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Abstract
The past decade has seen an expansion of research and knowledge on pharmacotherapy for the
treatment of alcohol dependence. The Food and Drug Administration (FDA)–approved medications
naltrexone and acamprosate have shown mixed results in clinical trials. Oral naltrexone and
naltrexone depot formulations have generally demonstrated efficacy at treating alcohol dependence,
but their treatment effect size is small, and more research is needed to compare the effects of different
doses on drinking outcome. Acamprosate has demonstrated efficacy for treating alcohol dependence
in European trials, but with a small effect size. In U.S. trials, acamprosate has not proved to be
efficacious. Research continues to explore which types of alcohol-dependent individual would
benefit the most from treatment with naltrexone or acamprosate. The combination of the two
medications demonstrated efficacy for treating alcohol dependence in one European study but not
in a multi-site U.S. study. Another FDA-approved medication, disulfiram, is an aversive agent that
does not diminish craving for alcohol. Disulfiram is most effective when given to those who are
highly compliant or who are receiving their medication under supervision. Of the non-approved
medications, topiramate is among the most promising, with a medium effect size in clinical trials.
Another promising medication, baclofen, has shown efficacy in small trials. Serotonergic agents such
as selective serotonin reuptake inhibitors and the serotonin-3 receptor antagonist, ondansetron,
appear to be efficacious only among certain genetic subtypes of alcoholic. As neuroscientific research
progresses, other promising medications, as well as medication combinations, for treating alcohol
dependence continue to be explored.

INTRODUCTION
Alcohol dependence is a common disorder. Globally and in the U.S., alcohol dependence ranks
5th and 3rd, respectively, on the list of preventable causes of morbidity and mortality [1]. In
2000, the U.S. had 20,687 alcohol-related deaths, excluding accidents and homicides, with an
overall estimated cost to the nation of about $185 billion [1].

Alcohol dependence is a chronic relapsing medical disorder [2]. Notwithstanding its
psychological and social ramifications, once established, alcohol dependence is essentially a
brain disorder that bears many of the characteristics of other medical relapsing disorders such
as diabetes and hypertension. Indeed, without a pharmacological adjunct to psychosocial
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therapy, the clinical outcome is poor, with up to 70% of patients resuming drinking within one
year [3,4].

Alcohol dependence is a treatable disorder when efficacious medicines are added to enhance
the effects of psychosocial treatment. The development of these medicines has been facilitated
by advances in the neurosciences that have implicated several target neurotransmitter systems,
such as those within the cortico-mesolimbic dopamine (CMDA) pathway, which mediate
alcohol’s reinforcing effects associated with its abuse liability. Additionally, it is now known
that some alcoholics may possess a biological predisposition to the disease. These biologically
vulnerable alcoholics can be expected to benefit from specific adjunctive medication targeted
toward correcting or ameliorating the underlying abnormalities. Further, we are now better at
controlling the “dose” of psychosocial treatments through a manual-guided treatment
approach, thereby enabling the optimization of how particular medicines can be combined with
adjunctive psychosocial treatment.

Recently, the treatment of alcohol dependence has been advanced by development of new
models as well as broader therapeutic objectives. An important model is that with appropriate
pharmacotherapy it is possible to initiate treatment for alcohol dependence while the individual
is still drinking heavily and at the point of maximum crisis and help-seeking behavior [5]. To
broaden access to treatment, effective but brief and standardized behavioral treatment has been
developed to accompany medication delivery; thus, these medicines can now be provided more
readily in the general practice setting [6,7]. Finally, it is now better recognized that although
abstinence remains the ultimate goal in treating alcohol-dependent individuals, reducing the
frequency of heavy drinking has the major impact of decreasing alcohol-related consequences
and improving quality of life [5].

In this review, I focus on the development of those medications for which there is clinical
information and that have been designed to reduce the desire to drink, to promote abstinence,
or both. Basically, of the numerous neurotransmitter systems that have been identified for the
development of new medicines, the most promising compounds appear to be those that
modulate the function of opioids, glutamate with or without gamma-aminobutyric acid
(GABA), and serotonin (5-HT). Other putative therapeutic medications including direct
modulators of dopamine function and enzyme inhibitors also shall be discussed. Each
subsection of this article provides an overview of the basic science, clinical studies, and future
directions for the development of specific promising medications from these neurobiological
systems. Emphasis is made in places where the development of a particular medicine has
advanced the development of a new treatment model or broadened therapeutic objectives. I
conclude the article with remarks pertaining to current barriers to treatment and how they might
be overcome.

OPIOIDS: MU RECEPTOR ANTAGONIST — NALTREXONE
Basic science and human laboratory studies

The endogenous opioid system, particularly through its interactions with the CMDA system,
is involved in the expression of alcohol’s reinforcing effects [8-14] (Fig. 1). Obviously, opioid
receptors also have interactions with other neurotransmitters, including those in the glutamate
[15], GABA [16], 5-HT [17], cannabinoid [18] and perhaps glycine [19] systems, that
contribute to its effects on ethanol intake.

Even though naltrexone has some affinity for the kappa-opioid receptor [20], its principal
pharmacological effect on alcohol consumption is through blockade of the mu-opioid receptor
as mice that lack the mu-opioid receptor do not self-administer alcohol [21]. Further, alcohol
intake increases beta-endorphin release in brain regions such as the nucleus accumbens

JOHNSON Page 2

Biochem Pharmacol. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[22-24], an effect that is blocked by naltrexone [25]. Mu receptor antagonists such as naltrexone
and naloxone also suppress ethanol intake across a wide range of animal paradigms [26-36]
cf. [37-39]. More recently, there also has been interest in elucidating the role of the
hypothalamic-pituitary-adrenocortical axis in stress-induced ethanol consumption and
sensitivity and how this might be influenced by naltrexone treatment [40].

Ethanol has complex neurobiological interactions that affect the production, secretion, and
binding of opioids to their receptors [41], thereby hinting at a fundamental mechanistic process
linking the two. This relationship does, however, remain imperfectly understood. For example,
animals bred for high ethanol preference exhibit an exaggerated reactive rise in beta-endorphin
level following ethanol intake [42]. Yet, naltrexone’s ability to suppress ethanol-associated
increases in beta-endorphin level appears greater in animals bred for low rather than high
preference for alcohol [25]. Indeed, from a group of animals in the beta-endorphin-deficient
mutant mouse line — C57BL/6-Pomc1(tm1Low) — the highest ethanol consumption occurred
in the heterozygotes (50% beta-endorphin deficient) and not the homozygotes (no beta-
endorphin) or control group of sibling wild type mice from the same strain [43]. These findings
do, however, suggest that molecular genetic differences that alter beta-endorphin expression,
not simply its plasma levels, modulate the level of response to naltrexone. Nevertheless, there
is growing evidence in humans that differences in the OPRM1 mu-opioid receptor gene are
associated with differential therapeutic response to naltrexone — a theme that is explored in
detail later in this review.

Human laboratory studies that have evaluated naltrexone’s effects on alcohol-induced positive
subjective mood and craving have yielded mixed results. Although it has been shown that
naltrexone can reduce alcohol-induced positive subjective mood, albeit with increased sedation
[44], and increase the latency to consume alcohol among social drinkers [45], others have
reported no effect [46]. It does, however, appear that a positive familial loading for alcoholism
might predict the potential anti-drinking and anti-craving effects of naltrexone in human
laboratory studies. For example, King et al. [47] showed that social drinkers with a familial
loading for alcoholism were more likely than those without it to exhibit a decrease in the
stimulant effects of alcohol following naltrexone treatment. Nevertheless, they also reported
concomitant negative mood exemplified by increased tension, fatigue, and confusion and
decreased vigor, as well as notable adverse events such as nausea and vomiting following
naltrexone. More recently, Krishnan-Sarin et al. [48] have shown that individuals with a family
history of alcoholism, compared with their family history-negative counterparts, consumed
less alcohol in a laboratory paradigm. Obviously, these results would lead to the speculation
that a genetic explanation for differential response to naltrexone’s effects on craving and
alcohol consumption among alcohol-dependent individuals is being studied in the human
laboratory. Nevertheless, even here, what has been demonstrated is that naltrexone increases
the urge to drink among alcohol-dependent individuals who are aspartate (Asp) carriers of the
OPRM1 gene but has no effect on their homozygote, i.e., asparagine-carrying, counterparts in
a cue-reactivity laboratory paradigm [49]. Despite the dissimilarities between studies,
including the subject’s motivation toward seeking treatment, experimental set, setting,
expectations, and paradigm, these results do appear to be in contrast with the report that
naltrexone preferentially protected against relapse in Asp-carrying alcohol-dependent
individuals [50]. The implications of these findings are discussed in the clinical subsection
below.

In sum, basic science studies support the finding that naltrexone can reduce ethanol drinking
and related behaviors in animals. Naltrexone appears most effective in suppressing the
expected ethanol-induced increase in beta-endorphin level among animals that exhibit an
exaggerated beta-endorphin response. The molecular genetic construct for understanding
preferential response to naltrexone is not well understood and is even contrary to expectations.
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Generally, human laboratory studies provide some support for naltrexone as a medication that
can reduce craving for alcohol as well as its consumption; however, these effects appear to be
more readily demonstrable among individuals with high familial loading for alcoholism. An
initial molecular genetic exploration did not demonstrate that naltrexone’s anti-drinking effect
is greatest among non-treatment-seeking, alcohol-dependent individuals who carry the Asp
variant of the OPRM1 gene.

Clinical studies with oral naltrexone
In 1994, the Food and Drug Administration (FDA) approved naltrexone for the treatment of
alcohol dependence based on data from two relatively small (total N = 167) studies [51,52].
In those studies, recently abstinent, alcohol-dependent individuals who received naltrexone
(50 mg/day), compared with their counterparts who got placebo, were less likely to relapse
during the treatment period of 12 weeks. Nevertheless, 5 months after treatment, the relapse
rates for the naltrexone and placebo groups were similar. The anti-alcohol-craving effects that
were ascribed to naltrexone were based on three findings. First, individuals with the highest
level of baseline craving appeared to benefit the most from naltrexone [53]. Second, abstinent
individuals who had received naltrexone had less of an impulse to initiate drinking [54]. Third,
even among those who sampled alcohol, less pleasure was derived from the beverage [55].
These earlier studies were limited by the fact that only male veterans were tested in one of the
studies [52], and either there was no biomarker used to corroborate the self-reported data
[51] or when the liver enzyme gamma-glutamyl transferase (GGT) was used as a biomarker
the results were not contributory [52] — presumably due to the relative insensitivity of this
measure to capture transient drinking patterns.

Notably, in two large meta-analytic studies [56,57], naltrexone has been demonstrated to be
efficacious at reducing the risk of relapse among recently abstinent, alcohol-dependent
individuals. What emerged from this literature review was that naltrexone’s effect size was
small, with a corresponding number needed to treat (i.e., the number of individuals who need
to be treated to prevent relapse in a single individual) of 7. Another threat to demonstrating
efficacy for naltrexone is not having quite high enough levels of medication compliance.
Indeed, in a 3-month follow-up and systematic replication of their study, Volpicelli et al.
[58] only found a significant effect of naltrexone treatment compared with placebo recipients
if the pill taking rate exceeded 90%; even here, the difference in the percentage of drinking
days between the naltrexone and placebo groups was small — 3% and 11%, respectively.
Perhaps because of this small effect size, some studies have failed to demonstrate naltrexone’s
efficacy in treating alcohol dependence. For instance, in the UK collaborative trial led by Chick
et al., no overall difference was found between the naltrexone 50 mg/day and placebo groups
on any of the endpoint measures; however, when individuals with less than 80% pill-taking
compliance were excluded from the analysis, naltrexone was associated with a lower
percentage of days drinking compared with placebo — 12% vs. 20%, respectively [59,60].
With naltrexone treatment, reduced pill-taking compliance is typically the result of adverse
events such as nausea that can be reported as significant in up to 15% of trial participants
[61]. Therefore, new technologies that aim to improve compliance by delivering naltrexone in
depot form might possess a therapeutic advantage to the oral formulation. These technologies
are discussed later in this section. Importantly, the recent publication of the results of the
NIAAA-sponsored COMBINE study (N = 1383) has served to underscore that naltrexone (100
mg/day) plus medication management to enhance compliance compared with placebo reduced
the risk of a heavy drinking day (hazard ratio = 0.72; 97.5% CI = 0.53–0.98; p = 0.02) [62].
Uniquely, this study used a higher naltrexone dose (i.e., 100 mg/day vs. 50 mg/day), and the
high compliance rate of pill-taking — 85.4% — improved clinical outcome.
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Recently, it has been proposed that individuals with the Asp variant of the OPRM1 gene
exhibited preferentially higher relapse prevention rates when receiving naltrexone treatment
[50]. As described previously, a similar response to naltrexone treatment on cue-elicited
craving was not observed among non-treatment-seeking, alcohol-dependent individuals in a
human laboratory study [49]. Further, a recent clinical trial did not find a preferential effect of
naltrexone treatment on any of the variants of the OPRM1 gene [63]. Notably, the functional
importance of variation in the OPRMI gene is still being elucidated. Although earlier studies
in transfected cells suggested that the OPRM1-Asp40 variant had a 3-fold higher affinity for
beta-endorphin than OPRM1-Asn40, which would suggest enhanced function [64], this has not
been corroborated by others [65,66]. Recent in vitro transfection studies have, however,
suggested that the G118 allele might be associated with lower OPRM1 protein expression than
the A118 allele [67]. A further complication to estimating the general clinical significance of
the effects of the Asp40 allele on pharmacotherapeutic response to naltrexone is that its
frequency can vary considerably between populations — from as low as 0.047 in African
Americans to 0.154 in European Americans, and as high as 0.485 among those of Asian descent
[68,69]. More molecular genetic studies are, therefore, needed to elucidate fully the
mechanistic effects of the Asp40 allele, and to establish whether or not naltrexone response
varies by variation at the OPRM1 gene.

Certain clinical characteristics have, however, been associated with good clinical response to
naltrexone, and these include a family history of alcohol dependence [53,70,71] or strong
cravings or urges for alcohol [71].

In sum, the majority of the data confirm that naltrexone is an efficacious medication for treating
alcohol dependence. The therapeutic treatment effect size is, however, small, and poor pill-
taking compliance can be associated with poor clinical outcome. There remains a dearth of
published studies on the effects of different doses of naltrexone on drinking outcome. Further
research is needed to establish whether naltrexone’s therapeutic efficacy in treating alcohol
dependence differs among individuals who have variants of the OPRM1 gene. Alcohol-
dependent individuals with a positive family history for the disease and individuals with strong
cravings for alcohol appear to benefit the most from naltrexone treatment.

Clinical studies with depot naltrexone
Three extended-release formulations of naltrexone for deep intramuscular injection have been
developed — Vivitrol® (Alkermes, Inc., Cambridge, MA, USA), Naltrel® (Drug Abuse
Sciences, Inc., Paris, France), and Depotrex® (Biotek, Inc., Woburn, MA, USA). The premise
for developing these depot formulations of naltrexone is three-fold. First, a well formulated
depot preparation can maintain relatively constant plasma levels by producing a slow but
regular release of naltrexone. Individuals who take oral naltrexone and have notable adverse
events such as nausea that can lead to study discontinuation probably experience this
phenomenon due to the rapid rise in plasma levels following initial doses of oral naltrexone.
Hence, a depot formulation might be expected to decrease these initial adverse events if it
provided a more gradual rise in naltrexone plasma levels. Second, by providing a monthly
depot preparation, compliance with receiving the medication is optimized and should be greater
than reliance on remembering to take tablets. Third, because plasma levels should remain
relatively constant throughout the month following the administration of a depot preparation,
there should be relatively greater exposure to the therapeutic dose, thereby facilitating good
clinical outcome. Information pertaining to the three depot preparations of naltrexone that are
being tested is provided below.

Vivitrex® or Vivitrol®—Vivitrex®, or Vivitrol® as it is known now, is naltrexone formulated
into poly-(lactide-co-glycolide) [72], small-diameter (<100 μm), injectable microspheres that
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contain other proprietary active moieties, which lead to its extended-release properties lasting
for several weeks [73]. In 2004, Johnson et al. [74] published the initial safety, tolerability, and
efficacy trial of Vivitrex® for treating alcohol dependence. The design of the study was a 16-
week randomized, placebo-controlled, double-blind clinical trial. Of the 25 alcohol-dependent
individuals who participated in the trial, five of them got placebo and the remainder (n = 20)
got 400 mg of Vivitrex®. Results of that trial showed the safety of Vivitrex®, with the most
common adverse events being non-specific abdominal pain, nausea, pain at the injection site,
and headaches. None of the placebo recipients dropped out due to adverse events; in contrast,
two of those who got Vivitrex® discontinued for that reason. Due to the unbalanced design and
small subject numbers, any inferences regarding efficacy had to be viewed quite cautiously.
Nevertheless, there was a trend for those on Vivitrex®, compared with placebo, to have a lower
percentage of heavy drinking days — 11.7% vs. 25.3%. Later, in a large placebo-controlled,
double-blind, randomized, multi-site, 24-week clinical trial, Garbutt et al. [75] showed that
high-dose Vivitrex® (380 mg) recipients had a significantly lower percentage of heavy drinking
days than those who got placebo (hazard ratio = 0.75; 95% CI = 0.60–0.94; p = 0.02). Recipients
of low-dose Vivitrex® (190 mg) had outcomes similar to those who got placebo. The treatment
response signal in the high-dose Vivitrex® recipients came from the male participants as the
effect of both Vivitrex® doses was no different from that in women who took placebo (hazard
ratio = 1.23; 95% CI = 0.85–1.78; p = 0.28). The lack of efficacy for Vivitrol® in women has
been ascribed to greater subclinical affective symptoms, less of a family history of alcoholism
(which is meant to be associated with good clinical outcomes to naltrexone), more
responsiveness to placebo, and more clinical heterogeneity in the sample. In contrast with the
premise for developing depot preparations, the dropout rate of 14.1% in the high-dose
Vivitrex® group was similar to that reported in studies with oral naltrexone. The chosen
objective biomarker to corroborate the self-reported data — GGT — did not show a difference
between any of the Vivitrex® doses and the placebo group. The common reasons for study
discontinuation were injection site reactions, headaches, and nausea. Serious adverse events
were reported in two participants taking active medication that resulted in an interstitial
pneumonia and an allergic-type eosinophilic pneumonia, both of which resolved after medical
treatment. Thus, the evidence remains that Vivitrol® appears to be efficacious in preventing
heavy drinking in men; however, it was approved by the FDA for treatment of both men and
women based on the extant literature on naltrexone as a treatment for alcohol dependence. The
expected advantage of Vivitrol® to increase compliance did not materialize quickly although
this might become more manifest in generic treatment settings rather than a closely monitored
clinical trial. The potential for hypersensitivity reactions to Vivitrol®, while small, does require
post-marketing evaluation by the FDA.

Naltrel®—Naltrel® consists of naltrexone incorporated into microspheres of poly-(DL-
lactide) polymer. These microspheres, stored in single-dose vials, are suspended in a diluent
that contains carboxymethylcellulose, mannitol, polysorbate 80, and water for injection. The
polylactide polymer is metabolized to water and carbon dioxide. Then, as the microspheres
degrade, naltrexone is released. In 2004, Kranzler et al. [76] studied the safety and efficacy of
Naltrel® in treating male and female alcohol-dependent individuals receiving monthly
motivation enhancement-based therapy in a double-blind, placebo-controlled, 3-month
randomized controlled trial (N = 157). The initial dose of Naltrel® (150 mg) was delivered as
a deep intramuscular injection into each buttock, and subsequent monthly doses were just 150
mg. Placebo injections were provided at the same frequency and constitution but lacked the
active compound. Adverse events reported significantly more frequently in the Naltrel® group
than in the placebo group included injection site reactions, chest pain, and upper abdominal
pain. Placebo recipients were, however, more likely to report irritability than those who got
Naltrel®. While 6 (3.8%) of the placebo recipients dropped out, 13 (8.2%) of those who got
Naltrel® discontinued treatment. Naltrel® was superior to placebo at increasing the mean
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number of cumulative abstinent days (52.8 days, 95% CI 48.5–57.2 days, vs. 45.6 days, 95%
CI 41.1–50.0 days, respectively; p = 0.018) and having a longer median time to first drink (5
days, 95% CI 3–9 days, vs. 3 days, 95% CI 2–4 days, respectively; p = 0.003). The effects of
gender on treatment outcome were not examined.

Somewhat in contrast, a single-site, 6-week trial of 16 alcohol-dependent individuals who
received one intramuscular dose of Naltrel® (300 mg) [77] suggested low tolerability, with
198 adverse events being reported. Of these, 17 were considered to be severe and included
fatigue, gastrointestinal pain, irritability, nausea, somnolence (two reports), headache (four
reports from three subjects), injection site pain, injection site mass, lethargy, depression,
increased level of GGT (an index of heavy drinking [78]), back pain, and flatulence. No serious
adverse events were reported. Drinking outcomes showed an improving trend over the duration
of the trial.

Nevertheless, further studies on the safety and efficacy of the Naltrel® formulation are
warranted. Additional data are needed to determine whether, as with Vivitrol®, there is a
differential response on drinking outcomes between men and women who get Naltrel®.

Depotrex®—Rather little public information is available on the Depotrex® depot formulation.
Like the other depot formulations, Depotrex® appears to provide steady increases in plasma
naltrexone levels [79] and is an effective mu-opioid receptor antagonist [80,81].
Pharmacokinetic data from 12 heroin-dependent individuals who received low and high doses
of Depotrex® — 192 mg and 384 mg, respectively — showed that both doses maintained
plasma naltrexone levels above 1 ng/ml for up to 4 weeks [82]. Average peak levels for the
low and high doses of Depotrex® were 3.8 ng/ml and 8.9 ng/ml, respectively. Plasma beta-
naltrexol, the major metabolite of naltrexone, was greater proportionately but could not be
detected 5 weeks following Depotrex® administration. Both doses of Depotrex® antagonized
the positive subjective effects of heroin. Reported adverse events were minimal and included
mild discomfort at the injection site, with no irritation or erythema. The promising earlier study
by Kranzler et al. [79] of Depotrex® (206 mg) in the treatment of alcohol dependence needs
to be followed up.

In sum, depot formulations of naltrexone may offer some advantages such as increased
compliance over the oral formulations. This advantage has, however, been difficult to
demonstrate in randomized controlled trials but might become more apparent when these depot
formulations are used in generic practices. Depot formulations do not appear to be more
efficacious than the oral formulations, and with one of these — Vivitrol® — no therapeutic
effect in women has been demonstrated. The adverse events profiles of depot formulations of
naltrexone that have been reported in randomized controlled trials appear similar in frequency
and intensity to those observed for the oral formulation. The different depot formulations do
appear to be similar in characteristics and profile, and more clinical information about which
one to select to treat a particular alcohol-dependent patient, if all are approved by the FDA,
shall be needed.

GLUTAMATE
Metabotropic glutamate receptor-5 (mGluR5) modulator and N-methyl-D-aspartate (NMDA)
antagonist — acamprosate

Acamprosate’s principal neurochemical effects have been attributed to antagonism of NMDA
glutamate receptors [83,84], which restores the balance between excitatory and inhibitory
neurotransmission that is dysregulated following chronic alcohol consumption [85]. Recently,
however, it also has been proposed that acamprosate modulates glutamate neurotransmission
at metabotropic-5 glutamate receptors (mGluR5) [86]. Evidence that acamprosate modulates
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a novel site of action at mGluR5 comes from the finding that it inhibits the binding and
neurotoxic effects of ±-1-aminocyclopentane-trans-1,3-dicarboxylic acid [86]. Acamprosate
has been shown to decrease: a) ethanol consumption in rodents [87-89], but this effect may not
be specific in food-deprived C57BL/6J mice as both ethanol and water were reduced in a
schedule-induced polydipsia task [90]; b) dopamine hyperexcitability in the nucleus
accumbens during alcohol withdrawal [91,92]; c) general neuronal hyperexcitability [93,94];
d) glutamatergic neurotransmission in alcohol-dependent rats [91,95]; e) voltage-gated calcium
channel activity, and f) the expression of brain c-fos, an immediate early gene associated with
alcohol withdrawal [96,97]. Nevertheless, it is acamprosate’s ability to suppress alcohol-
induced glutamate receptor sensitivity [98], as well as conditioned cue responses to ethanol in
previously dependent animals even after prolonged abstinence [99-102], that has been linked
with its therapeutic effect in humans — dampening negative affect and craving post-abstinence
[14,103] (Fig. 2).

Interestingly, there has been a paucity of human laboratory studies that have examined the
potential effects of acamprosate on alcohol-related behaviors associated with its abuse liability.
Evidence from a human magnetic resonance imaging study does, however, support
acamprosate’s ability to modulate glutamate neurotransmission as it decreases activity in brain
regions rich in N-acetylaspartate and glutamate [95]. Human laboratory studies in both
volunteers [104] and alcohol-dependent individuals [105] also have shown that acamprosate
— i.e., calcium acetyl homotaurinate — is relatively safe, with the most important adverse
events being diarrhea, nervousness, and fatigue, especially at a relatively high dose (3 g/day).
Since acamprosate is excreted unchanged in the kidneys, there is no risk of hepatotoxicity, but
it should be used with caution in those with renal impairment [104,105]. Acamprosate has no
significant clinical interaction with alcohol. Recently, it was shown that acamprosate can
reduce heart rate response but not the increase in cortisol or subjective craving following the
presentation of alcohol cues — a finding that suggests utility for acamprosate in managing
autonomic dysregulation in abstinent alcoholics exposed to a high risk for relapse situations
[106].

Most of the clinical evidence for the efficacy of acamprosate in the treatment of alcohol
dependence comes from a series of European studies. In 2004, Mann et al. [107] wrote a meta-
analysis of 17 published studies that included 4087 alcohol-dependent individuals. In that
report, continuous abstinence rates at 6 months were greater than for those who got placebo
(acamprosate, 36.1%; placebo, 23.4%; relative benefit, 1.47; 95% CI = 1.29–1.69; p < 0.001).
The overall pooled difference in success rates between acamprosate and placebo was 13.3%
(95% CI = 7.8–18.7%), and the number needed to treat was 7.5. Similar results were obtained
from another meta-analysis conducted at about the same time [56]. Generally, the effect size
of acamprosate is small — 0.14 for increasing the percentage of non-heavy drinking days
[108] and 0.23 for reducing the relapse to heavy drinking [109]. Early studies also had some
methodological problems, including non-standardization of diagnostic criteria and the
psychosocial adjunct to the medication, which were resolved in later trials.

Despite approval by the FDA on July 29, 2004, for the use of acamprosate in the treatment of
alcohol dependence, largely based on the data from European studies, the results of U.S. studies
have been disappointing. In the U.S. multi-site trial by Lipha Pharmaceuticals, Inc., there was
no overall clinical evidence that acamprosate was superior to placebo among a heterogeneous
cohort of alcohol-dependent individuals; however, post-hoc analysis suggested that a subgroup
of alcoholics with a treatment goal of abstinence might derive benefit [110]. Further, in 2006,
the multi-site COMBINE project also failed to find any therapeutic benefit of acamprosate
compared with placebo on any drinking outcome measures [62]. Obviously, the findings of
these U.S. studies have reduced the enthusiasm for using it by addiction specialists in the U.S.
From a scientific perspective, these findings do beg the questions as to what type of alcohol-
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dependent individual benefits the most from acamprosate and why there is an important
discrepancy between the results of U.S. and European studies.

From the European studies, acamprosate appears to benefit alcohol-dependent individuals with
increased levels of anxiety, physiological dependence, negative family history, late age of
onset, and female gender [111].

There are at least four possible explanations for the discrepancy between U.S. and European
studies. First, the populations sampled differ, with European, compared with U.S., studies
having alcohol-dependent individuals with more prolonged drinking histories and alcohol-
related neurological and psychosocial impairments. Thus, it is tempting to speculate that
European studies might have included individuals with greater neuroplasticity and, therefore,
higher response to the ameliorating effects of anti-glutamatergic agents such as acamprosate.
Second, U.S., compared with European, studies have tended to have higher levels of
standardized psychosocial intervention as an adjunct to acamprosate, thereby masking the
effect of the medication. Third, the therapeutic effect of acamprosate is small; hence, by chance,
some trials can be expected to fail, especially those conducted in a multi-site rather than a
single-site environment due to the greater heterogeneity and variability of the cohort and
research settings. Fourth, it is possible that future research might uncover other important
differences between U.S. and European cohorts to explain the discrepant findings such as
potential differences in patient subtype, stage of the alcoholism disease, or bio-molecular
constitution.

In sum, European studies have clearly demonstrated efficacy for acamprosate as a treatment
for alcohol dependence. Acamprosate was FDA approved in the U.S. largely based on the
results of the European studies. Acamprosate’s therapeutic effect is small, but it is well
tolerated, with the most prominent adverse events being diarrhea, nervousness, and fatigue,
especially at a relatively high dose (3 g/day). In contrast, U.S. studies have, to date, been unable
to find efficacy for acamprosate among a heterogeneous group of alcohol-dependent
individuals. The reason for this discrepancy between the results of U.S. and European studies
has not been established. Perhaps, however, this discrepant finding might be due to differences
in patient selection, subtype, stage of the alcoholism disease, or bio-molecular constitution that
are yet to be determined. Future studies are needed to delineate more clearly what type of
alcohol-dependent individual can benefit the most from acamprosate treatment.

Other N-methyl-D-aspartate (NMDA) receptor antagonists
Other NMDA receptor antagonists such as memantine and neramexane are being studied for
the treatment of alcohol dependence. Both compounds have been shown in animal models to
suppress ethanol-induced NMDA receptor up-regulation, thereby reducing ethanol
sensitization and the propensity for subsequent drug use (for a review, see Nagy [112] and
Kotlinska et al. [113]). In a human laboratory study, memantine reduced alcohol craving prior
to but not after the experimental administration of alcohol. This would suggest that memantine
might have the effect of reducing post-cessation craving for alcohol [114]. This finding is
supported by a later report that memantine might have comparable effects to diazepam at
ameliorating alcohol withdrawal symptoms [115]. Nevertheless, despite the early preliminary
findings, a recent pilot clinical trial comparing memantine with placebo for the treatment of
alcohol dependence reported that the greater therapeutic effect at reducing the percentage of
heavy drinking days and increasing the percentage of days abstinent [116] occurred among the
placebo group. Although this pilot study did not provide support for memantine as an
efficacious treatment for alcohol dependence, further studies are needed to make a final
determination of memantine’s therapeutic potential for this indication. No human study on the
therapeutic effects of neramexane in treating alcohol dependence has been published.
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Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate glutamate receptor
antagonist — topiramate

Topiramate, a sulfamate-substituted fructopyranose derivative, has six important mechanisms
of action. Additional to its ability to antagonize alpha-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid receptors and kainate glutamate receptors [117-119], topiramate also facilitates
inhibitory GABAA-mediated currents at non-benzodiazepine sites on the GABAA receptor
[120,121], inhibits L-type calcium channels and limits calcium-dependent second messenger
systems [122], reduces activity-dependent depolarization and excitability of voltage-dependent
sodium channels [123], activates potassium conductance [124], and is a weak inhibitor of
carbonic anhydrase isoenzymes, CA-II and CA-IV [125], which are found in both neuronal
and peripheral tissues. In renal tubules, carbonic anhydrase isoenzyme inhibition reduces
hydrogen ion secretion and increases secretion of Na+, K+, , and water, thereby
enhancing the likelihood of acidosis and renal stone formation [125,126].

Johnson [127,128] has proposed a neuropharmacological model by which topiramate can
decrease alcohol reinforcement and the propensity to drink (Fig. 3). Nevertheless, few studies
on the effects of topiramate on ethanol consumption in animals have been published. An initial
animal study had shown complex effects of topiramate on ethanol drinking in C57BL/6 mice.
In that study, high-dose (50 mg/kg) but not low-dose (1, 5, and 10 mg/kg) topiramate
suppressed ethanol intake 2 hours after it was injected into the animal. Topiramate also
decreased saccharin preference, but its ability to suppress ethanol preference was associated
with some increase in water intake [129]. Notably, in an elegant, recent animal study, Nguyen
et al. [130] demonstrated that topiramate can suppress ethanol drinking in C57BL/6 mice;
additionally, in contrast with the effects of naltrexone and tiagabine in the same animals, the
mice treated with topiramate did not develop any tolerance to its anti-drinking effects. Further,
topiramate also has been shown to suppress alcohol drinking moderately in both alcohol-
preferring (P) and Wistar rats [131]. Additional to its ethanol-suppressing effects, there is
evidence that topiramate can reduce alcohol withdrawal symptoms in a model of handling
induced convulsions [132]. Hence, the preponderance of the animal literature does support
topiramate as a promising medication for the treatment of alcohol dependence. Nevertheless,
the effect of topiramate on ethanol drinking in animals appears to be less striking than that on
drinking outcomes in humans, which are presented below. This challenges the notion that
animal models can predict directly treatment response in humans, especially when a variety of
models have not been used or been available to characterize or “fingerprint” response [133].
The results of additional animal experiments examining topiramate’s mechanistic effects on
ethanol consumption or related behaviors in animals are, therefore, awaited eagerly.

Recently, Johnson et al. [5,134] and Ma et al. [135] showed in a double-blind, randomized
clinical trial that topiramate (up to 300 mg/day), compared with placebo, improved all drinking
outcomes, decreased craving, and improved the quality of life of alcohol-dependent individuals
who received 12 weeks of weekly brief behavioral compliance enhancement treatment [6]. The
improvements in self-reported drinking outcomes were confirmed by plasma GGT, an
objective biochemical measure of alcohol consumption [78]. The therapeutic effect size for
the primary efficacy variable — percentage of heavy drinking days — was 0.63.

In a 6-week experimental study of 76 heavy drinkers who were not seeking treatment, Miranda
et al. [136] showed that low- and high-dose topiramate — 200 mg/day and 300 mg/day,
respectively — were significantly better than placebo at decreasing the percentage of heavy
drinking days.

Further, in a subsequent 17-site (N = 371) U.S. trial, topiramate (up to 300 mg/day) was again
superior to placebo at improving all self-reported drinking outcomes, GGT level, and some
measures of quality of life among alcohol-dependent individuals who received 14 weeks of
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weekly brief behavioral compliance enhancement treatment. Topiramate’s therapeutic effect
size for the reduction in percentage of heavy drinking days was 0.52, and the number needed
to treat was 3.4 [137].

Taken together, these clinical studies provide strong evidence that topiramate is a promising
medication for the treatment of alcohol dependence. Encouragingly, topiramate’s therapeutic
effect size is in the moderate range, and the clinical effects appear to increase with greater
length of time on the medication.

Generally, topiramate has a favorable adverse event profile, with most reported symptoms
being classified as mild to moderate [138]. The most common adverse events are paresthesia,
anorexia, difficulty with memory or concentration, and taste perversion. Slow titration to the
ceiling dose (up to 300 mg/day) for 6 to 8 weeks is critical to minimizing adverse events and
improving tolerability; however, about 10% of individuals taking topiramate may experience
some cognitive difficulty irrespective of the dose titration schedule [139]. Topiramate use has
been linked with acute but rare visual adverse events. As of January 2005, there had been 371
spontaneous reports of myopia, angle-closure glaucoma, or increased intraocular pressure, for
a rate of 12.7 reports per 100,000 patient-years exposure. Usually, the syndrome of acute
bilateral myopia associated with secondary angle-closure glaucoma presents as the acute onset
of visual blurring, ocular pain, or both. Associated bilateral ophthalmologic findings can
include myopia, shallowing of the anterior chamber, conjunctival hyperemia, and raised
intraocular pressure. This syndrome resolves within a few days of discontinuing topiramate
administration [138].

In sum, predicated upon a neuropharmacological conceptual model, there is now strong clinical
support for topiramate as a promising medication for the treatment of alcohol dependence.
Topiramate’s therapeutic effects appear to be robust, with a medium effect size, thereby
potentially ushering in a new era of a reliably efficacious medicine for the treatment of alcohol
dependence. Intriguingly, although the animal data do provide support for topiramate’s anti-
drinking effects, more research is needed to characterize fully or “fingerprint” the pattern of
response. Such preclinical studies should enable us to elucidate more clearly the basic
mechanistic processes that underlie topiramate’s efficacy as a treatment for alcohol
dependence.

SEROTONIN (5-HT)
For almost three decades, there has been intense interest in the effects of serotonergic agents
in the treatment of alcohol dependence. Encouraged by increased knowledge about the various
5-HT receptor subtypes, researchers have examined the effects of various medications that
bind to specific receptor sites. Here, I provide a synopsis of the preclinical and clinical studies
that have been done on these 5-HT function-altering medications in the treatment of alcohol
dependence.

Serotonin reuptake inhibitors
For decades, it has been known that pharmacological manipulations that deplete the brain of
5-HT decrease the preference for ethanol [140,141]. Using preference paradigms,
pharmacological agents that inhibit 5-HT reuptake from the synapse reduce the voluntary
consumption of ethanol solutions using the preference paradigm [142-147]. Knockout mice at
the 5-HT transporter do, however, exhibit a general decrease in ethanol preference and
consumption [148]. Thus, there is ample preclinical support for the notion that selective
serotonin reuptake inhibitors (SSRIs) suppress ethanol consumption in animals.
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Although these preclinical studies have shown that SSRIs can reduce ethanol consumption,
the selectivity of this effect on reinforcement as opposed to general consummatory behaviors
has been questioned [149-151].

The inhibition of 5-HT reuptake function has complicated the effects on food intake and fluid
consumption [152]. SSRIs do suppress food intake [153,154] and fluid consumption [152] and
decrease palatability [155]. Yet, motivational factors exert some control on the expression of
these behaviors [156]. For instance, SSRIs enhance satiety [150] but selectively reduce
preference for certain macronutrients (i.e., sweet items and carbohydrates) [ 157-159] cf.
[160,161] that increase the palatability and rewarding effects of food [162-164]. Hence, SSRIs
might decrease ethanol consumption via the suppression of non-specific general
consummatory behaviors and specific anti-reinforcing effects.

Studies conducted using operant techniques have also supported a role for SSRIs in the
suppression of ethanol consumption. Haraguchi et al. [165] showed that same-day
pretreatments with fluoxetine dose-dependently reduced ethanol responding. Nevertheless,
whereas the chronic administration of SSRIs to C57BL/6J male mice produced an initial
suppression of lever pressing for ethanol, there was a later rebound to baseline levels of
responding for ethanol and ethanol consumption [166]. These results are somewhat similar to
those of Murphy et al. [167], who observed that fluoxetine administered to rats in a single daily
infusion produced a significant reduction in ethanol-reinforced responding that started on the
first day of treatment and increased on subsequent days of the 7-day treatment regimen.
Responding for ethanol returned to pretreatment levels following cessation of fluoxetine
treatment. Food intake, while somewhat suppressed initially, appeared to return to baseline
levels on subsequent treatment days. Again, these results demonstrate that the suppression of
ethanol intake by SSRIs follows a pattern of initial suppression of consummatory behavior
followed by a reduction in reinforcement; thus, when the SSRIs are discontinued, there is an
extinction-like pattern of a return to the baseline behavior.

Despite the promise of these preclinical results, there is, at present, little support for the proposal
that SSRIs are an efficacious treatment for a heterogeneous group of alcohol-dependent
individuals. Initial studies of small sample size reported that SSRIs can produce short-term (1–
4 weeks) decreases in alcohol consumption among problem drinkers [168-172]. Nevertheless,
these studies were limited by at least three factors. First, most of the studies were conducted
in men, thereby limiting the generalizability of the results to the general population
[168-170]. Second, the adjunctive psychosocial treatment, which can decrease the apparent
efficacy of the putative therapeutic medication because this too can have an important effect
on drinking outcomes, was not standardized. Third, the treatment periods were short; thus, it
was not possible to determine whether these initial effects, which could be due to non-specific
factors, would be sustained. Indeed, the problem with studies of short duration that focus on a
chronic relapsing disorder such as alcohol dependence was highlighted in a later study by
Gorelick and Paredes [173], who found that there also was an effect for fluoxetine, compared
with placebo, to decrease alcohol consumption by about 15% in the first 4 weeks of the trial
but not over the entire length of the trial. Also, Naranjo et al. [174] did not demonstrate that
citalopram (40 mg/day) was superior to placebo in a 12-week treatment trial. Further, neither
Kabel and Petty [175] nor Kanzler et al. [176] in two separate 12-week studies found fluoxetine
(60 mg/day) to be superior to placebo for the treatment of alcohol dependence.

There has been renewed understanding about how the administration of functionally different
serotonergic agents can lead to different drinking outcomes among various subtypes of
alcoholic (for a review, see Johnson [177]). Adapted from Cloninger’s classification scheme
[178], two methods for subtyping alcoholics have been used in these pharmacotherapy studies.
Basically, a particular type of alcoholic (i.e., Type A-like or late onset) characterized by a later
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age of onset of problem drinking (typically over the age of 25 years), a preponderance of
psychosocial morbidity, and low familial loading can experience improved drinking outcomes
after SSRI treatment.

Although early human laboratory studies showed that Type B-like or early-onset alcoholics,
characterized by an early age of problem drinking onset (i.e., before the age of 25 years), high
familial loading for alcohol dependence, and a range of impulsive or antisocial traits, might be
centrally deficient in the major metabolite of 5-HT, 5-hydroxyindoleaceteic acid [179-181],
the implications of this finding were, perhaps, oversimplified. At a cursory glance, it would
appear that an SSRI, by increasing 5-HT turnover, would compensate for this dysfunction;
thus, these Type B-like or early-onset alcoholics would then be expected to experience
improved drinking outcomes following SSRI treatment. Remarkably, the literature has
demonstrated quite the opposite. For instance, Kranzler et al. [182] observed that fluoxetine
treatment appeared to worsen the clinical benefit of the adjunctive cognitive behavioral
treatment and there was no difference from placebo. Actually, Type A-like or late-onset
alcoholics, with presumably more normative 5-HT function, have been observed to experience
improved drinking outcomes from sertraline both during active treatment [183] and at 6-month
follow-up [184]. Also, Chick et al. [185] have shown that early-onset or Type B-like alcoholics
were more likely to relapse than their late-onset or Type A-like counterparts following
fluvoxamine treatment.

Obviously, the relationship between serotonergic dysfunction and Type B-like or early-onset
alcoholism is not the simple result of a deficiency state. Indeed, Johnson [177] has hypothesized
that an explanation for this effect might be allelic variation at the 5-HT transporter, which leads
to the differential expression of 5-HT function. Of course, other bio-molecular explanations
are possible, and further research is needed to elucidate this important area of research.

While outside the scope of this review, it has been proposed that SSRIs might be of therapeutic
benefit in the treatment of alcohol-dependent individuals with suicidal tendencies and severe
comorbid depression [186]. Nevertheless, a recent study did not find that sertraline treatment
was more beneficial than placebo to depressed alcohol-dependent individuals irrespective of
the severity of depression [187]; nor has it been shown that the reduction in dysphoria in
depressed alcoholics is associated with concomitant decreases in alcohol consumption [188,
189]. Hence, the only conclusion that can be drawn at present is that except for a subtype of
depressed alcoholic with suicidal tendencies, there is not much evidence to recommend SSRIs
over placebo for the treatment of depressed alcoholics.

In sum, despite strong animal data that would support the use of SSRIs as a promising treatment
for alcohol dependence, there is no evidence that they are of therapeutic benefit to a
heterogeneous group of alcohol-dependent individuals. Notably, however, there is growing
confirmation that SSRIs can improve the drinking outcomes of Type A-like or late-onset
alcoholics. Rather than being a cause for discouragement, this finding might a) open up the
possibility of identifying important bio-genetic or pharmacological mechanisms that underlie
the alcoholism disease and b) improve understanding about which type of alcohol-dependent
individual can benefit the most from specific serotonergic treatment. Further, there is no current
evidence that providing SSRIs to depressed alcoholics without severe depressive symptoms
and suicidal tendencies is of therapeutic benefit. Hence, what is clear is that clinicians should
be cautious in prescribing SSRIs to alcohol-dependent individuals for the treatment of minor
depressive or affective symptoms. Not only is this strategy unlikely to be a therapeutic benefit
over placebo, and perhaps appropriate psychosocial management, but drinking outcomes can
actually be worsened, especially if the alcohol-dependent individual is Type A-like or of late
onset.
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Serotonin-1 (5-HT1) partial receptor agonist
Preclinical studies have suggested that the 5-HT1A partial agonist, buspirone, may be effective
at reducing ethanol consumption. Buspirone decreased volitional alcohol consumption from
60% to 30% in macaque monkeys, but there was considerable inter-individual variation
[190]. In Sprague-Dawley rats, buspirone significantly reduced ethanol intake in animals
induced to drink by repeated brainstem injection of tetrahydropapaveroline. In a group of
medium alcohol-preferring rats, buspirone (0.0025–0.63 mg/kg) reduced, while buspirone
(>2.5 mg/kg) increased, alcohol consumption without affecting water consumption [191].
While buspirone is a partial 5-HT1A agonist, the net effect of its repeated administration is to
enhance 5-HT function via facilitation of the post-synaptic receptor, which is more sensitive
than the autoreceptor, and down-regulation of autoreceptor function [192]. Nevertheless, this
preclinical evidence would have been strengthened by operant studies examining the dose-
response characteristics of buspirone as a function of ethanol concentration.

Buspirone has not been demonstrated to be an efficacious medication for the treatment of
alcohol-dependent individuals without comorbidity. In a review of five published trials,
buspirone was without a convincing effect in non-comorbid alcoholics; however, alcoholics
with comorbid anxiety experienced some benefit [193,194]. Hence, buspirone’s anxiolytic
effects might translate to those who also are dependent on alcohol.

In sum, there is no current evidence that would suggest a role for buspirone in the treatment
of alcohol dependence without comorbid anxiety disorder.

Serotonin-2 (5-HT2) receptor antagonist
Preclinical studies have suggested that the 5-HT2 receptor antagonist, ritanserin, can reduce
ethanol consumption in animals [195,196] cf. [197]. Also, the 5-HT2 antagonists, amperozide
[198-201] and FG5974 [202,203], significantly suppress ethanol intake without affecting water
consumption. The exact mechanism by which 5-HT2 receptor antagonists might reduce ethanol
consumption is unknown. It has, however, been suggested that they might exert their effects
by acutely substituting for alcohol’s pharmacobehavioral effects by facilitating burst firing in
CMDA neurons [204], or by the suppression of dopamine neurotransmission following their
chronic administration.

In the clinical setting, ritanserin is not an efficacious treatment for alcohol dependence. In a
rigorously conducted, 12-week, multi-center clinical trial (N = 423) of ritanserin (2.5 or 5 mg/
day) vs. placebo as an adjunct to weekly cognitive behavioral therapy, none of the ritanserin
doses were superior to placebo [205]. In a later study using similar methodology, ritanserin
(2.5, 5.0, or 10.0 mg/day) was not superior to placebo at improving drinking outcomes [206].
Although higher doses of ritanserin might be of therapeutic benefit, testing these doses is
precluded by ritanserin’s potential to cause dose-dependent prolongation of the QTc interval
on the electrocardiogram, thereby increasing the potential for life-threatening cardiac
arrhythmias.

In sum, there is no clinical evidence that would support the use of ritanserin as a treatment for
alcohol dependence.

Serotonin-3 (5-HT3) receptor antagonists
Preclinical studies provide strong support for the role of the 5-HT3 receptor in mediating
alcohol’s important neurochemical effects, and for 5-HT3 receptor antagonists to be promising
treatment for alcohol dependence.
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In neurophysiological experiments, ethanol potentiates 5-HT3 receptor-mediated ion currents
in NCB-20 neuroblastoma cells [207,208] and in human embryonic kidney 293 cells
transfected with 5-HT3RA cDNA [209]. 5-HT3 receptor antagonists block these effects
[210]. Thus, the 5-HT3 receptor is a site of action for ethanol in the brain [211,212].

Pharmacobehavioral studies show that many of alcohol’s reinforcing effects are mediated by
5-HT3 and dopamine interactions in the cortico-mesolimbic system [9,213-216].

5-HT3 receptor antagonists have three principal effects that demonstrate their ability to
modulate ethanol consumption and related behaviors. First, 5-HT3 receptor antagonists
suppress hyperlocomotion in the rat induced by dopamine or ethanol injection into the nucleus
accumbens [217]. Second, 5-HT3 receptor antagonists inhibit DiMe-C7 (a neurokinin)-induced
hyperlocomotion, which also is reduced by the dopamine antagonist, fluphenazine [218,219].
Third, 5-HT3 receptor antagonists reduce ethanol consumption in several animal models and
across different species [191,213,220-228] cf. [229].

Human laboratory studies have generally supported a role for the 5-HT3 antagonist ondansetron
in reducing preference and craving for alcohol. In two distinct experiments, Johnson and
Cowen [214] and Johnson et al. [224] showed that ondansetron pretreatment attenuated low-
dose alcohol-induced positive subjective effects (including the desire to drink). Swift et al.
[230], using much higher alcohol and ondansetron doses, also discovered that ondansetron
compared with placebo pretreatment reduced alcohol preference; however, a mixture of both
stimulant and sedative interactions between ondansetron and alcohol also was observed.
Whereas Doty et al. [231] did not find an effect of ondansetron on alcohol-induced mood, their
experimental model of using a group rather than individual experimental setting could have
decreased the sensitivity of their assessments.

Three clinical studies have provided evidence that ondansetron is a promising treatment for
alcohol-dependent individuals, particularly those with an early-onset or Type B-like subtype.

First, in a 6-week, double-blind, placebo-controlled study of 71 non-severely alcohol-
dependent males, Sellers et al. [232] observed that the 0.5-mg dose but not the 4-mg dose of
ondansetron was associated with a non-significant trend (p = 0.06) toward a reduction in alcohol
consumption. Post-hoc analysis that eliminated 11 subjects who consumed less than 10 drinks/
drinking day rendered the difference in drinking outcomes between the ondansetron 0.5 mg
and placebo groups to be significant statistically (p = 0.001). Despite the limitations of this
initial trial, which included a relatively short treatment period, the inclusion of just males, and
the small number of subjects, the results of this study provided general support for
ondansetron’s promise in treating alcohol dependence. Also, these results show that
ondansetron may exhibit a non-linear dose-response effect in the treatment of alcohol
dependence.

Second, in a large-scale (N = 321), 12-week, randomized, double-blind clinical trial in which
alcohol-dependent individuals received weekly cognitive behavioral therapy, Johnson et al.
[233] showed that ondansetron (1, 4, and 16 μg/kg b.i.d.) was superior to placebo at improving
drinking outcomes of those of the early onset or Type B-like subtype but not the late onset or
Type A-like subtype. The self-reported decreases in alcohol consumption were corroborated
by the concomitant reduction in carbohydrate-deficient transferrin level — a biomarker of
transient alcohol consumption.

Third, Kranzler et al. [234] provided replication of the results by Johnson et al. [233] by
showing that early-onset (Type B-like) alcoholics had a significantly greater improvement in
drinking outcomes compared with their late-onset (Type A-like) counterparts following 8
weeks of ondansetron (4 μg/kg b.i.d.) treatment.
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Intriguingly, these results demonstrate a differential effect of ondansetron treatment by subtype
of alcohol-dependent individual. Indeed, the contrast is striking when compared with the effects
of SSRIs on different subtypes of alcohol-dependent individuals as described above. Basically,
early-onset or Type B-like alcoholics with apparent serotonergic deficiency respond best to a
medication that blocks the 5-HT3 receptor, whereas late-onset or Type A-like alcoholics with
apparently normal serotonergic function derive the most benefit from a medication that can
increase 5-HT turnover and function. As mentioned earlier, Johnson [177] has proposed a bio-
molecular explanation for these effects; however, other plausible possibilities exist. Although
elaboration of this concept is beyond the scope of this review, the key feature is that
polymorphic variation at the 5-HT transporter allele is affected differentially by the history of
drinking behavior and, perhaps as a consequence, the expression of 5-HT turnover in these
different polymorphic types modulates present drinking behavior. Further studies are needed
to test this and other proposals that can explain the differential effect of various serotonergic
agents among alcohol-dependent individuals of different subtype. Obviously, a molecular
genetic explanation for this effect, if proven, may enable a pharmacogenetic approach to
treatment whereby the appropriate medication can be provided to the particular subtype of
alcohol-dependent individual who would benefit the most from such treatment.

In sum, preclinical data support an important role for 5-HT3 receptors in mediating alcohol’s
important reinforcing effects associated with its abuse liability. Ondansetron is a promising
medication for the treatment of early-onset or Type B-like alcohol dependence. Further studies
are needed to determine whether treatment with various serotonergic agents can best be applied
using a pharmacogenetic approach.

DOPAMINE
Dopamine receptor antagonists

CMDA neurons have been implicated as the principal pathway by which alcohol and most
other abused drugs express their reinforcing effects associated with abuse liability [9,215,
216]. Yet it has been difficult to show evidence that direct dopamine receptor antagonists have
a role in the treatment of alcohol dependence. Presumably, direct opposition of dopamine
pathways is associated with neuroadaptive changes that tend to reverse the initial effects of the
blockade [128]. No traditional dopamine receptor blocker has been demonstrated to be an
efficacious treatment for alcohol dependence. With the advent of atypical neuroleptics, there
has been renewed interest in testing these medications as potential treatment for alcohol
dependence. Indeed, medications such as aripiprazole and quetiapine are currently in clinical
testing, and the results are awaited eagerly. Other medications that are selective for dopamine-3
receptor antagonism also are under development.

Dopamine receptor agonists
At low doses, dopamine-2/dopamine-3 agonists such as bromocriptine and 7-OH DPAT can
reduce ethanol consumption in animals [235-237]. Although this might appear paradoxical to
the dopamine theory of reinforcement for most abused drugs, it is possible that low-dose
dopamine agonists preferentially augment autoreceptor function, thereby decreasing dopamine
turnover.

Although an earlier report proposed that bromocriptine can decrease alcohol craving,
subsequent studies have found no effect on alcohol drinking or related behaviors [238-240].
Nevertheless, perhaps due to the high addictive potential of dopamine agonists, this research
approach has largely been abandoned in the clinical setting. Currently, dopamine receptor
agonists do not hold promise as a treatment for alcohol dependence.
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GABA-B RECEPTOR AGONIST — BACLOFEN
Animal studies have demonstrated that the GABAB receptor agonist, baclofen [beta-(4-
chlorophenyl)-GABA], causes decreases in voluntary ethanol intake [241], the ethanol-
deprivation effect [242], and morphine-induced stimulation of ethanol consumption [243].

Clinical trials have bolstered the findings of animal studies that suggest a role for baclofen in
treating alcohol dependence. In an open-label, 4-week study, 9 alcohol-dependent men were
given baclofen (up to 30 mg/day). Seven of the 9 subjects achieved abstinence, while the other
2 participants improved their self-reported drinking outcomes during the study period,
according to self-reports corroborated by family members. Several objective biological
markers of alcohol intake also showed significant reductions between the beginning and end
of the study. Furthermore, craving, as measured by median Alcohol Craving Scale scores,
decreased in the first study week and remained stable thereafter [244].

In a 4-week, randomized, placebo-controlled, double-blind clinical trial with 39 alcohol-
dependent patients, 14 of 20 (70%) patients treated with baclofen (up to 30 mg/day) achieved
abstinence, compared with 4 of 19 (21.1%) in the placebo group (p < 0.005). Baclofen treatment
improved significantly drinking outcomes, state anxiety scores, and craving measures.
Baclofen generally was well tolerated and had no apparent abuse liability. Adverse events,
none of which were serious, consisted of nausea, vertigo, transient sleepiness, and abdominal
pain [245].

These findings, which indicate that baclofen is safe and efficacious, with no addictive
properties, suggest a potential role for baclofen in treating alcohol-dependent individuals.
Additional studies of larger sample size and longer duration would help to establish the efficacy
of baclofen in the treatment of alcohol-dependent individuals.

DISULFIRAM
Disulfiram is an FDA-approved medication that has been used for treating alcoholism since
the 1940s and is perhaps still the most widely used such medication in the U.S. today. Its
principal mode of action is as an aversive agent. Disulfiram inhibits aldehyde dehydrogenase
and prevents the metabolism of alcohol’s primary metabolite, acetaldehyde. In turn, the
accumulation of acetaldehyde in the blood causes unpleasant effects to occur if alcohol is
ingested; these include sweating, headache, dyspnea, lowered blood pressure, flushing,
sympathetic overactivity, palpitations, nausea, and vomiting. The association of these
symptoms with drinking discourages further consumption of alcohol [246]. Serious side effects
also have been reported, including hepatitis, hepatotoxicity, depression, and psychotic
reactions [247,248]. Disulfiram also has been shown to reduce norepinephrine synthesis by
inhibiting dopamine beta-hydroxylase [249], a mode of action that has been proposed to support
early reports of its potential efficacy as a treatment for cocaine dependence. While a review of
disulfiram’s potential effects on cocaine taking are outside the scope of this review, the reader
is referred to recent studies by Petrakis et al. [249], Carroll et al. [250], and Baker et al.
[251].

A 52-week, multi-site, randomized, controlled trial with 605 alcohol-dependent men found
that disulfiram might help prevent relapse in compliant patients yet be ineffective at promoting
continuous abstinence or a delay in the resumption of drinking [252].

Disulfiram has no significant effect on craving for alcohol. Hence, patients must be highly
motivated to maintain disulfiram treatment, whereas those who wish to drink can simply stop
taking the medication. The efficacy of disulfiram generally is limited to those who are highly
compliant or who receive their medication under supervision — i.e., the type of alcohol-
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dependent individuals who might be likely to abstain on their own, without adjunctive
pharmacotherapy. Including a supportive spouse or partner in a disulfiram treatment plan helps
to improve outcome [246,253].

POTENTIAL TREATMENTS ON THE HORIZON
Cannabinoid-1 (CB1) receptor antagonists

Endocannabinoid receptors are found ubiquitously in the central nervous system, particularly
in the cortex, hippocampus, basal ganglia, and cerebellum. Endogenous cannabinoids include
anandamide and 2-arachidonylglycerol, which are metabolized by fatty acid amide hydrolase
[254].

In C57BL/6J mice, cannabinoid-1 (CB1) receptor blockade reduced ethanol consumption to
the amounts ingested by CB1 receptor null mutant mice [255]. Endocannabinoids may be
involved in the neurochemical expression of susceptibility to the effects of ethanol. For
instance, ethanol exposure can increase levels of brain 2-arachidonylglycerol and anandamide
and down-regulate CB1 receptors [256,257]. In pharmacobehavioral studies, CB1 receptor
antagonists suppress ethanol intake in rats with a chronic history of alcohol administration
[258,259], reduce ethanol drinking in alcohol-preferring sP rats [260,261], and decrease
operant responding and cue-induced reinstatement of ethanol consumption [262,263]. It is
plausible, however, that an important method by which CB1 receptors influence ethanol taking
is via their extensive connections to modulate other neuronal systems including monoamine
pathways and their metabolism [264-266]. Figure 4 shows the interactions between CB1 and
other neuronal systems [267].

In Europe, initial human studies of the effects of cannabinoid receptor blockade on the drinking
outcomes of alcohol-dependent individuals have been completed, and the results are awaited
eagerly. Nevertheless, the recent finding that the CB1 receptor antagonist (rimonabant) can
increase mood disturbance and suicidality in smokers, which precluded the FDA from granting
approval for that indication, might also impact the development of similar compounds for the
treatment of alcohol dependence.

Other neurochemicals and small molecules
Presently, there are a host of other neurochemicals with potential benefit in treating alcohol
dependence. At this stage, testing remains within the animal literature and other preclinical
models, and it would, therefore, be beyond the scope of this review to discuss them in detail.
These compounds include antagonists at mGluR5, mGluR2/3 agonists, stress-related
neuropeptides such as corticotropin releasing factor antagonists and modulators of
neuropeptide Y, and nociceptin (for a review, see Heilig and Egli [254]).

COMBINATION TREATMENTS
Combination treatments offer the promise of augmenting the effects of single medications by
engaging multiple neuronal networks associated with the expression of alcohol’s reinforcing
effects associated with its abuse liability. While this idea is alluring, medication combinations
do create the potential for reduced compliance (due to the need to take additional tablets),
heightened or new treatment emergent adverse events, or even inefficacy if the medications
counteract one another.

Perhaps the best studied medication combination so far has been that of naltrexone and
acamprosate. This combination has been proposed to be of potential added therapeutic benefit
for three reasons. First, naltrexone, by its action on endogenous opioids, modulates CMDA
activity, thereby reducing the reinforcing effects of alcohol [215,268]. Acamprosate modulates
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alcohol withdrawal-induced increases in extracellular glutamate in the cortico-mesolimbic
system [91,269]. Thus, the combined effect of both naltrexone and acamprosate may be to
modulate both the neurochemical effects responsible for triggering drinking and those
associated with conditioned responses to drink even after a prolonged period of abstinence.
Second, while naltrexone decreases positive craving for alcohol [55], acamprosate attenuates
negative or conditioned craving post-drinking cessation [103]. It is, therefore, tempting to
speculate that the combination of naltrexone and acamprosate would make it easier both to
abstain and to prevent a “slip” from turning into a relapse. Third, acamprosate can increase
blood levels of naltrexone, thereby augmenting its neurochemical effects [104,105].

In a European study, Kiefer et al. [270] showed that the combination of naltrexone and
acamprosate was clinically additive at improving the drinking outcomes of alcohol-dependent
individuals, but only the effect of the combination vs. acamprosate achieved statistical
significance. Nevertheless, the recently completed COMBINE project in the U.S. did not find
any therapeutic advantage to combining the two medications [62]. Hence, at present, it is not
possible to advise practitioners to combine naltrexone and acamprosate. Further research may,
however, provide a definitive answer as to the utility of the combination.

Mechanistically, there are many other medication combinations that are possible, some of
which are being pursued. It is, however, noteworthy that preliminary clinical evidence suggests
that the combination of ondansetron and naltrexone may result in added or synergistic
therapeutic effects on alcohol drinking [271,272]. The results of definitive confirmatory trials
are, however, awaited.

In sum, medication combinations may afford the opportunity to augment the treatment effects
of single medications for the treatment of alcohol dependence. Such studies should, however,
be conducted where there is a compelling pharmacological rationale for combining the
medicines. This is because there also is the potential for reduced compliance, heightened or
new treatment emergent adverse events, and inefficacy. Further, there are important issues that
must be determined for all medication combinations, such as optimal dosing, sequencing of
the medications, duration of treatment, and the increased complexity of managing such
protocols.

CONCLUSIONS
Recently, there has been renewed interest in developing efficacious medicines for the treatment
of alcohol dependence. Naltrexone and its depot formulations have demonstrated utility, but
their therapeutic effect size is small. Despite FDA approval of acamprosate based upon the
positive results of European studies, there has, as yet, not been a clear demonstration of its
efficacy in U.S. studies. Even in the European studies, the therapeutic effect size of acamprosate
is small. These discrepant findings might be the result of different populations of alcohol-
dependent individuals, selection criteria, chronicity of the alcoholism disease, bio-molecular
differences, different methodologies between U.S. and European studies, or sampling error
due to the small effect size. For both naltrexone and acamprosate, research is ongoing to
determine what type of alcohol-dependent individual benefits the most from using either
medication. There also is the possibility that a pharmacogenetic approach may make it possible
to improve the therapeutic outcome for those who receive naltrexone. At present, the
combination of naltrexone and acamprosate cannot be recommended to be of therapeutic
benefit, but this conclusion might change with future research. Topiramate is a promising
medication for the treatment of alcohol dependence. Based on two studies, its therapeutic effect
size appears to be in the medium range. Future research is needed to extend these results to
other subpopulations of alcohol-dependent individuals. Serotonergic medications need to be
administered with care to ensure that they are provided to the subtype of alcohol-dependent
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individual who will benefit the most from such treatment. While SSRIs benefit late-onset or
Type A-like alcohol-dependent individuals, the 5-HT3 receptor antagonist, ondansetron, has
efficacy in treating early-onset or Type B-like alcohol-dependent individuals. Molecular
genetic studies are ongoing to understand the underpinnings of this differential response among
various subtypes of alcoholic to different serotonergic agents. Although disulfiram is also FDA
approved for the treatment of alcohol dependence, it is perhaps best utilized under supervised
conditions. Given the explosion in neuroscientific ideas, the future holds promise for many
new and efficacious medicines in the treatment of alcohol dependence.
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Fig. 1.
Schematic representation of opioid interactions with the cortico-mesolimbic dopamine reward
pathway. Functional activity of beta-endorphin pathways primarily originating from the
nucleus arcuatus can lead to increased dopamine release in the nucleus accumbens via two
mechanisms. First, beta-endorphins can disinhibit the tonic inhibition of gamma-aminobutyric
acid (GABA) neurons on dopamine cells in the ventral tegmental area [10-12]. Second, beta-
endorphins can stimulate dopamine cells in the nucleus accumbens directly. Both mechanisms
may be important for alcohol reward. Alcohol stimulates beta-endorphin release in both the
nucleus accumbens and ventral tegmental area [13]. Mu receptor antagonists such as naloxone
and naltrexone block these central effects of beta-endorphins [9,13]. Embellished from
Gianoulakis [13]. Reprinted from Figure 1 in Johnson and Ait-Daoud [14], with the kind
permission of Springer Science and Business Media.
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Fig. 2.
Schematic representation of acamprosate’s effects. Acamprosate has four principal effects: A)
reducing post-synaptic excitatory amino acid neurotransmission at N-methyl-D-aspartate
(NMDA); B) diminishing Ca2+ influx into the cell, which interferes with expression of the
immediate early gene c-fos; C) decreasing the sensitivity of voltage-gated calcium channels,
and D) modulating metabotropic-5 glutamate receptors (mGluR5). mGluR5 are post-synaptic
and are coupled to their associated ion channels by a second messenger cascade system (not
shown). Also shown in this representation is synthesis of c-fos and c-jun in the endoplasmic
reticulum, which can bind with DNA to alter the transcription of late effector genes. Late
effector genes regulate long-term changes in cellular activity such as the function of receptors,
enzymes, growth factors, and the production of neurotransmitters. Embellished from Spanagel
and Zieglgansberger [103]. Adapted from Figure 2 in Johnson and Ait-Daoud [14], with the
kind permission of Springer Science and Business Media.
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Fig. 3.
Schematic illustration of the hypothesized effects of acute and chronic alcohol, both with and
without topiramate, on the cortico-mesolimbic dopamine (DA) reward circuit [127]. (Upper
left) Acute alcohol suppresses the firing rate of ventral tegmental area (VTA) gamma-
aminobutyric acid (GABA) neurons, which leads to less suppression of VTA DA neuronal
activity. This disinhibition leads to VTA DA neuronal firing and DA release in the nucleus
accumbens (N Acc.) [127]. (Lower left) With chronic drinking, VTA GABA neurons are
hyperexcitable, mainly because of increased glutamatergic input, less GABA tone from the N
Acc., and rebound firing of GABA neurons because of their long-term suppression from
repeated alcohol ingestion. This leads to VTA DA hypofunction and decreased release
(compared with the acute condition) of DA in the N Acc. [127]. (Upper right) During acute
drinking, the GABAergic influence of topiramate probably predominates, particularly in the
N Acc. This leads to greater inhibition of N Acc. DA neurons, and greater GABA tone from
the N Acc. to the VTA suppresses VTA DA cell firing. Topiramate concomitantly inhibits the
excitatory effects of glutamatergic neurons on DA neurons in the VTA and N Acc. These
combined actions of topiramate should lead to profound suppression of DA neuronal activity
and DA release in the N Acc. Hence, topiramate reduces the DA-mediated reinforcing effects
of acute alcohol [127]. (Lower right) During chronic drinking, the predominant neuronal
activity resides with the hyperexcitable state of VTA GABA neurons. Because of GABA-
mediated inhibition and glutamatergic blockade of these neurons, topiramate “normalizes”
VTA GABA neuronal activity. Although this would, at first, suggest that DA release in the N
Acc. would be enhanced, this does not occur, and DA release in the N Acc. is most likely
reduced because these N Acc. terminals are contemporaneously inhibited by GABA inhibition
and blockade of glutamate (GLU). In the chronic drinker, the anti-glutamatergic and L-type
calcium channel effects of topiramate to block sensitization might predominate. Hence,
topiramate would make it easier for a chronic alcoholic to withdraw from alcohol because
rebound DA release would not occur (if drinking were ceased abruptly), and topiramate would
aid in relapse prevention because alcohol’s reinforcing effects would be decreased [127]. Line
weights represent relative strengths of neuronal activity (heavy, medium, and light). The
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broken line represents decreased tone. VP, ventral pallidum. Reprinted from Figure 1 in
Johnson [127], with the permission of Blackwell Publishing, Inc.
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Fig. 4.
Neuronal pathways involved with the reinforcing effects of alcohol and other abused drugs.
Cholinergic inputs that arise from the caudal part of the pedunculopontine tegmental nucleus
(PPTg) and laterodorsal tegmental nucleus (LDTg) can stimulate ventral tegmental area (VTA)
dopamine neurons. The VTA dopamine neuron projection to the nucleus accumbens (nACC)
and cortex, the critical substrate for the reinforcing effects of abused drugs (including alcohol),
is modulated by a variety of inhibitory [gamma-aminobutyric acid (GABA) and opioid] and
excitatory [nicotinic (NIC-R), glutamate (GLU), and cannabinoid-1 receptor (CB1-R)] inputs.
The GLU pathways include those that express alpha-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors. Serotonin-3
receptors (5-HT3-R) also modulate dopamine release in the nACC. Adapted and embellished
by Bankole A. Johnson, DSc, MD, PhD, from an original drawing by Dennis Twombly, PhD,
at the National Institute on Alcohol Abuse and Alcoholism. Reprinted from the figure in
Johnson [267]. Copyright © 2006, American Medical Association. All rights reserved.
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