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ABSTRACT Recently, a new method to analyze biological
nonstationary stochastic variables has been presented. The
method is especially suitable to analyze the variation of one
biological variable with respect to changes of another variable.
Here, it is illustrated by the change of the pulmonary blood
pressure in response to a step change of oxygen concentration
in the gas that an animal breathes. The pressure signal is
resolved into the sum of a set of oscillatory intrinsic mode
functions, which have zero ‘‘local mean,’’ and a final non-
oscillatory mode. With this device, we obtain a set of ‘‘mean
trends,’’ each of which represents a ‘‘mean’’ in a definitive
sense, and together they represent the mean trend systemat-
ically with different degrees of oscillatory content. Corre-
spondingly, the oscillatory content of the signal about any
mean trend can be represented by a set of partial sums of
intrinsic mode functions. When the concept of ‘‘indicial re-
sponse function’’ is used to describe the change of one variable
in response to a step change of another variable, we now have
a set of indicial response functions of the mean trends and
another set of indicial response functions to describe the
energy or intensity of oscillations about each mean trend.
Each of these can be represented by an analytic function whose
coefficients can be determined by a least-squares curve-fitting
procedure. In this way, experimental results are stated
sharply by analytic functions.

One often studies a biological system by changing one variable
as a step function of time and recording the changes of other
variables that are sometimes oscillatory, stochastic, and non-
stationary. The question is how to analyze such stochastic data
to obtain crystal clear results describing the effects of that step
change of one variable on the other measured variables. For
example, in ref. 1, we have shown that the pulmonary blood
pressure in a rat in a presumably constant environment is
stochastic. Now, let us consider the pulmonary blood pressure
in response to step change of oxygen concentration in the gas
that an animal breathes. The general feature of the results of
such an experiment is shown in Fig. 1A. The upper, oscillatory
trace shows a 36-h record of the pulmonary blood pressure in
the arterial trunk of a rat breathing normal air at sea level for
6 h, breathing a gas with 10% oxygen at sea level for the next
24 h, and returning to normal air (20.9% oxygen) for 6 h. The
lower, smooth line shows the history of oxygen concentration
as a function of two steps. One can see certain trends of change
of the pulmonary blood pressure in the record, but we need a
definitive way to handle this overwhelmingly complex data to
reveal the underlying physiological variations. Fourier analysis
does not work for such nonstationary signals. The intrinsic

mode method (1, 2), however, applies naturally to the present
situation. The present article shows how it works and what
physiological responses it reveals.

Pulmonary hypoxic hypertension has been studied by many
authors (3–25). Tissue changes and cellular aspects are dis-
cussed in refs. 3–12. Molecular aspects are discussed in refs.
13–19. Our own preliminary results on the arterial tissue
remodeling and change of mechanical properties caused by the
altered mechanical stresses are presented in refs. 20–25. A
method of analysis of the blood pressure to derive the indicial
response function is not available. In this paper, we use a
rational approach to deduce the indicial response of the
pulmonary blood pressure to 6 step hypoxia.

METHODS

Experimental Procedures. Sprague–Dawley rats (Harlan–
Sprague–Dawley), male, '3 months old, were used in the
study. The protocol was approved by the University of Cali-
fornia, San Diego Committee on Animal Research. Each rat
was implanted with an indwelling catheter in the pulmonary
arterial trunk while breathing a gaseous anesthesia of isoflu-
rane (1). After the catheter implantation, the awakened free-
ranging rat was housed in a cage that was put in a chamber
circulated with a gas of controlled composition (1, 24). The
pulmonary blood pressure was measured continuously through
the catheter while the animal moved freely or slept. The
oxygen concentration in the breathing gas was controlled. The
animal room was maintained at '70°F, was illuminated by
fluorescent lighting from 6 a.m. to 6 p.m., and remained dark
from 6 p.m. to 6 a.m. The tubing connected to the catheter was
connected to an infusion pump and a Statham P23ID trans-
ducer (Statham, Hato Rey, PR) through a ‘‘T’’ tube, and the
catheter was irrigated with a heparinized (20 unitsyml) saline
at a rate of 0.6 mlyh pumped by a Syringe Pump (Razel,
Stamford, CT). Data were collected by a computer while the
pressure waveform and the oxygen concentration signal also
were recorded on a recorder (Astro-Med, West Warwick, RI).
The analog-to-digital conversion was accomplished by a board
(DT31-EZ, Data Translation, Marlboro, MA). The pressure
wave was sampled 100 points per second.

The size of the modified commercial animal chamber (Sny-
der, Denver) was 0.28 m3 (0.66 3 0.56 3 0.75). The change of
oxygen concentration level from 20.9 to 10% was accom-
plished in 1.5 6 0.5 min by an infusion of pure N2 at a selected
rate and was well mixed with the air with a fan. A feedback-
control system of O2 sensor and a flow meter for N2 was used.
CO2 in the hypoxic chamber was absorbed by soda lime (Fisher
Scientific), and ammonia was absorbed by activated carbon
(Fisher Scientific). The change of the breathing gas back toThe publication costs of this article were defrayed in part by page charge
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fresh air by opening the door of the chamber also was
accomplished in 1.5 6 0.5 min. For the measurement of
oxygen, we used a portable oxygen analyzer (Model 320A,
Teledyne Analytical Instruments, City of Industry, CA) with a
flow-through adapter in the animal cage. The oxygen analyzer
was calibrated in the normal air.

Data Analysis Methodology. The method of intrinsic mode
functions (IMFs) presented in refs. 1 and 2 is used here. Let
us first explain what an intrinsic mode is. A signal as shown in
Fig. 1E is designated as X(t), t being time. In Fig. 1E, the
successive peaks of the signal are connected by a cubic spline
dot-dashed smooth upper envelope; the successive valleys are
connected similarly by a lower envelope. The mean of these
two envelopes is shown in Fig. 1E by a thick solid curve and
is denoted by the symbol m1(t). The difference X(t) 2 m1(t)
is designated as h1(t). A plot of h1(t) is shown in Fig. 1F. It is
seen that h1(t) has a few negative local maxima and positive
minima, suggesting an imperfection in the quality of h1(t) as a
representation of an ‘‘oscillation about the mean.’’ To improve
the situation, we impose two definitive requirements for a
function that represents the ‘‘oscillations about the mean’’: (i)
in the whole data set, the number of extrema and the number
of zero-crossings must either be equal or differ at most by one,
and (ii) at any time, the mean value of the envelop of the local
maxima and the envelop of the local minima must be zero. An
oscillatory function that satisfies these two conditions is called
an intrinsic mode function (IMF). The function h1(t) shown in
Fig. 1F does not meet the requirement of an intrinsic mode. To
improve, we treat h1(t) as a new set of data, determine its upper
and lower envelops, and compute their new mean m11(t). The
difference h1 2 m11 is designated as h11(t). This h11(t) again is
treated as new data, and the process is repeated a number of
times (Fig. 1 G and H) until it converges. The convergent
result, Fig. 1H, is designated by C1(t) and is called the first
intrinsic mode, which has a zero local mean.

The difference between X(t) and C1(t) is a function of time
representing a ‘‘mean trend’’ after the first round of intrinsic
mode identification. It is designated as the ‘‘first residue’’ R1(t):

X~t! 2 C1~t! 5 R1~t!. [1]

R1(t) is again oscillatory and can be analyzed as new data by
the same method, yielding the second intrinsic mode C2(t) and
the ‘‘second residue’’ R2(t). The process can be continued until
either the residue or the intrinsic mode becomes less than a
predetermined small number or the residue becomes nonoscil-
latory. If the process takes n steps, then we have

X~t! 5 C1~t! 1 C2~t! 1 z z z 1 Cn~t!. [2]

The last term Cn(t) represents the nonoscillatory trend of the
signal. The other terms Cn-1, Cn-2, and zzz represent the oscil-
latory part of the mean trend. A low-frequency representation
of the mean trend of the signal X(t) is

Mk~t! 5 Ck 1 Ck11 1 z z z 1 Cn, [3]

where 2 , k , n. The lower the k, the more oscillations Mk(t)
contains. Thus, our algorithm resolves the signal X(t) into a set
of oscillations with zero local mean and a set of mean trends
with various degrees of oscillations.

Analytic Representation of Indicial Response. When we
look for the indicial functions that represent the changes of the
signal X(t) in response to step changes of the oxygen concen-
tration, we look for the changes in the mean trends Mn(t),
Mn-1(t), and zzz with respect to changes in O2 level. We may fit
the experimental result on Mk(t) with an analytic function. For
example, if we take the origin of time t 5 0 at the time of
imposing a step change of oxygen tension, we may write the
course of change of the mean blood pressure in response to a
step change for t . 0 as

Mk~t! 5 A1 1 A2e2l2t 1 A3te2l3t 1 z z z 1 Amte2lmt, [4]

where the constants A1, zzz, Am, and l2, zzz, lm are to be
determined by the method of least-squares errors. Depending
on the choice of the values of k and m, we may present different
degrees of details.

FIG. 1. Records of the blood pressure at the rat pulmonary arterial trunk in response to step changes of oxygen concentration in the breathing
gas at sea level (upper row) and the method of sifting the signals to obtain the IMFs (lower row). (A and B) Thirty-six-hour records of two rats
breathing gas with 20.9% O2 from 0 h to 6, 10% O2 from 6 to 30 h, and 20.9% O2 from 30 to 36 h (the balance being N2 and trace of CO2), showing
differences among individuals. (C) A 1-h strip from 29.7 to 30.7 h. The O2 level increased from 10 to 20.9% in 29.97 to 29.99 h. (D) A 1-h record
from 5.7 to 6.7 h. The O2 level changed from 20.9 to 10% in a time interval from 6.04 to 6.06 h. In the lower row, E is a 6-s strip of data X(t) with
the upper and lower envelopes shown in dotted lines and the first mean of the envelopes, m1(t), plotted in heavy solid line. (F) The difference of
data X(t) and the first mean m1(t) was plotted. The envelopes of maxima and minima and the second mean m2(t) were plotted. (G) Two iterations
later, the mean was still not zero. (H) By iteration, one obtains the first IMF, C1(t), whose local mean is zero.
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In reality, we can only approximate a step function of O2 as
shown in Fig. 1 A–D. Furthermore, a dropping step of O2 (Fig.
1D) and a rising step of O2 (Fig. 1C) cause different changes
in blood pressure. Hence, we use two different empirical
functions. For the first case the equation is

Mk~t! 5 pm~t0!51 1 A1~t 2 t0!e2l1
t2t0

T1 1 A2~t 2 t0!e2l2
t2t0

T2

1 A331 2 e2l3
t2t0

T3 46, for t0 # t , [5]

where t0 is the instant of time when O2 concentration drops
suddenly, and pm(t0) is the measured value of Mk(t0). For the
second case the following equation appears good enough:

Mk~t! 5 pm~t1!$1 1 A4@e2l4~t2t1! 2 1#% , for t1 # t , [6]

where t1 is the time when O2 concentration increases suddenly.
A1, A2, A3, and A4 are dimensionless.

Spectral Representation of Pulse Waves. The Hilbert trans-
form of X(t) is Y(t) defined by the reciprocal relationship given
by Eq. 4 of ref. 1. Hilbert has shown that the complex variable
Z(t) 5 X(t) 1 iY(t) is an analytic function of t (26) and can be
written in polar coordinates as a(t)exp[iu(t)], thus defining the
amplitude a(t) and phase angle u(t). Huang et al. (2) defined
the instantaneous frequency v(t) as the derivative of u(t) with
respect to time t. (See Eqs. 5–8 of ref. 1). Knowing the
amplitude a(t) and the frequency v(t) as functions of time t, we
can plot contour maps as shown in Fig. 4D. The contour maps
of the amplitude as functions of frequency and time is called
the Hilbert amplitude spectrum, H(v,t).

The vanishing of the local means of the IMFs C1, zzz, and Cn-1
is a very important fact because the amplitude a(t), and phase
angle u(t) of the Hilbert spectrum are sensitive to the local
means. This is discussed in ref. 1. However, we take this
opportunity to make a correction of a misprint in ref. 1: p. 4818,
line 10 from the bottom in the left column, the term ‘‘1 icos
t ’’ should be deleted from X(t).

We have defined Mk(t) in Eq. 3 to represent the mean trend.
We may define the corresponding sum

Xk~t! 5 C1~t! 1 z z z 1 Ck~t! [7]

as representing the oscillations about the mean trend Mk11(t).
The Hilbert amplitude spectrum of Xk(t) may be designated as
Hk(v,t). The square of Hk(v,t) represents an oscillatory energy
density. We can define the oscillatory energy about the mean,
Ek(t), by an integration over all frequencies:

Ek~t! 5 E
v

Hk
2~v,t!dv . [8]

The variations of Ek(t) and Mk(t) with oxygen level O2(t) yield
the desired summary of information about the transient re-
sponse of X(t) to O2(t).

RESULTS

The experimental results are displayed in Fig. 1 A–D. In each
record, the oscillatory trace is the recorded blood pressure,
and the straight line segments are the oxygen concentration in
the gas that the animal breathes. In Fig. 1 A and B, two 36-h
records of two rats breathing gas at sea level with 20.9% O2
from 0 to 6 h, 10% O2 from 6 to 30 h, and 20.9% O2 from 30
to 36 h are presented. One sees the oscillations of the blood
pressure, the general rise of blood pressure when the oxygen
concentration in the breathing gas is lowered, and the general
drop of blood pressure when the oxygen tension was raised.
The ranges of the systolic and diastolic pressures were large for
each animal, and there were considerable differences between
animals. Without mathematical analysis, it is not possible to
describe the blood pressure history concisely and with preci-
sion.

Fig. 1 C and D show some parts of a record in an expanded
time scale. Fig. 1D shows how the blood pressure oscillates
before and after a rapid change of oxygen concentration, which
was dropped from 20.9 to 10% in 1.5 6 0.5 min. In the scale
of 1 day, we consider this a ‘‘step’’ decrease; and, henceforth,
we say that the oxygen concentration changed as a step
function. Fig. 1C shows the pressure change around a step
increase of O2 concentration.

Fig. 1 E–H show how the intrinsic modes (1, 2) are deter-
mined. Take the case 04229801 as an example (Fig. 1B). A
6-sec segment of the signal was plotted in Fig. 1E. The
successive maxima (systolic pressure) were connected by a
smooth curve (shown dotted in Fig. 1E) by the method of cubic
spline. Then, the minima were connected by cubic spline. The
mean of these two envelopes was computed and plotted (heavy
solid line). It is seen that the mean was not zero. Let the signal
be denoted by X(t) and the mean be denoted by m1(t). The
difference X(t) 2 m1(t) was computed and plotted in Fig. 1F.
Again the upper and lower envelopes of the maxima and
minima were computed respectively, and the mean, m2(t), was
plotted. Again it was seen that m2(t) was nonzero. The

FIG. 2. The whole set of IMFs of the record of rat 04179801. The 16th mode is nonoscillatory.
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difference, X(t) 2 m2(t), was computed and was treated the
same way. Two iterations later, the result was shown in Fig. 1G.
The iteration continued until the mean become sufficiently
small to be called zero. The converged result now satisfies the
definition of ‘‘intrinsic mode function’’ (IMF) and is desig-
nated C1(t), shown in Fig. 1H. Thus, we obtain the first IMF.

The signal X(t) minus the first IMF C1(t) is called the first
residue R1(t) (Eq. 1). R1(t) was treated the same way as X(t)
shown in Fig. 1E, yielding the second IMF with zero local
mean. The process was continued until finally a mode became
either zero (insignificantly small) or nonoscillatory. The whole
set of IMFs for the signal of the case 04179801 is shown in Fig.
2.

From the results of Fig. 2, we can compute the mean trend
functions Mk defined by (Eq. 3). Typical results for the case
04179801 are shown in Fig. 3A, which are the main results to
be used for the indicial response determination.

The analytic representation of the indicial response func-
tions of Fig. 3A by Eqs. 4, 5, and 6 was done by the least-squares
error method. Typical results are shown in Fig. 3 B and C.
These are the main results that we are searching for, to be used
in tissue engineering analysis and design.

The results shown in Figs. 3B and 3C give us the indicial
response functions of the mean pulmonary blood pressure at
the arterial trunk in response to a step decrease or a step
increase of oxygen concentration. A similar quest can be
directed toward the oscillational modes defined by Eq. 7. A
direct look at the oscillation modes is shown in Fig. 4A. These
curves contain a lot of information that needs to be extracted
into simple, understandable terms. This is done by Hilbert
transform and Hilbert spectrum. The results are shown in Fig.
4 B–F. Fig. 4B is a plot of the oscillatory energy defined by Eq.
7 as a function of time. When this spectrum is analyzed as a
nonstationary random signal, we can resolve it into oscillatory

FIG. 3. The mean trends and their analytic representation. (A) A set of mean trends of pulmonary arterial blood pressure changes mathematically
defined by Eq. 3. M16 is the last IMF that is nonoscillatory for the rat 04179801. The other Mk with k , 16 contains various levels of oscillations.
(B) Analytic representation of the indicial response of pulmonary arterial blood pressure to step decrease of O2 concentration from 20.9 to 10.0%
at 6.00 h. The mean trends Mk(t), k 5 16, 14, and 10, as defined by Eq. 3, are fitted by analytic functions as shown in each panel. (C) Indicial response
of pulmonary blood pressure to a step increase of O2 concentration from 10.0 to 20.9% at 30.00 h. The mean trends Mk(t), for k 5 16, 14, and
10 are representable by analytic functions show in each panel.
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IMF modes and mean trend functions Mk(t), with associated
analytic functional representation. This is illustrated in Fig. 4C
for k 5 9, 10, zzz, and 16.

Finally, the results of calculations of the instantaneous
frequency and amplitude of oscillations of the pressure signal
X(t), made possible by means of Hilbert transformation (1),
can be plotted against time in a three-dimensional manner as
in Fig. 4D. The same can be plotted two-dimensionally on the
plane of time and frequency by contour lines of equal ampli-
tudes, as shown in Fig. 4E. These results may be compared with
the spectra computed by Fourier transforms of the pressure
signal in 1-min segments under the assumption that the process
is stationary in each segment. The Fourier spectrum is shown
in Fig. 4F.

DISCUSSION

Fourier analysis is based on the hypothesis of segmental
stationary random oscillation, the principle of linear superpo-

sition of sine waves, and global average of waveform convo-
lution over each time segment. The HHT is based on the
hypothesis of nonstationary process, the principle of linear
superposition of nonlinear IMFs, and local determinations of
amplitude and frequency (through differentiation rather than
convolution) of each IMF. In terms of the IMF, the first k
modes can be added together to represent the oscillations
about the mean trend Mk11(t). The Fourier series cannot
represent time variation in the nonstationary signal, and it does
not have such a property to separate a signal into two parts, one
part representing a mean trend while the other part represents
oscillations about the mean. The number of the intrinsic
modes, n, is finite. In general, the n , log2N, where N is the
total number of data points. The number of harmonics in
Fourier analysis is Ny2. Comparison of the Hilbert and Fourier
spectra shown in Fig. 4 E and F shows that both spectra display
a major frequency at '5 Hz where the energy is concentrated.
This is close to the heart rate of the rat. This rate decreases
when the oxygen concentration decreased. These two spectra

FIG. 4. Oscillations about the mean trend Mk(t), their energy spectrum, IMF, and plots of Hilbert and Fourier spectra. (A) A set of oscillations
of the pulmonary arterial blood pressure about the mean, defined by Xk in Eq. 7, is shown for k 5 1, 2, 4, and 6. (B) The instantaneous amplitude
spectrum of the oscillations about the mean, Xk(t), defined by Eq. 7, is denoted by Hk(v, t). The integral of the square of Hk(v, t) that covers the
range of frequencies v is the Energy spectrum Ek(t), which is plotted as a function of time. (C) A complete set of the IMF of Ek(t) was obtained.
The last mode, n 5 16, was nonoscillatory. Using Eq. 3, we obtained the mean trend of Ek(t), which is plotted here as CEk, with k specified as
shown. (D) The three-dimensional (amplitude-frequency-time) plot of the Hilbert spectrum (HHT). (E) A two-dimensional (contour of amplitude
on the frequency-time plane) plot of the Hilbert Spectrum (HHT). (F) Fourier Spectrum (FFT) over successive minutes is plotted two-
dimensionally. See Discussion.
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are in different vertical scales. The Hilbert spectrum contains
no energy with frequency .10 Hz, and it also has fewer yet
more diffused frequency bands than the Fourier spectrum.
This is because the Hilbert spectrum presents the transient
variation of the frequency from one instant to the next whereas
the Fourier spectrum gives only the global mean. The mean
values certainly will show less variations. The Fourier spectrum
contains more frequency bands because any deviation of
waveform from the basic harmonic will result in strong higher
harmonics whereas the Hilbert spectrum allows variation of
instantaneous frequencies, hence the fuzzy spread in frequen-
cies, calling attention to the fact that the heart rate is also a
stochastic variable, which could be studied by the same intrin-
sic mode method. The strong higher harmonic band with
frequency .10 Hz in the Fourier spectrum is probably spuri-
ous. The clarity of the set of mean trends and the correspond-
ing set of the oscillations is a unique contribution of the IMF
method.
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