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Neutral fitness landscapes
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Biological and technological systems process information by means of cascades of signals. Be
they interacting genes, spiking neurons or electronic transistors, information travels across
these systems, producing, for each set of external conditions, an appropriate response. In
technology, circuits performing specific complex tasks are designed by humans. In biology,
however, design has to be ruled out, confronting us with the question of how these systems
could have arisen by accumulation of small changes. The key factor is the genotype–
phenotype map. With the exception of RNA folding, not much is known about the exact
nature of this mapping. Here, we show that structure of the genotype–phenotype map of
simple feed-forward circuits is very close to the ones found in RNA; they have a large degree
of neutrality, by which a circuit can be completely rewired keeping its input–output function
intact, and there is a relatively small neighbourhood of a given circuit containing almost all
the phenotypes.
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1. INTRODUCTION

Many biological systems perform computations by
internally processing the external stimuli. Some have
information-processing capabilities that rival those of
computers. Signal-transduction pathways, gene-
regulation webs, immune responses and cortical
maps are examples of structures performing such
form of processing (Gerhardt & Kirschner 1997),
which is carried out by different kinds of networks.
All of them perform some class of computation
(Hopfield 1994; Fernandez & Solé 2006), an essential
ingredient of adaptation, whose evolutionary dynamics
is largely unknown.

The evolution of multicellular life is pervaded by the
computational nature of biological networks. They
benefit from extensive cross-talk among different
parts and are able to buffer mutational change and/or
generate a wide repertoire of responses. When
compared with artificial designs, such as electronic
circuits (McAdams & Shapiro 1995), it is possible to
identify common traits; both of them are definable in
terms of an input–output structure with well-defined
functional meaning; but their evolutionary rules
strongly diverge. As pointed out by François Jacob
as early as 1977, it is tinkering—not design—that
shapes biological structures (Jacob 1977; Solé et al.
2002). Tinkering implies re-use and local, instead of
top-down, planned decisions. Yet, in spite of its
apparent limitations, it is obviously successful but not
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well understood. This is due to a lack of knowledge of
the mapping between structure (genotype) and func-
tion (phenotype). With the exception of studies at the
molecular level (Schuster et al. 1994; Schuster 1996;
Babajide et al. 1997; Ancel & Fontana 2000; Schuster &
Stadler 2002), little is known about the general nature
of such mapping.

In order to uncover such mapping and its con-
sequences for network evolution, we have explored the
class of so-called feed-forward networks (FFN). They all
involve the presence of a set of units acting as receptors
and a downstream cascade of signalling events ending
up in a set of output units. Such systems are simple (and
yet very general) models of biological networks, from
intracellular signalling (Bray 1995; Weng et al. 1999) to
layered cortical maps (Rumelhart & McClelland 1986).
Actually, intracellular signalling cascades have been
shown to share a number of relevant traits in common
with parallel-distributed systems (Bray 1990; see also
Alberts et al. 2002, pp. 778–782) described as FFNs.

Consistently with the previous work on RNA folding
(Schuster et al. 1994; Engelhardt 1998), we observe the
following. (i) Neutral networks percolate the entire
genotype space; there are always single-mutation
neighbours of a given wiring that have the same
input–output function, to the point of enabling us to
go arbitrarily far in genotype space. (ii) It is not
necessary to search all of the genotype space to find a
given phenotype, since all the phenotypes are present
around a relatively small neighbourhood of a given
sequence, compared to the size of the whole space. A
third piece of information suggests an even more
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Figure 1. Topology of the model of FFN used. It consists of a
set of inputs (I units), hidden units (H!M units) and outputs
(O units). Units can connect strictly to the layers above, thus
avoiding cycles, except for the outputs, which cannot connect
directly to the inputs.
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interesting picture, (iii) the search neighbourhood
becomes much smaller if we start at specifically chosen
genotypes which have been optimized for mutant
diversity, suggesting large differences in evolvability.
2. FEED-FORWARD BOOLEAN NETWORKS

2.1. Network structure and function

The model used is a very simple feed-forward structure
(figure 1), and does not try to be a realistic represen-
tation of signalling graphs. We will ignore some
relevant elements present in the signalling pathways,
such as the presence of feedback loops. However, the
wiring of the system is kept small, with average link
numbers compatible with those seen in real signalling
networks. Several extensions of this work will be
presented elsewhere.

The network has I inputs, O outputs and a H!M
block of hidden units, as shown in figure 1. Units in the
hidden block can connect only to the layers above them
(thus avoiding cycles and cyclic behaviour), including
inputs, and the outputs can connect to the hidden units
but not directly to the inputs. In addition, the number
E of connections is fixed.

The units, Si, of the network have a Boolean nature
(i.e. Si2{0, 1}), and perform a simple integer threshold
function of the inputs, i.e.

siðtC1ÞZQ
XN
jZ1

wijsjðtÞ
 !

: ð2:1Þ

The Q function is defined as Q(x)Z0 for x%0, and
Q(x)Z1 for xO0 (thus the XOR function is not possible
with only one unit). The weights wij are drawn from the
set {C1,K1, 0}, representing positive, negative or
absent regulation, respectively. When an input is
presented, the output can be computed propagating
the inputs in a non-dynamical way just as if all units
changed at once.

By this definition, the input layer of the circuit
models external states (or the result of sensing external
states) being presented to the network, and the bottom
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layer models the output, representing needed response.
The network, therefore, ‘computes’ the appropriate set
of responses for each external state. This feed-forward
topology is widely used in artificial neural networks.
2.2. Wiring-function mapping

Given this structure, we can easily define a genotype
and a phenotype. The genotype, Wi, is defined as the
ordered string of all weights wij. To compute the
phenotype, we first calculate all the input–output
pairs, with all possible different inputs from
I1Z{0, 0, 0, ., 1} to I2NK1Zf1; 1;.; 1g (with the
exception of I0Z{0, 0, ., 0}, which by definition,
yields an all-zero output). The entire list of outputs
completely describes the Boolean function Fi, or
phenotype.

Two sets,W andF, describe the universe of possible
wirings and functions, i.e. the sets of all possible
genotypes and phenotypes. The genotype–phenotype
map between wiring and function is then defined as

U : W/F: ð2:2Þ

For each genotype Wi2W, we have a phenotype
FihU(Wi)2F. Evolution and adaptation occur
through changes in wiring eventually leading to
changes in function. How adaptation proceeds
largely depends on the nature of mapping U (Stadler
et al. 2001).

In order to characterize U, a metric or topological
measure is needed. Given the discrete nature of both
the spaces, phenotypic and genotypic distances can be
defined, respectively, as
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Phenotype distance is therefore equivalent to the
Hamming distance of a bit string, and genotype
distance is similar, measuring the number of different
connections (i.e. either displaced or with reversed sign,
which contribute 2 to the sum, hence the 1/2 factor).
Throughout the work, we have used small networks,
usually with I2{3, 4}, O2{4, 5}, HZ{7,., 11} and
M2{3, 4}, with an average connectivity of hkiz3.0
which allowed us to more exhaustively explore geno-
type and phenotype spaces.
2.3. Network wiring changes

Mutation is implemented as the simplest random
procedure that alters the wiring of the network
preserving its average connectivity intact; an existing
edge is chosen at random and is removed and re-wired
between a previously disconnected pair of (different)
elements (also chosen at random). A negative weight is
added with probability 1/3 and a positive one with
probability 2/3. The bias in the weights tries to
compensate for the fact that a balanced network is
less active overall.
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Figure 2. Rank-frequency distribution of functions. Here, we
represent the number of times, P(r), the r th most common
system has been observed in the sample. A network with IZ3,
OZ4, HZ8 and MZ3 and average connectivity hkiZ3 was
chosen and a sample of 2!106 was taken. The distribution
follows a general form of Zipf’s law, i.e. P(r)Za(bCr)Ka with
az0.75.
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Figure 3. Probability densities of genotype distance dG in two
different experiments. (a) A target wiring is chosen at
random, and an approach in genotype space to this target is
tried by 104 different wirings. For each trial wiring, a neutral
path is performed in which neighbours have to maintain
function and at the same time be closer to the target (average
final distance to the target, 5.18G1.82). (b) A similar neutral
path is tried. In this case, a random genotype is chosen and a
trail copy is mutated, step-by-step pushing it away in
genotype space, while again conserving function (94.4% of
genotypes were completely rewired while still maintaining
phenotype).
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3. RESULTS

3.1. Frequencies of shapes

The frequencies of different functions were obtained
using a sample of 2!106 random wirings and comput-
ing the input–output table by the rules given. The rank
plot of this data is shown in figure 2, evidencing a
general form of power law. Thus, there are some
frequent functions and many rare ones. The most
frequent is the all-zero outputs function; there is a
certain probability that no activation path exists
between inputs and outputs, although overall, the
probability is rather low (3.1!10K3). The small
plateau following this first value at the low-rank zone
corresponds to those functions with an equal output for
all different inputs. In addition, within groups of 10 or
more genotypes with the same phenotype, we calcu-
lated the average genotypic distance. In all cases, we
obtained the same distance (within 1%) as that of a
random sample, confirming that phenotypes have
genotypes distributed uniformly over genotype space.
3.2. Neutral paths

Two experiments were performed to check for the
existence of neutral networks (i.e. regions in W
consisting of neighbouring genotypes with the same
phenotype), both involving neutral paths with mono-
tonously decreasing (and increasing) distance from a
reference sequence. In the first (figure 3a) experiment, a
target wiring W is chosen at random, and a second
random wiring is chosen as trial genotype, T. Next, if a
random neighbour T 0 of T conserves the phenotype
and has a smaller dG(W,T 0), it is accepted as the new
T. The process is repeated 104 times. The final
dG(W,T ) is an upper bound of the minimum distance
of the two phenotypes FW and FT. It is remarkable that
this distance is on an average 5 (out of 84).
J. R. Soc. Interface (2007)
In the second experiment, a random wiring W is
chosen, and a copy of it is taken as trial,T. At each step,
if a random neighbour T 0 of T has the same phenotype
as W and dG(W,T 0) is larger, it is accepted as the new
T. The process is repeated 104 times. The final
dG(W,T ) correlates with the size in genotype space of
the neutral networks. In this experiment, 94.4% of the
genotypes could be completely rewired (maximum
genotype distance of 84), while keeping the phenotype
(the smaller distance being 73). Neutral networks
therefore percolate through genotype space.
3.3. Map structure

To understand how the map U is seen from the
viewpoint of an average genotype W, we evaluated
the probability that another genotype W 0 at distance
dG(W,W 0) had a phenotype at a certain distance dP
(the structure density surface; see Schuster et al. 1994).
This probability was evaluated by producing pro-
gressively distant mutants from a given starting wiring,
and evaluating the distance dP of their respective
functions. We took 103 reference wirings, and for each
one, we chose 10 different wirings at all values of dG and
computed dP. Figure 4a shows the resulting two-
dimensional histogram. As dG increases, we have a
picture of how the average phenotypic distance
behaves. For values of dG between 1 and 20, there is a
correlation with the phenotype (a few changed wires
usually produce a few changes in function), but after
that, the distance to phenotypes is progressively similar
to the random case, i.e. we can expect to find an almost
random phenotype if we change 20 or more of a given
network’s links (a 25% of the total).

Together with the covering of genotype space by the
average phenotype, these results suggest the presence of
a neighbourhood (a high-dimensional ball) around a
particular FFN whose wirings include all common
functions, in consonance with the RNA case (Schuster
et al. 1994).However, there are some differences. Firstly,
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a few changes in an RNA sequence mostly result in a
changed shape; even in the case of only one mutation,
an RNA molecule can have a drastically different
structure (up to a 66% change in phenotype distance).
This is in contrast to FFNs, which in general are more
robust for a small number of mutations (figure 4a).
Secondly, the radius of the high-dimensional ball
around which a genotype can find all common functions
is somewhat smaller in the RNA case (approx. 15%).
These differences lead us to think whether a special
group of FFNs could bemore sensitive tomutations, and
therefore, deeply alter the perception of genotype space
in the same experiment with them as starting points.
Figure 5. A set of 80 random genotypes (times) was optimized
for higher mutant diversity, conserving their phenotype (open
circles). A hill-climbing process was performed with each one
so that either the fraction of neutral mutants (m) decreased, or
the diversity of the different mutants (d) increased. The initial
average values of (0.63, 0.12), indicating very robust net-
works, were changed into (0.17, 0.29), suggesting the big
differences in the sensitivity to mutations of genotypes within
the same neutral network.
3.4. Mutation sensitivity

To test this hypothesis, we searched FFNs with a higher
average sensitivity. Starting at a random genotype W,
we measured its mutant diversity with two parameters:
m (satisfying 0!m!1), indicating the fraction of
mutants with a different phenotype (i.e. non-neutral),
and d (satisfying 0!d!1), measuring the fraction of
unique phenotypes within the non-neutral group (or
diversity). A pair (m,d) with values (0.85, 0.1) describes
a robust FFN with an 85% of neutral mutants in which
non-neutral phenotypes (the remaining 15%) are
repeated 10 times on an average.

We chose a group of 80 random FFNs and with each
one, we performed a hill-climbing process successively
choosing mutants with either lower m or higher d, but
conserving phenotype. The size of the mutant samples
was 2!103. The starting and the ending sets are shown
in figure 5. It is immediately clear that the differences in
mutation sensitivity are enormous. These differences
suggest that within a neutral network, special FFNs
could serve as gateways, giving populations access to
a very high number of different phenotypes from the
same spot.

This is confirmed by the structure of the genotype–
phenotype map (figure 4b) as viewed from the sensitive
group of FFNs. The average phenotype distance is
J. R. Soc. Interface (2007)
plotted as a dashed line on the left for comparison. The
distance separating this group from a random genotype
is halved, indicating a much smaller search space for
these special FFNs.
3.5. Dynamical transitions

The structure of the mapping is further made clear by
studying evolutionary dynamics. Following the
previous approaches (Huynen et al. 1996), we did
some optimization experiments in which a population
of FFNs evolves towards a target function. We choose a
very infrequent target phenotype FT (the phenotype
with the highest average output-pair entropy in a
sample of 105), and a group of 103 FFNs chosen at
random serves as initial population. At each iteration, a
new population results from fitness-proportionate
reproduction, with the fitness of a genotype Wi being
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Figure 6. An example of the evolutionary optimization towards a specially chosen phenotype (see text). The parameters of the
FFNs are IZ6, OZ5, HZ10, MZ5 and LZ3.0. The initial population consists of 103 random FFNs. The population finds the
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dG between 103 random pairs of genotypes within the population.
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FiZeKdPðFi ;FTÞ. Every reproduced FFN has a prob-
ability, pZ0.3, of being mutated.

An example of the dynamics displayed by this kind
of process is shown in figure 6. The average distance to
the target decreases with time, showing punctuated
events in which fitter genotypes spread rapidly within
the population. Between these transitions, a stable
regime characterized by an increase in genetic diversity
takes place. A sample of the average dG of FFNs in the
population shows increasing values, which drop
abruptly whenever a fitter genotype takes over. This
is the typical result that should be expected from the
random drift of a population within a genotype space
in the presence of neutrality (Huynen et al. 1996;
Fontana & Schuster 1998).
4. DISCUSSION

Neutrality plays a very important role in evolution. It
helps populations to buffer against environmental
fluctuations (Kimura 1983; Engelhardt 1998; van
Nimwegen et al. 1998; van Nimwegen & Crutchfield
2000). This is achieved by creating ensembles of equally
fit mutants. Moreover, once a more advantageous
mutant appears, a rapid amplification occurs around
the new solution. Previous theoretical efforts have
shown that the evolutionary dynamics on neutral nets
is largely independent of the parameters being used.
Actually, it seems solely determined by network’s
topology. The direct consequence of this is that many
properties of the network topology can be inferred
from simple population statistics (Engelhardt 1998;
Engelhardt & Newman 1998; van Nimwegen et al.
1998). Such convergent results might actually indicate
that the overall structure of neutral networks in
evolving systems is shaped by universal rules.

In FFNs, neutrality is a consequence of the
numerous connections in a specific network that can
be added or removed without directly affecting its
functionality (Fernandez & Solé 2004). Therefore, it is a
robust result that is insensitive to the parameters I, O,
M or H, but depends on the existence of a threshold at
each unit, as the consistent results we have observed
suggest. The exception is the rank-frequency
J. R. Soc. Interface (2007)
distribution, which already for the values of IZ6 and
OZ6 turns out to be too large to sample with enough
significance, and therefore, is different if sampled with
the same density. In addition, we are aware of some
caveats of our approach.

First, the parameters affect other aspects of the
FFNs, such as their ability to compute a randomly
chosen phenotype. As in the case of neural networks,
the number of hidden layers (H here) and their size
(M here) affects the complexity of the computations
available to the system or its capacity (Hertz et al.
1991), and in the case of FFNs, to the attainable
phenotypes (which also depends on the number of
links, E). In this sense, many dynamics experiments
such as the one shown in figure 6 failed when performed
with a target phenotype chosen at random (and never
with a phenotype computed from a random genotype).
In general, we do not know what is the precise depen-
dence between an increase in M or H and the diversity
of phenotypes, but we expect to find an increasing
coverage of phenotype space as H and M increase.

Second, and concerning the explanatory power, the
all-or-none binary nature of the model dynamics used
here is certainly an oversimplification. However, it is
consistent with the switch-like behaviour of proteins
within signalling cascades (Bray 1990, 1995;Weng et al.
1999; Alberts et al. 2002), and some studies show how a
Boolean treatment of gene networks can successfully
reproduce a broad spectrum of observations (Mendoza
et al. 1999; Albert & Othmer 2003; Espinosa-Soto et al.
2004). In our study, a Boolean idealization was a
necessity, since the proper definition of a phenotype and
genotype requires discretization, and we feel it is also
pertinent to the issues treated. A similar argument
applies to the feed-forward nature of the networks
studied, since real networks are in general recurrent,
but the methodological issues involved in modelling
them make the problem much more difficult.

Third, there is no agreed measure of evolutionary
adaptability or evolvability. Although its definition is
mostly clear (Kirschner &Gerhart 1998), it leaves room
for interpretation and proposed measures are inevitably
defined in terms of the models presented, and our
sensitivity measure (m,d) is no exception. Nevertheless,
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sensitivity to mutation is informative about the
plasticity of a given genotype, in relation with the
second point of the evolvability definition; ‘to reduce
the number of mutations needed to produce phenoty-
pically novel traits’ (Kirschner & Gerhart 1998). Since
neutrality is assumed, the first point, ‘to reduce the
potential lethality of mutations’, is fulfilled (other
authors have already studied evolvability as affected by
neutrality (Ebner et al. 2002), but in the sense of ‘the
ability of random variations to sometimes produce
improvement’).

Despite these limitations, and as already discussed in
Schuster et al. (1994), the presence of neutrality in the
genotype–phenotype map has immediate consequences
for an evolutionary process, and our results extend
those of RNA and combinatorial molecules to a new
domain and provide a good example of a more general
applicability of these ideas. In the case of biology, living
systems have evolved mechanisms of computation able
to optimize their chances of survival. As a consequence,
convergence towards networked structures able to
integrate and process external inputs into reliable
outputs has been widespread. Our results suggest that
evolving such functional networks is not as difficult as it
may seem, complementing the strictly topological
results in the field of network biology (Barabási &
Oltvai 2004). Present research is actually aimed at
building synthetic molecular interaction networks
(Elowitz & Leibler 2000; Guet et al. 2002; Kobayashi
et al. 2004). Not surprisingly, special interest is being
focused on the possibility of exploiting the compu-
tational potential of such networks.

On the other hand,many attempts have beenmade at
the evolutionary design of digital (and analogue) circuits
using genetic representations. In this context, some
authors have already pointed out the importance of
neutrality in artificial circuit evolution (Yu & Miller
2001) and genetic programming (Banzhaf&Leier 2006).
However, most of this work has been focused on the
production of small electronic circuits and their appli-
cation to other domains is not straightforward. The
results presented here could also contribute to this field.
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