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Summary: The ultimate goal for Huntington’s disease (HD)
therapeutics is to develop disease-modifying neuroprotec-
tive therapies that can delay or prevent illness in those who
are at genetic risk and can slow progression in those who are
affected clinically. Neuroprotection is the preservation of
neuronal structure, function, and viability, and neuroprotec-
tive therapy is thus targeted at the underlying pathology of
HD, rather than at its specific symptoms. Preclinical target
discovery research in HD is identifying numerous distinct
targets, along with options for modulating them, with some

proceeding into large-scale efficacy studies in early symp-
tomatic HD subjects. The first pilot studies of neuroprotec-
tive compounds in premanifest HD are also soon to begin.
This review discusses the opportunities for neuroprotection
in HD, clinical methodology in premanifest and manifest
HD, the clinical assessment of neuroprotection, molecular
targets and therapeutic leads, and the current state of clinical
development. Key Words: Huntington’s disease, neuroprotec-
tion, disease modification, neurogenetics, genetic testing, clin-
ical trials, presymptomatic, premanifest.

INTRODUCTION

The ultimate goal for Huntington’s disease (HD) ther-
apeutics is to develop disease-modifying neuroprotective
therapies capable of delaying or preventing clinical ill-
ness in those who are at genetic risk, and capable of
slowing progression and permitting some recovery in
those who have clinical illness. Neuroprotection can be
defined quite literally as the preservation of neuronal
structure, function, and viability, or more generically as
the slowing or prevention of neurodegeneration. Neuro-
protective therapy is thus targeted at the underlying pa-
thology of HD, rather than at its specific symptoms.
The assumption we make is that selecting treatments

based on their ability to limit neuropathology will be
complementary to, and ultimately more fundamentally
beneficial than, selecting treatments based on their ability
to suppress symptoms. Basic and translational research
in HD is creating an expanding pipeline of candidate
neuroprotective therapies that are beginning to be tested
in early- and late-phase clinical trials. Candidate thera-
pies are generally filtered through genetic mouse models

of HD, and when supportive preclinical data demonstrate
significant neuroprotection, a compound is considered
for advancement to clinical trials.
The therapies already on this pathway are existing

compounds that were selected by a candidate approach
connecting hypotheses about mechanisms of disease and
existing medications that might modulate them. Com-
mercial and academic efforts that screen compound li-
braries against elements of the HD phenotype suitable
for in vitro or cell-based assays are also bringing forward
families of novel compounds to be sorted for efficacy,
toxicity, and drugability (i.e., the potential for pharma-
ceutical delivery of the compound).1,2 These approaches
are expanding the preclinical segment of the pipeline of
potential neuroprotective treatments and are beginning to
provide new compounds suitable for early-phase clinical
testing.
This review presents a conceptual framework for the

clinical development of neuroprotective therapies for HD
and an overview of possible neuroprotective targets and
compounds.

CLINICAL FEATURES AND THERAPEUTIC
OPPORTUNITIES

Huntington’s disease is an autosomal, dominant-inherit-
ance neurodegenerative disorder that is characterized by
progressive motor dysfunction, emotional disturbances, de-
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mentia, and weight loss. The disease occurs worldwide, in
all races and ethnic groups.3 Its prevalence is 5 to 10 cases
per 100,000, and there is a new mutation rate as high as 1%
to 3%.4,5 There are about 30,000 affected individuals in
North America, and another 150,000 have a genetic risk for
developing the disease. The incidence of being gene muta-
tion-positive in the at-risk population is about 40% (60,000
individuals), because of individuals being diagnosed and
depleting the pool of potential gene-positive individuals.
The average age of clinical onset is about 37 years of age;
however, the range is from infancy into the 80s.
Affected individuals are disabled by early functional

decline and require increasing levels of care and support,
usually with residential long-term care,6 and survive for
about 15 to 25 years from the time of diagnosis before
succumbing to the effects of severe physical and mental
deterioration. Symptomatic therapies are few and have
limited effect.7,8 There is no therapy proven to delay
onset or slow progression,9,10 and the best current med-
ical care has a positive impact by focusing multidisci-
plinary attention on symptom management and caregiver
support and by maximizing function and quality of
life.11–14 Because of the early functional decline, the
chronic and increasingly intensive care required, and the
profound multigenerational impact on entire families,15

HD disproportionately consumes medical, social, and
family resources. The principal target populations for
neuroprotective therapies are those who are premanifest
(not yet symptomatic but known to possess a huntingtin
gene with the causative CAG expansion) as well as those
who are manifest (overtly symptomatic), but not yet so
advanced that there is a vastly diminished quality of life
to preserve.

NEURODEGENERATION

Huntington’s disease is caused by the expression of
the aberrant huntingtin protein, which contains an abnor-
mally expanded polyglutamine tract near its N-termi-
nus.16 The presence of the abnormal huntingtin protein in
cells sets off a complex and poorly understood series of
deleterious and progressive biochemical events leading
in neurons to stress, physiological dysfunction, compen-
satory responses, neurodegeneration, and eventually cell
death. Neurodegeneration appears to be quite a pro-
longed process, as evidenced by signs of chronic neuro-
plasticity17,18 and of the slow involution of neurons with
gradual loss of synapses, dendritic spines, dendritic
branches, axonal segments, and supportive cytoplasmic
resources such as mitochondria and organelles involved
in the biosynthesis, modification, transport, and degrada-
tion of cellular molecules. The process of neurodegen-
eration ends in cell death, and dead and dying neurons
in situ can cause local inflammatory responses and pos-
sibly worsen conditions in their immediate vicinity. Be-

cause neurons exist to influence one another, as well as
the periphery, the neurodegenerative process can pro-
foundly affect networks of interconnected neurons and
the neurochemical, electrophysiological, and trophic
lines of communication and regulation that underlie neu-
ronal and neurological function. The progressive symp-
toms of HD clearly are caused by the functional network
effects of neurodegeneration and neuronal death in many
brain regions and the depletion of the brain’s reserve
capacity to compensate.
Location confers both function and dysfunction in the

brain, and one neuropathologic hallmark of the neurode-
generation and cell death in HD is regional and cellular
selectivity.19 The earliest and most aggressive neuro-
pathologic changes are found in the neostriatum. As a
result, there is a long tradition of ascribing the broad
range of neurologic symptoms that occur in HD to basal
ganglia circuitry and sometimes an excessive conviction
that protecting the striatum is the principal goal of neu-
roprotective therapy. Striatal neurodegeneration un-
doubtedly provides a significant component of the early
HD phenotype; marked neuronal loss has, however, been
identified in many other regions of the brain,19 and phe-
notypes associated with damage to them are significant
in HD. For example, the involvement and clinical con-
tributions of cerebral cortical neurodegeneration have
recently become more fully appreciated. Neuroimaging
techniques are showing that cortical neurodegeneration is
early, heterogeneous, progressive, and correlates strongly
with HD symptoms.20,21 It seems likely that cortical dys-
function and degeneration play significant roles in the
motor control, cognitive, and psychiatric symptoms of
HD and in the heterogeneous evolution of clinical symp-
toms as neurodegeneration plays out and involves more
and more of the cerebral cortex. An important implica-
tion is that cell replacement, trophic support, RNA in-
terference, or other potential neuroprotective treatments
that might be focally applied to the striatum may have
very have limited usefulness.

NEUROPROTECTION

Neuroprotection in premanifest HD
Individuals destined to develop HD are born with the

HD genetic mutation. Because the abnormal huntingtin
protein is present, it is possible that there are biochemical
or other abnormalities present from birth. All existing
information, however, suggests that most of these indi-
viduals experience a period of apparent clinical and bi-
ological normalcy before entering a prodromal period in
which there is active underlying disease without any
evident clinical or functional consequences. Current ev-
idence indicates that the causative processes involved in
HD are present for at least 10 to 20 years before HD can
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be diagnosed clinically21–28 on the basis of the unequiv-
ocal presence of the movement disorder.
The transition from HD prodrome to manifest HD (an

expression of diagnostic certainty made by the assessing
physician) is termed phenoconversion.29 Progressive at-
rophy of the striatum and cerebral cortex has been well
documented to occur in the premanifest prodrome pe-
riod, indicating that the neurodegenerative process is
ongoing.21,28,30 Subtle cognitive, motor, psychiatric,31–33

and metabolic abnormalities34,35 are detectable in pre-
manifest HD, and biochemical alterations are beginning
to be detected in blood.24,36 It is unknown whether the
HD prodrome represents a stable condition until some
decompensation causes manifest HD to emerge, or
whether it is a continuum in which clinically silent neu-
rodegeneration gradually accumulates sufficiently to
cause unequivocal symptoms. The pace of the disease
process can certainly vary over time, or can be acceler-
ated by other stresses. For example, we have observed
clinical onset to be hastened by significant traumatic
brain injury.
Regardless, it seems desirable to begin a neuroprotec-

tive therapy before or during the prodrome, with the aim
of delaying onset, as well as slowing progression of the
underlying pathologic processes while they are still sub-
clinical. This should not be considered prevention, how-
ever, because the treatment is aimed at active disease.
Because there are about five times as many at-risk as
symptomatic individuals, an even larger ratio of potential
years of neuroprotective treatment, and probably less to
gain from treating the most advanced individuals, the
premanifest population represents the largest therapeutic
opportunity for HD for neuroprotection. In addition, be-
cause symptomatic individuals generally become unable
to work within a few years, delaying their disability and
dependence would have great economic and social ben-
efits.
Two large ongoing observational trials (PHAROS,

PREDICT-HD)29,37 conducted by the Huntington Study
Group and conceived to help design and power efficacy
trials in this population will be completed soon. These
studies will help determine how to power a neuroprotec-
tion study seeking to delay onset based on an expected
rate or time of phenoconversion.38,39 In addition, there is
active research examining possible biomarkers that could
provide endpoints for detecting and monitoring progres-
sion during the HD prodrome. The first pilot interven-
tional studies in presymptomatic individuals using puta-
tive neuroprotective compounds will be underway during
2008.
Because premanifest individuals are healthy and fully

functional, the period of neuroprotective treatment for these
individuals could be for decades. Therefore, the ideal inter-
vention requires a very high level of safety and tolerability.
Accordingly, CoQ10 and creatine, which are capable of

ameliorating energy depletion and whose efficacy in man-
ifest HD will be known in a few years, have been suggested
by SET-HD (Systematic Evaluation of Treatments for Hun-
tington’s Disease: an independent program to identify, sys-
tematically assess, and prioritize experimental therapies for
HD; http://www.huntingtonproject.org) to be appropriate
for examination in premanifest HD. These compounds will
be tested first in separate studies, supported by the U.S.
National Institutes of Health, to examine safety, tolerability,
dosing, and biomarkers.
An important issue in designing a neuroprotection trial

in the premanifest population is the fact that the vast
majority of these individuals (�95%) have not desired
genetic testing.40 Some reasons for this include fear of
genetic discrimination,41 the lack of effective treatment,
and concern about the negative consequences of genetic
testing.42,43 Focus groups with at-risk individuals have
revealed that many would be adverse to taking part in
clinical trials if informative genetic testing is required.
Similarly, many would willingly take an experimental
medication and risk side effects in a clinical trial without
genetic testing, understanding that there would be about
a 60% chance of not having the gene mutation.
Performing a clinical trial only in subjects who have

had genetic testing is feasible for smaller scale, early-
phase studies. Without a dramatic upsurge in genetic
testing, however, it is difficult to imagine sufficient sub-
jects being available for most efficacy designs seeking
evidence for neuroprotection. Furthermore, the popula-
tion of available premanifest subjects who have had test-
ing may not be fully representative of the at-risk popu-
lation.
Requiring genetic testing for entry into a desirable

clinical trial raises an important ethical concern about
creating a coercive incentive for genetic testing, along
with its negative consequences in subjects wishing to
participate. To allay this concern and also to have normal
controls for tolerability and biomarker measures, an op-
tion is to allow the enrollment of individuals who either
(a) are at risk for HD by virtue of having a first-degree
relative with HD or (b) have tested positive for the HD
gene mutation. Approximately 60% of the former would
be gene negative, and all of the latter would be gene
positive. This novel design would greatly neutralize any
incentive for genetic testing.
If a high level of safety and tolerability can be ex-

pected from the intervention, treating gene-negative in-
dividuals is preferable to coercing genetic testing, which
carries its own risks.44 A design to perform double-
blinded genetic testing and provide placebo to gene-
negative individuals and active compound to gene-posi-
tive individuals might also be feasible, although it would
be complicated to administer. These will be important
considerations in designing clinical trials in premanifest
HD—something for which there is no road map.
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Neuroprotection in manifest HD
Once diagnosed clinically, individuals with HD have a

highly variable phenotype. Different affected individuals
can have predominantly motor (chorea, dystonia, bradyki-
nesia), predominantly cognitive (executive dysfunction), or
predominantly psychiatric (depression, emotional dyscon-
trol, psychosis, obsessive–compulsive symptoms) presen-
tation. Symptom severity can be modulated by many tem-
porary factors such as mood, nutrition, medications, and
sleep disturbances. Accordingly, treatments benefiting symp-
toms may or may not do so on the basis of neuroprotection.
Additionally, each symptom in HD has its own temporal
course of onset, progression, plateau, and waning—most
likely because the neurodegeneration in the brain that un-
derlies the symptoms reaches some point at which its clin-
ical expression has little room to progress further. For ex-
ample, chorea may be present early, worsen for some years,
stabilize, and wane as it is supplanted by dystonia and
spasticity. Regional cerebral cortical neurodegeneration in
HD is heterogeneous in time and location, which may ex-
plain some of the differences between patients, as well as
the evolution of symptoms in time, despite the early and
stereotypical decimation of the striatum.20

Despite the great day-to-day variability in symptoms and
their uneven evolution over time, the overall clinical pro-
gression of HD is slow, as assessed by an integrated mea-
sure of functional capacity (e.g., the Total Functional Ca-
pacity scale, or TFC45). Clinical trials in early symptomatic
HD include subjects with a TFC of about 7 or greater. This
encompasses a broad phenotypic range: from normal to
impaired but functional at home and work, to unable to
work but independent at home, to needing some assistance
at home but still ambulatory, independent for ADLs, and
competent to direct their activities. These subjects retain a
high quality of life, and slowing their decline would delay
loss of independence and the need for an escalation in care
resources, including residential long-term care. From the
time an individual is diagnosed as having unequivocal clin-
ical symptoms, it takes about 5 to 10 years for the TFC to
decline to 7 from a normal score of 13. There is sufficient
phenotypic range in this population to observe both pro-
gression and its slowing by a disease-modifying treatment,
and power calculations are currently based on this informa-
tion.

NEUROPROTECTION AND TREATMENT
APPROVAL

Measurement of neuroprotection
Neuroprotection can be defined as a beneficial treat-

ment effect on a biological process that contributes to
neurodegeneration in HD and thus to clinical progres-
sion. Many possibilities for measuring such effects must
be considered carefully when designing a clinical trial. In
early-phase clinical trials, evidence for potential efficacy

may be of secondary interest if examining dosing, phar-
macokinetics, pharmacodynamics, safety, and tolerabil-
ity are the principal objectives. Preliminary evidence of
potential neuroprotective efficacy from early-phase stud-
ies, however, can be vital for decision-making about
whether to continue the development of the treatment
into large and expensive phase III studies. A great need
for HD has been clinical or other outcome measures that
can provide that preliminary evidence. Indeed, without
such signals it is also very difficult to stop development
of a compound short of its failure in a large-scale study.
Clinical measures, such as those contained in the Uni-

fied Huntington’s Disease Rating Scale (UHDRS), can
reveal an effect on HD symptoms, although symptomatic
effects (whether better or worse) and neuroprotective
effects cannot be considered to be synonymous. Global
clinical measures that correspond to disease progression,
such as the TFC or other indicators of functional decline,
are insensitive measures in typical early-phase studies
(involving anywhere from a few to 100 subjects, with
durations measured in weeks to months).
There are refined, often quantitative, clinical measures

of motor and cognitive dysfunction that can be sensi-
tively measured in HD subjects, including premanifest
subjects. Some of these could be surrogates for measur-
ing progression of the underlying disease and serve as
indicators of the disease-modifying potential of a treat-
ment. Because it is difficult to relate response magni-
tudes for such measures to clinically significant benefits,
they are not yet useable as primary endpoints for assess-
ing efficacy. Even more promising are biomarkers from
neuroimaging or from biological samples or fluids (‘wet’
biomarkers) that could provide measures of disease ac-
tivity or progression.
To the extent that such biomarkers suggest a neuro-

protective effect, they can be supportive of decisions
about whether a compound should continue in develop-
ment. Biomarkers are especially promising for this pur-
pose, because neuroimaging showing slowed regional or
whole-brain atrophy or ‘wet’ biomarkers showing a
pharmacodynamic response are especially close to the
biology of neurodegeneration can be revealing in pre-
manifest or manifest HD, and may have sufficient sen-
sitivity in small sample size studies. Keep in mind also
that brain volumes could be affected by a treatment
without an accompanying effect on neurodegeneration,
and that ‘wet’ biomarkers may capture only limited as-
pects of the entire biochemistry underlying neurodegen-
eration and thus may not be predictive of a significant
clinical response later. Regardless, such indicators of
potential benefits that could best be explained by disease
modification should increase the likelihood of demon-
strating efficacy in a phase III study.
At the same time, negative findings can help in deci-

sion-making about whether the likelihood of a neuropro-
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tective effect from a potential treatment is too low to
justify further investment. In the absence of accepted
biomarkers, an alternative for seeking preliminary evi-
dence of efficacy is the futility design.46 With a futility
design, the TFC can still be used as the primary outcome
measure, but the prespecified indicator is sufficient di-
vergence between it and a standard derived from histor-
ical or limited placebo controls such that the probability
of the two groups being different crosses a threshold
indicating that some minimal difference is likely. An
ongoing futility study examining minocycline in HD will
enroll 124 subjects, who will be followed for 18 months.
Such studies are still relatively large, and (despite the
investment) a finding of nonfutility will not normally
count as a demonstration of efficacy for regulatory pur-
poses.
The U.S. Food and Drug Administration (FDA) con-

siders for approval treatments that are sufficiently dem-
onstrated as providing a significant clinical benefit.
Slowing of the decline of the TFC has been acceptable to
the FDA as the primary outcome measure in efficacy
studies designed to determine if a treatment slows func-
tional decline, an integrated clinical reflection of neuro-
protection. Currently, efficacy studies in symptomatic
patients with HD using the TFC as the primary outcome
require about 650 subjects and 3 years of follow-up to
detect a 25% slowing of decline (1:1 randomized placebo
controlled trial, and assuming 10% to 15% dropout).
Other global clinical measures, such as quality of life
scales or functional disability measures, could likewise
serve as outcome measures reflecting disease modifica-
tion or neuroprotection during manifest HD, and mea-
sures with greater power than the TFC would enable
testing more treatments.
The expense, time, and magnitude of effort needed to test

efficacy means that few interventions can be tested. Fur-
thermore, having large numbers of subjects on placebo
treatment for years in these trials is an unfortunate neces-
sity. Biomarkers of disease biological activity can be used
to help answer whether treatments have the desired phar-
macologic effects, and whether there are potential explana-
tions for response heterogeneity. Biomarkers corresponding
to disease progression that could help assess efficacy could
thus supplement the TFC or other clinical measures as
secondary endpoints and, if qualified, may ultimately serve
as surrogate endpoints for regulatory purposes, enabling the
testing of disease modification in fewer subjects more
quickly. These would have to first be qualified in successful
neuroprotection trials, but they could enable more efficient
testing of more potential neuroprotective therapies in the
future. It is a high priority to take every available opportu-
nity to study possible biomarkers in therapeutic trials to
bring that day closer.
No measures of clinical effect suitable for regulatory

approval exist for premanifest HD, because these indi-

viduals have no disability to measure, even if they have
measurable symptoms or signs.47 At present, an efficacy
study in premanifest HD would have to be designed to
slow the rate of phenoconversion to meet a regulatory
standard of demonstrating a clinical benefit. To examine
whether a treatment delays the onset of clinical symp-
toms in premanifest individuals with the HD genetic
mutation, it has been estimated that a daunting 1000 to
3000 subjects and 3 to 6 years of follow-up would be
necessary to detect even a large 30% to 40% decline in
the frequency of symptom onset.
A regulatory approval for a neuroprotective treatment

based on studies in manifest HD could be applicable to
premanifest HD, because there is no reason to think pre-
manifest and manifest HD differ biologically. Regulators
could, however, view concerns about safety differently in
premanifest and manifest individuals, such that toxicity ac-
ceptable in symptomatic individuals might not be consid-
ered acceptable in asymptomatic individuals. There might
also be additional concerns about treating healthy individ-
uals for many years before symptoms occur, because of
uncertainty about long-term toxicity and also uncertainty
about identifying the period in which it is necessary to treat
for the clinical benefit of delayed onset. Thus, a treatment
could potentially be approved with an indication for symp-
tomatic individuals specifically, although once it is ap-
proved the treatment would be in the hands of prescribers.
Biomarkers could provide pharmacodynamic indica-

tors of disease slowing in premanifest HD in the absence
of clinical symptoms and provide evidence of disease
modification in smaller-scale trials. Ideally, biomarkers
indicating subclinical disease activity or clinical predic-
tors of future disease onset could eventually help deci-
sion-making in practice about when to start a neuropro-
tective treatment in premanifest HD. A potential strategy
to include premanifest individuals in clinical research
and in the approval process is to perform pivotal phase
III efficacy studies in early manifest HD and supplement
these with limited studies examining safety, tolerability,
and biomarkers of disease progression in premanifest
HD. Should a treatment prove efficacious in manifest HD
and similarly affect biomarkers of disease progression in
premanifest and manifest HD, it may be possible to build
a rationale for not excluding premanifest individuals in
the treatment label. There is as yet no clear road map for
regulatory approaches for an indication to treat premani-
fest HD.

The role of preclinical genetic mouse models in
initiating neuroprotection trials
Candidate neuroprotective treatments for HD can be

tested in proof-of-concept studies using genetic mouse
models of HD, either transgenic mice expressing part or
all of an exogenous mutant huntingtin or knockin mice in
which the polyglutamine tract in the HD gene is patho-
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logically expanded. Positive results in these models have
promoted go-ahead decisions in industry and academia
for clinical trials in HD subjects. The predictive value of
the mouse models, though logical, has not yet been val-
idated, because there have not yet been sufficient efficacy
studies in humans testing compounds effective in mice.
There is also a history of disappointment with predict-
ability from animal models of other neurologic diseases,
such as stroke and amyotrophic lateral sclerosis. We
think mouse models of HD may be more representative
of the disease than in those other cases, given their
underlying genetic fidelity. There are other reasons, how-
ever, apart from model accuracy, why mouse data may
not scale to humans, such as inherent biological differ-
ences and bioequivalence differences with the treatment.
Currently, it is fair to state that positive mouse data do not
necessarily predict efficacy and negative mouse data do not
necessarily predict failure. Nevertheless, positive data in
mouse models can be supportive when considering all of
the factors around the potential rationale for testing a puta-
tive neuroprotective treatment in human HD.
Several categories of data that can be obtained in pre-

clinical models can be helpful. The least helpful are
positive or negative behavioral or motor performance
data, because the outcome measures can be influenced
pharmacologically without affecting neuroprotection
(preservation of neuronal structure, function, and viabil-
ity). Because neurodegeneration is defined neuropatho-
logically, neuropathologic indicators of neuroprotection
provide the most useful proof-of-concept information.
These include measures such as brain weight, atrophy,
ventricular size, neuronal size, and neuronal number, and
there are established means for measuring each of these.
Modulation of the presence of huntingtin protein aggre-
gates in brain does not correlate strictly to toxicity or to
neuroprotection, but can provide information about how
the treatment affects huntingtin itself. Behavioral data
have much more meaning in the context of the underly-
ing neuropathology, which enables interpreting the data
in relation to neuroprotection.
Other types of studies in HD mice can help by filling

in understanding about how neuroprotection might occur
(or fail) and by modeling potential biomarkers. Despite
the uncertain predictive value of positive data in HD
mouse models, there are some principles for assessing
the usefulness of the data, especially in the setting of a
HD research community with extensive experience fo-
cused on such studies. At the simplest level, any positive
evidence for neuroprotection (neuropathology) is better
than none.
Most negative data are not as compelling as positive

data, because there are many more alternative explana-
tions for achieving the former than the latter. Negative
studies in HD mouse models are quite easily achieved
and rarely published, and there are many reasons why

these may not reflect the neuroprotective potential of a
compound. These can include the fidelity of the model,
genotype or strain effects, experimental conditions, the
many variables that relate to optimal brain bioavailabil-
ity, and methodological errors. For positive results, the
more rigor the better in terms of methodology, limitation
of bias, replication, controls, and exposure to peer re-
view. Replication is especially powerful for confirming a
result, and this could be in different cohorts, in different
labs, in alternative mouse models, or by using distinct
but related compounds. Ideally, positive evidence for
neuroprotection from more than one laboratory, with
more than one mouse model, using neuropathology out-
come measures, and using more than one compound
provides the maximal preclinical proof-of-concept sup-
port. Lesser levels of evidence than this ideal can cer-
tainly be supportive, with their limitations understood,
when formulating how the mouse data contribute to de-
cision-making about translation to human testing, where
many other considerations come into play.

CANDIDATE TARGETS AND THERAPIES

Candidate targets for neuroprotection
Huntington’s disease is caused by the expression of the

abnormal huntingtin protein which contains an expanded
polyglutamine tract near its N-terminal. Although many
leads have been uncovered, a stepwise pathway from
huntingtin to neuronal dysfunction and death has not
been established. Huntingtin is a widely expressed, pre-
dominantly cytoplasmic, protein of unknown function
found heterogeneously in neurons throughout the brain
and widely in the body.48–52 In HD, both normal and
mutant alleles are expressed, and both gain of function
alterations (in which mutant huntingtin is toxic) and loss
of function alterations53–55 (in which suppression of nor-
mal huntingtin functions might also be toxic) have been
identified.
Proteolysis of mutant huntingtin, whereby abnormal

and ultimately toxic N-terminus fragments of huntingtin
are released,56–59 seems to play a dominant role in caus-
ing disease.60 Most evidence points to a proximal toxic-
ity residing in mutant huntingtin or its proteolytic frag-
ments and their soluble interactions with other proteins,
including huntingtin itself or the hundreds of other pro-
teins that have been demonstrated to associate with hun-
tingtin.61 Proximal events mediated by mutant huntingtin
in turn trigger cascades of both damaging and compen-
satory molecular processes and genetic programs. These
events and sequelae include mitochondrial dysfunction,
energy depletion,62–64 oxidative stress,65,66 DNA dam-
age,67 synaptic stress,68 disordered neurophysiology,69

proapoptotic signals,70 protein aggregation,71–73 mal-
functioning proteolysis,74 autophagy,75–79 ubiquitin/
proteosomal dysfunction,80–82 neurotrophin deficiency,83–85
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and©disrupted©intracellular©transport86—all©of©which
might©play©a©role©in©neuronal©death.87©The©presence©of
huntingtin©or©its©fragments©in©the©nucleus©seems©to©par-
ticularly©drive©pathology.88,89©This©is©likely©due©to©inter-
actions©in©the©nucleus©with©a©variety©of©transcription
factors©and©regulators©leading©to©complex©and©multifac-
eted©transcriptional©alterations©that©also©seem©important
to©pathogenesis©and©reverberate©through©cellular©bio-
chemistry.90–101

These©various©complex©processes©ultimately©lead©to
increasingly©fragile,©atrophic,©dysfunctional©neurons©that
ultimately©die.©These©processes©have©suggested©many
potential©therapeutic©targets:

●©Huntingtin©production

●©Huntingtin©cleavage©into©toxic©fragments

●©Nuclear©transport©of©huntingtin

●©Huntingtin©misfolding

●©Huntingtin©clearance

●©Huntingtin©posttranslational©modifications

●©Protein©aggregation

●©Transcription©factor/complex©function

●©Chromatin©regulation

●©Energetic©abnormalities

●©Oxidative©stress

●©Synaptic©stress

●©Cell©death©signaling

●©Autophagy

●©Proteosome©dysfunction

●©Neurotrophin©deficiencies

Some©of©these©therapeutic©targets©have©had©some©pre-
clinical©validation©through©studies©in©HD©transgenic
mice©and©are©represented©in©the©increasing©pipeline©of
possible©disease-modifying©therapies.©What©is©uncer-
tain©is©the©relative©importance©and©interdependence©of
each,©although©reducing©levels©of©mutant©huntingtin
(e.g.,©by©RNA©interference102–106©or©suppressing©its
cleavage,60©improving©its©misfolding,107©or©reducing
its©nuclear©transport)©might©be©the©most©fundamental
(i.e.,©proximal).

Candidate therapies for Huntington’s disease
Not©all©of©the©potential©neuroprotective©targets©just

listed©have©been©subjected©to©proof-of-concept©studies©in
HD©mouse©models;©however,©preclinical©studies©in©HD
transgenic©mice©have©provided©a©basis©for©testing©a©grow-
ing©list©of©compounds©in©HD.©Included©are©compounds
that©enhance©mitochondrial©function©or©suppress©oxida-
tive©injury,©such©as©coenzyme©Q10,108©creatine,109,110

dicholoracetate,111©�-lipoic©acid,112©the©antiapoptotic©an-
tibiotic©minocycline,113©the©transglutaminase©inhibitor

cystamine,114,115©metal©chelators;116,117©glutamate©antag-
onists©and©other©neurotransmitter©modulators©such©as
remacemide,©riluzole,118,119©and©paroxetine120;©transcrip-
tionally©active©compounds©such©as©histone©deacetylase
inhibitors,©DNA©intercalating©agents,121–124©and©agents,
such©as©RNA©interference,©for©blocking©the©translation©of
huntingtin©protein©itself;102–106© and©tauroursodeoxy-
cholic©acid©(TUDCA)125©or©other©agents©that©might©act©by
increasing©levels©of©brain-derived©neurotrophic©factor
(BDNF),©which©has©been©implicated©repeatedly©in©HD,126

although its potential as a therapeutic target remains
untested. There are so many potential disease-modifying
therapies that they are not reviewed exhaustively here.
The reader is instead referred to the SET-HD website
(Systematic Evaluation of Treatments for Huntington’s
Disease;©http://www.huntingtonproject.org).
Most clinical trials to date in humans with HD have

focused on preventing oxidative and glutamatergic
stress. These studies, many of which were multicenter
trials organized by the Huntington Study Group, in-
cluded the antioxidants idebenone, vitamin E,127–129

creatine,130,131 coenzyme Q10 (CoQ10),
132 the antiox-

idant transglutaminase inhibitor cysteamine,133 ethyl-
eicosapentaenoate,134 and the glutamate antagonists
lamotrigine,135 remacemide,132 and riluzole.119,136,137

These studies have not demonstrated slowing of func-
tional decline, but most have been phase II studies that
were not powered to test efficacy.
In the CARE-HD (CoQ10 and Remacemide Evaluation

in Huntington’s Disease) study completed by the Hun-
tington Study Group, a trend toward slowed progression
was observed with CoQ10,whereas remacemide, although
not affecting progression, appeared to improve cho-
rea.132 We note that the rates of slowed progression in
CARE-HD and survival prolongation in the mice treated
with CoQ10 were the same (�14%). Remacemide was
neuroprotective in mice, but not in CARE-HD; however,
the maximally tolerated doses used were much greater in
mice than in humans. Thus, there is some evidence that
preclinical results in mice may be predictive of therapeu-
tic responses in humans. Given the encouraging prelim-
inary results in CARE-HD, a series of studies testing the
pharmacokinetics, safety, and efficacy of higher doses of
CoQ10 is ongoing.
Additional active or planned therapeutic clinical trials

for HD in manifest individuals using potential neuropro-
tective treatments include a high-dose phase III creatine
trial expected to start in 2008, a phase II trial of phenyl-
butyrate (the results of are to be reported in 2008), and a
futility study using the antiapoptotic antibiotic minocy-
cline. The incorporation of biomarkers and exploratory
clinical outcome measures in these studies should facil-
itate and improve future neuroprotection trials.
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