount of synaptic input determines the right
knee at which a cell jumps down; the estimates given in Section 6 depend on the maximum
possible separation between these right knees. Therefore, as long as active cells receive
approximately the same amount of synaptic input, our results do not depend on the size of the
network.

Our analysis demonstrates that it may not be possible to rigorously reduce the continuous
neuronal model to a discrete model in purely inhibitory networks, but this is possible in
excitatory-inhibitory networks. A critical role of the additional layer of inhibitory cells in the
E-I-network is to stabilize the timings of the firing of cells within each cluster. We note that
the example discussed in Section 5 demonstrates that instabilities may arise during the jumping-
up and jumping-down processes. That is, because cells within the same cluster may jump down
at different times and at different right knees, the distances between these cells may increase.
Moreover, these cells may release other cells from inhibition at different times and this may
result in expansions in the distances between cells that jump up to the active phase. These types
of expansions are in general also possible in E-I-networks because active cells within both the
excitatory and inhibitory populations may also jump down at different right knees. It is,
therefore, not obvious what advantages E-I-networks have over purely inhibitory networks.
Note, however, that in our analysis of E-I-networks, all of the I-cells jump up at the same time.
This follows from the assumption that the inhibitory synapses are indirect and there is all-to-
all coupling between the inhibitory cells. Because all of the I-cells jump up at the same time,
we were able to derive apriori bounds on when different I-cells jump down and then release
E-cells from inhibition. (See inequalities (13)). This leads to an a priori bound on the possible
expansion of the distances between cells during the jumping-down process and this, in turn,
leads to an apriori bound on possible expansion during the jumping-up process. We remark
that it is possible to weaken the assumption of all-to-all coupling among the I-cells in cases in
which the underlying network architecture has some special structure; in particular, all-to-all
coupling among simultaneously active I-cells is sufficient. It is likely that even this assumption
can be further weakened. In the numerical simulation shown in Figure 10, for example, there
is no coupling among the I-cells.

There have been numerous studies of clustering, dynamic clustering and transient synchrony
in neuronal networks [12–18]. Previous work has typically considered smaller networks or
larger networks with symmetries imposed on the network architecture; this includes all-to-all
coupling. In these networks, dynamic clustering often emerges due to the presence of
structurally stable heteroclinic cycles [10,15]. This is in contrast to the mechanism described
in this paper which involves rebound properties of the excitatory cells. Our results hold for a
more realistic neuronal model, we consider a completely general class of network architectures
and the reduction to the discrete model leads to a complete characterization of the network
behavior. We note that the clustering that may appear in the I-network considered in Section
4 appears to be unstable to perturbations of some clusters but not to others. This is similar to
results presented in [15] where phase oscillator models were considered. Fast-slow analysis
has been used in many studies of neuronal systems. This approach was used in [21], for
example, where the analysis of the firing of a single excitable neuron, subject to stochastic
input trains, was reduced to a discrete time Markov chain analysis. Finally, reproducible
sequence generation in a class of excitatory-inhibitory network with random connections was
studied in [16]. In that network, it was found that the highest likelihood for the existence of a
stable limit cycle was close the regime of balanced excitatory-inhibitory input to each cluster;
transient behavior was more likely far from the region of balanced input. The results presented
in [1] demonstrate that for the network considered in the present paper, the existence of stable
limit cycles or the existence of long or short transients, does not depend on a balance of
excitatory and inhibitory input in the underlying E-I-network. Instead, long transients are more
likely in networks with sparse connectivity, while short transients and a large number of stable
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limit cycles arise in networks with a dense connectivity. We note that the networks considered
here and in [16] are quite different so that the different conclusions are not surprising.

Discrete models such as the one presented here have been proposed in numerous other studies
of neuronal dynamics and other biological systems. If the refractory period of each neuron is
one, then our model is an example of a Boolean dynamical system similar to the ones proposed
as models for gene regulatory networks [22]. The relationship between network connectivity
and “typical” network dynamics can be studied by investigating Random Boolean Networks
(RBNs) [22], and a similar approach has been taken in [1]. We note, however, that the discrete
model considered here is not random in the sense of RBNs. This is because once the architecture
of the network is fixed, the dynamics of the discrete model is completely determined. The
results in [1] demonstrate that the discrete model considered in this paper has properties that
are in sharp contrast with those of RBNs. For example, in the study of Random Boolean
Networks, a distinction is made between two types of behavior, called the ordered regime and
the chaotic regime. Results on RBNs show that the network tends to become more chaotic, and
hence less ordered, as the average number of inputs to the Boolean regulatory functions
increases. Moreover, the attractors tend to be very few and very long in the chaotic regime.
The results in [1] demonstrate that the dynamics of our discrete model becomes more ordered,
as measured by the length and number of attractors, as the average degree of connectivity either
decreases below or increases above a certain threshold.
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Figure 1.
Singular trajectory for an oscillatory cell. Note that the fixed point p0 lies along the middle
branch of the cubic-shaped v-nullcline. During the silent and active phase, the singular
trajectory lies on the left and right branch, respectively, of the v-nullcline. Transitions between
the silent and active phase take place when the trajectory reaches a left or right knee of the v-
nullcline. For most of the paper, we assume that the cell is excitable; that is, p0 lies along the
left branch of the v-nullcline.
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Figure 2.
An excitatory-inhibitory network. Each I-cell sends inhibition to some subset of E-cells as well
as to I-cells. Each E-cell sends excitation to some subset of I-cells.
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Figure 3.
Post-inhibitory rebound. The cells take turns firing. When one cell jumps down, it releases the
other cell from inhibition. If, at this time, the inhibited cell lies below the left knee of , then
the inhibited cell will jump up to the active phase.
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Figure 4.
An example inhibitory network with seven cells. The left panel shows the graph of the network
architecture. Cell 1, for example, sends inhibition to cells 4 and 5. Subsets or clusters of cells
fire in distinct episodes. Each horizontal row in the middle panels represents the time course
of a single cell. A black rectangle indicates when the cell is active. In the right panel, we keep
track of which cells fire during each subsequent episode. The equations and parameters used
are precisely those described in Section 7 except , αx = 1, βx = 4, I = 16 for the E-cells
and I = 10 for the I-cells.
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Figure 5.
Discrete dynamics corresponding to the network shown in Figure 4
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Figure 6.
An example network used to illustrate difficulties that arise with inhibitory networks.
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Figure 7.
A singular trajectory corresponding to the network shown in Figure 6. (Left Panel) Cells 1 and
2 and cells 3 and 4 are initially close to each other with cell 1 at a right knee ready to jump
down. (Right Panel) The trajectory until cell 2 reaches a right knee and jumps down.
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Figure 8.
The sets Jk used in the analysis. Here, p = 2. Cells in J0 evolve in the active phase until they
jump down to lie in J1. During this time, cells in J1 move to J2. Note that only those cells in
J2 that receive inhibition move to J0. The rest remain in J2.
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Figure 9.
Assumptions on the nullclines for the I-cells.
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Figure 10.
Solutions of the discrete model (left) and neuronal model (right) for a network of 100 excitatory
and 100 inhibitory cells. Each E-cell effectively inhibits nine other E-cells chosen at random.
In this example, the refractory period is one and the length of the attractor is nineteen. The top
panels show the full network and the bottom panel shows a blow-up of the rectangular regions
highlighted in the top panel. In the right panels, the bright areas indicate when a neuron fires;
the dark areas indicate when a neuron receives inhibition.
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