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Abstract
The overlapping distribution of spinal neurons activated with either pudendal sensory nerve or pelvic
nerve stimulation was examined in the female rat using c-fos immunohistochemistry. Pudendal
sensory nerve stimulation resulted in a significant increase in fos-positive cells in the ipsilateral dorsal
horn and bilaterally in the medial, lateral and intermediate gray of L5-S1. Pelvic nerve stimulation
resulted in significant increases of c-fos immunoreactive nuclei in the ipsilateral dorsal horn, lateral
and intermediate gray and bilaterally in the medial gray of L5-S1. Co-distribution of fos
immunoreactive nuclei with the vesicular glutamate transporters (VGlut2 and VGlut3) and
neurokinin I receptors were found in distinct regions of the dorsal horn, medial and lateral gray.
Specific areas in the medial dorsal horn, dorsal gray commissure, laminae VI and X and dorsal lateral
gray were activated after stimulation of the pudendal sensory and pelvic nerves, suggesting these
areas contain spinal neurons that receive both somatomotor and visceral inputs and are part of the
intraspinal circuit that regulates sexual and voiding function.

Keywords
c-fos; spinal interneurons; urogenital; glutamate; NK1

1. Introduction
The autonomic and somatic peripheral nerves that innervate the pelvic organs are important in
mediating and coordinating responses seen during female reproductive behavior and
micturition. Sensory inputs from the pudendal nerve relay information relevant to mating that
is received during anogenital investigation and mounting behavior and this input can trigger
sexual arousal and lordosis [1,31,33,45,47]. The pelvic nerve conveys sensory information
during vaginocervical stimulation, can modulate lordosis and is important in triggering
hormonal changes that occur after mating in female rodents [23,24,32]. Both the pudendal and
pelvic nerves are also essential for micturition as they coordinate normal filling and voiding
reflexes of the bladder and maintain continence [17–19]. The pelvic nerve regulates bladder
contractions and the pudendal motor nerve controls external urethral sphincter activity. Recent
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studies have suggested that the pudendal sensory nerve can modulate micturition, possibly
through a positive feedback loop by regulating the excitatory drive of the parasympathetic
neurons [11,16]. Stimulation of the pudendal sensory nerve also increases vaginal blood flow
(author’s unpublished observations). Therefore, there is a significant interaction between the
afferent input and efferent output of the pudendal and pelvic nerves which may involve
activation of common spinal circuits.

The afferent inputs from both the pudendal sensory and pelvic nerves enter the dorsal horn at
L5-S1 segments. The pudendal nerve afferents course through and terminate in the superficial
and medial dorsal horn and dorsal gray commissure (DGC) [46]. The pelvic nerve afferent
fibers are located primarily in the superficial and lateral dorsal horn and project to the lateral
gray [48,49]. In order to further understand the overlapping spinal networks that are activated
in association with the coordination of the somatomotor and parasympathetic systems, the
present study examined the distribution of spinal interneurons activated in two groups of
animals that either received pudendal sensory or pelvic nerve stimulation.

Sensory transmission in the spinal cord is thought to be mediated primarily via glutamate, and
localization of the vesicular glutamate transporters (VGlut) can be utilized to identify neurons
that use glutamate as a neurotransmitter. VGlut2 and VGlut1 immunoreactivity are widely
distributed in the central nervous system and are found in some overlapping regions [34,53,
63]. Neurons synthesizing VGlut2 have been identified in the ventral medulla, a region that
projects to the lumbosacral spinal cord and is involved in regulating pelvic function [42,60].
VGlut2 also innervates the parasympathetic preganglionic neurons of the lumbosacral spinal
cord [38]. In contrast, the distribution of VGlut3 has been less well studied, and existing data
suggests that VGlut3 exhibits a more restricted expression pattern compared to VGlut1 and
VGlut2 [50,51]. VGlut3 has been shown in some cholinergic and serotonergic neurons in the
brain and pelvic function is modulated by serotonergic and cholinergic supraspinal and spinal
pathways [27,28,43]. Thus, we decided to examine the presence of VGlut2 and VGlut3
immunoreactivity in relationship to spinal neurons activated with nerve stimulation. In
addition, substance P neurons containing neurokinin I receptors mediate nociceptive
transmission in the dorsal horn and the preganglionic neurons and motoneurons mediating
pelvic responses are cholinergic. Therefore, to provide information concerning the possible
spinal neurotransmitters and mechanisms involved in relaying afferent input from the pudendal
and pelvic nerves, we examined the distribution of c-fos with neurons containing glutamate
transporters, choline acetyltransferase and neurokinin I receptors.

2. Results
2.1 Pudendal sensory nerve stimulation

Following stimulation of the pudendal nerve a significant increase in fos-immunoreactive (fos-
I) nuclei was observed in L5-S1 in the ipsilateral dorsal horn and bilaterally in the lateral,
intermediate and medial gray (figures 1A, 1B and 2, table 1). The majority of fos-I nuclei were
located in the superficial medial region of the dorsal horn (lamina I, II and III) and in the medial
gray in the DGC and lamina X. In the intermediate gray fos-I nuclei were located in laminae
V and VI and in the lateral gray fos-I nuclei were found in and around the sacral
parasympathetic nucleus, where the parasympathetic preganglionic neurons are located (figure
1). A few fos-I nuclei were found in the dorso-medial ventral horn. Motoneurons did not exhibit
any c-fos labeling. A stimulation induced increase in fos-immunoreactivity was also observed
in L3-L4 segments bilaterally in the medial gray (table 1). A small stimulation induced increase
in fos-immunoreactivity was also observed in the ipsilateral intermediate gray of L3-L4 and
medial gray of T11-L2 (table 1).
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2.2 Pelvic nerve stimulation
After stimulation of the pelvic nerve fos-I nuclei were seen in L5-S1 segments (figure 1C,1D
and 2, table 2). A significant increase was found in the ipsilateral dorsal horn and lateral and
intermediate gray. Pelvic nerve stimulation also activated neurons bilaterally in the medial
gray. The majority of fos-I nuclei were located throughout the superficial lateral dorsal horn
in lamina I and II (figure 1D). In the lateral gray, fos-I nuclei were located in the
parasympathetic preganglionic nucleus and in lamina V and VI of the intermediate gray (figure
1D). In the medial gray fos-immunoreactivity was found primarily dorsal and ventral to the
central canal in the DGC and lamina X. Pelvic nerve stimulation did not increase the number
of fos-I nuclei in T13-L3 (figure 2, table 2).

2.3 Overlapping spinal areas activated with pudendal sensory and pelvic nerve stimulation
A comparison of the spinal areas activated with pudendal sensory and pelvic nerve stimulation
was made from matching L5-S1segments, where a significant increase in fos-I nuclei was found
(see figure 1B, 1D and tables 1 and 2). The specific regions of the spinal gray matter that were
activated by both nerves are represented in figure 3H. A small region of the medial and lateral
dorsal horn (laminae I, II and the medial zone of lamina III) contained fos-I nuclei after
stimulation of both nerves. Fos-I nuclei were seen after pudendal sensory and pelvic nerve
stimulation in the DGC and dorsomedial part of lamina X. In addition, the lateral region of
lamina V and a narrow band in the intermediate gray in lamina VI contained fos-I after
stimulation of both nerves (figure 3). These areas represent the location of overlapping spinal
interneurons that may coordinate or balance the autonomic/somatic regulation of sexual and
voiding reflexes.

2.4 Double immunocytochemistry
Examination of double labeling of fos-I nuclei and putative preganglionic neurons (ChAT
positive), and overlap of fos-I nuclei with NKI receptors and VGlut2 and VGlut3 transporters
was examined in L5-S1, where most of the activated neurons were located. Stimulation of the
pelvic nerve resulted in an increase in the number of ChAT and fos-immunoreactive double
labeled neurons in the parasympathetic preganglionic nucleus ipsilateral to the stimulated nerve
(figure 3C). Around 2–5% of the total ChAT labeled cells were fos-positive in the control group
and on the contralateral side in the nerve stimulated group, whereas, 10–15% of the ChAT
neurons stained for c-fos in the ipsilateral parasympathetic preganglionic nucleus. In contrast,
stimulation of the pudendal sensory nerve did not result in an increase in the percent of double
labeled ChAT and c-fos positive neurons. In all groups 5–10% of the ChAT positive neurons
in the parasympathetic preganglionic nucleus contained fos-immunoreactivity. Therefore,
stimulation of the pelvic nerve, but not the pudendal nerve, activated parasympathetic
preganglionic neurons.

The distribution of NKI receptors was similar to that previously described [62]; NKI receptor
staining was primarily located in the superficial dorsal horn (laminae I and II) and appeared
more prominent in the dorsomedial area (figure 3G). NKI receptors were also present in the
lateral gray, DGC and the ventral horn. Numerous fos-I nuclei in the superficial dorsal horn
were surrounded by NKI receptor immunoreactivity after pudendal or pelvic nerve stimulation
(figure 3D,H and G). Other regions showing close overlap of NKI receptors and fos-I nuclei
included the medial region of lamina IV and lamina X, and an occasional overlap was seen in
the lateral gray after both pelvic and pudendal nerve stimulation.

As previously reported, [2,34,53] VGlut2 labeling was found to be distributed throughout the
spinal gray matter and was particularly abundant in the superficial dorsal horn (laminae I and
II; figure 3A) and in lamina IV. Therefore, some overlap of labeling of fos-I nuclei and VGlut2
was found in all regions after pudendal and pelvic nerve stimulation, but this overlap was most
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prominent in the dorsal horn and DGC (figure 3H). VGlut2 was also seen to be co-distributed
with fos-I nuclei in the lateral gray (figure 3E).

The distribution of VGlut3 was more specific compared to VGlut2 [34]. VGlut3 labeling was
primarily found in the deeper layers of the dorsal horn (laminae III/IV) which was ventral to
the majority of fos-I nuclei (figure 3B). VGlut3 labeling was also present in the DGC, lateral
and intermediate gray as well as being abundant in ventral horn motoneurons, including the
dorsomedial and dorsolateral nuclei. An overlap of fos-immunoreactivity and VGlut3 was
found in the DGC and lamina X surrounding the central canal (figure 3F and H). However,
while VGlut3 immunoreactivity was found closely associated with some fos-I nuclei in the
lateral gray, the majority of VGlut3 staining was ventral to the fos-I nuclei.

3. Discussion
This study demonstrates that stimulation of the pudendal sensory nerve or pelvic nerve results
in activation (mapped using c-fos) of spinal neurons in L5-S1 of the spinal cord. Localized
common areas of activation in the medial dorsal horn, DGC, lateral and intermediate gray were
found after pudendal sensory and pelvic nerve stimulation suggesting these regions regulate
the spinal integration of somatomotor and visceral changes seen during sexual function and
micturition. An overlap of fos-I nuclei and NKI receptors and VGlut2 and VGlut3 transporters
were found in these regions.

Unilateral nerve stimulation resulted in the greatest cell activation ipsilateral to the stimulus.
However, fos-positive neurons were found on both sides of the DGC after either pudendal or
pelvic nerve stimulation and in the contralateral lateral and intermediate gray after pudendal
nerve stimulation. The pattern of fos immunoreactivity in the dorsal horn, medial and lateral
gray matched the distribution of afferent fibers and terminals seen with anterograde tracing of
the pudendal sensory or pelvic nerves [46,48,49]. The pudendal nerve afferents enter the
superficial dorsal horn and course primarily in the medial dorsal horn and terminate in the
DGC, in the exact locations that c-fos positive nuclei were observed [46]. In addition, an
increase in fos-I nuclei was observed in the intermediate gray (laminae V and VI) and dorsal
to the parasympathetic preganglionic nucleus which suggests that afferents also either directly
or indirectly activate cells in these regions. Stimulation of the pelvic nerve resulted in increased
fos-immunoreactivity in the superficial laminae (I and II) and lateral dorsal horn, and in the
medial gray and parasympathetic preganglionic nucleus. This pattern of cell activation closely
matches the description of pelvic afferent fibers and terminals coursing through the lateral
dorsal horn which project towards the parasympathetic preganglionic nucleus, as well as
afferent fibers projecting through the medial dorsal horn that travel to the DGC [49].

The pudendal and pelvic afferents modulate the level of tonic inhibition and excitatory drive
that is important in regulating and coordinating lower urinary tract function through GABA
and glutamate containing neurons. The superficial dorsal horn contains neurons which
modulate afferent information through projections to local spinal laminae, other spinal
segments and the brain [20,54,62]. The laminae I and II fos-I neurons labeled in the present
study could be involved in nociception or regulation of muscle sensitivity and non noxious
inputs [37].

Neurons in the DGC and lamina X activated with pudendal or pelvic nerve stimulation may
integrate and relay afferent signals to efferent neurons within multiple spinal segments and
relay important sensory information to the brain. Neuroanatomical studies mapping spinal
interneurons involved in pelvic organ function confirm that the DGC and lamina X contain
neurons that transverse multiple spinal segments and project to the brain [26,35,36,39–41].
Stimulation of the pudendal nerve and pelvic viscera increases electrophysiological activity of
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DGC neurons and their dendritic fields [25,30]. The pudendal motor neurons receive
information from sensory inputs through their extensive dendritic branches which project into
the medial gray; SPN neurons receive inputs through the DGC and via direct afferent inputs
[9,14,44,46,65].

A small proportion of parasympathetic preganglionic neurons (ChAT and fos positive) were
activated in response to pelvic nerve stimulation. However, most of the fos-I nuclei activated
in this region were located surrounding the ChAT containing neurons and probably represent
interneurons that communicate with the preganglionic neurons and brain nuclei [36,48,49,
52]. Neurons in the lateral gray project to the pontine micturition center, periaqueductal gray
and hypothalamus – areas known to regulate sexual and voiding function [21,22]. Neurons in
this lateral region also respond to both cutaneous and visceral stimulation of both the colon
and vagina, suggesting that fos-I neurons identified in the present study may coordinate and
balance function between the various pelvic organs.

The present study agrees with a previous study that showed stimulation of the pelvic nerve
activated neurons in the dorsal horn, medial and lateral gray of L6 and S1 [7]. However, they
also reported a stimulus related increase in L1-L4, which was not observed in our study.
Stimulation of the pelvic and pudendal nerves in the anesthetized cat resulted in an increase of
fos-I nuclei in the superficial dorsal horn and medial gray of S1–S3 [29]. Other studies in
females, have reported similar but relatively larger activation patterns of fos-immunoreactivity
after vaginocervical stimulation, stimulation of the urethrogenital reflex and noxious
stimulation of the bladder [5,6,13,15,26,35,41,58].

Multiple neurotransmitters in the spinal cord have been postulated to mediate sexual and
bladder reflexes including glutamate, acetylcholine, oxytocin, serotonin and various peptides
[3,10,27,58,59,66,69,70]. The present study examined the relationship of VGlut2, VGlut3
transporters and NKI receptors with fos-I nuclei as both glutamate and NKI receptors have
been shown to regulate pelvic reflexes [64,69]. Glutamate is the major excitatory
neurotransmitter and recent studies have documented the distribution of glutamate transporters
in the lumbosacral cord [2,34,38,51,57,63]. Studies have suggested that VGlut1 and VGlut2
expression is restricted to glutaminergic neurons; however, VGlut3 expression is found not
only in glutaminergic neurons but also neurons that contain acetylcholine and serotonin [28].
A recent study indicated that VGlut2 (not VGlut1) axons, supplied the majority of glutamate
innervation of the parasympathetic preganglionic neurons [38] and the present study describes
the overlap of VGlut2 with fos-I nuclei in the region of the parasympathetic preganglionic
neurons in the lateral gray. Modulation of excitatory drive via glutamate AMPA receptors may
occur in the dorsal horn since VGlut2 particularly overlapped with fos-I nuclei in the superficial
dorsal horn, where glutamate release is thought to act on AMPA receptors [20]. Both VGlut2
and VGlut3 transporters may mediate spinal reflex excitatory drive in the DGC as they were
both found to be codistributed with fos-I neurons. Glutamate transporters are primarily located
on dendritic processes, thus the present study examining c-fos nuclei, rather than labeling the
cell body and processes, may have limited our ability to identify all the glutamate inputs to the
activated neurons. However, as shown in figure 3, VGlut 2 and VGlut3 immunostaining was
frequently found in close proximity to the fos-I nuclei in the dorsal horn and medial and lateral
gray. The presence of overlapping NKI receptors and fos-immunoreactivity in the medial
dorsal horn and DGC suggests a functional role of NKI receptors in the regulation of
lumbosacral spinal inputs that make collateral projections to deeper layers of the dorsal horn
and project to the brain, in addition to regulating nociception [12,61,62,64].

A number of studies have provided evidence for cross organ interactions between
gastrointestinal, bladder and reproductive pelvic organs particularly examining the responses
of different organs to inflammation of a single organ such as the bladder, uterine horn or colon
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[56,68]. In addition, coordination of muscle relaxation and contraction and vasodilatation and
vasoconstriction, takes place during sexual behavior and voiding reflexes. The communication
of sensory information with coordination of the appropriate autonomic and motor output takes
place at multiple levels of the nervous system including the dorsal root ganglia, spinal cord
and the brain [4,55,56,68]. The present study reports the spinal cord regions that may relay
cross communication between the viscera and somatomotor systems in the lumbosacral spinal
cord.

4. Materials and Methods
Sprague-Dawley female ovariectomized rats (280–320 g) were anesthetized with urethane
(n=16, 1.2 g/kg i.p.) prepared for either pudendal sensory or pelvic nerve stimulation. The
pudendal nerve was exposed via a dorsal approach and the pelvic nerve via a ventral approach
[8,46]. Body temperature was maintained at ~38°C with a heating pad. The jugular vein was
cannulated in order to deliver extra anesthetic if required. The left pudendal sensory or pelvic
nerve was stimulated (50μA, 40 Hz, 1 sec on/off) for 30 min via bipolar silver hook electrodes.
These stimulation parameters were chosen as they produce consistent changes in vaginal blood
flow and the urethrogenital reflex. Control animals were surgically prepared exactly the same
as the stimulated group; however the pudendal sensory and pelvic nerves were exposed but
not stimulated. After 60 minutes rest, animals were perfused with 4% paraformaldehyde while
under deep anesthesia. The spinal cord was removed and placed into a 30% sucrose solution.
All experimental procedures involving animals were approved by the University of North
Carolina Institutional Animal Care and Use Committee in accordance with the Association for
Assessments and Accreditation of Laboratory Animal Care and National Institutes of Health
guidelines.

The dorsal roots and ganglia were identified and coronal sections (35 μm) of T10-S2 of the
spinal cord were cut on a freezing microtome and placed into cryoprotectant solution until
processed [67]. A series of 1 in 6 sections (~170μm apart) were processed for identification of
c-fos immunoreactive (fos-I) nuclei using the avidin-biotin immunoperoxidase method.
Sections were incubated with rabbit anti-c-fos (1:80,000; DC38, Calbiochem, USA (previously
Oncogene Research Products), synthetic peptide of amino acid residues 4–17 of human c-fos)
overnight. Sections were washed in phosphate buffered saline (PBS) then incubated in
biotinylated goat anti-rabbit IgG (1:500; BA1000, Vector Laboratories, USA) for ~1hr.
Sections were washed in PBS and incubated in avidin-biotin complex (ABC, 1:1,000; PK6100,
Vector Laboratories, USA) for 1hr. Sections were then incubated in DAB (3′3-
diaminobenzidine tetrahydrochloride) – hydrogen peroxidase substrate containing nickel for
10 min. Control tissue was incubated in dilute normal (pre-immune) rabbit serum (1:6,000
dilution, Vector Laboratories, USA) or processed as above without the primary or secondary
antibodies. These controls showed complete absence of staining. Sections were counterstained
with methyl green (1%) in order to visualize the cytoarchitecture.

For visualization of fos-I nuclei and neurotransmitters a separate series was stained for c-fos
(see above, with or without nickel) and then incubated in either goat anti-choline acetyl
transferase (ChAT, 1:1,000; AB144P, Chemicon, USA), rabbit anti-Neurokinin I receptor,
(NKI, 1:1000, ABN33AP, Advanced Targeting Systems, USA), guinea pig anti-vesicular
glutamate transporter 2 or 3 (VGlut2 (AB5907) or VGlut3 (AB5421), 1:300,000 or 1:30,000
respectively, Chemicon, USA) overnight. Subsequently sections were incubated in 1:500
dilutions of biotinylated anti-goat IgG (ChAT, BA5000), biotinylated anti-rabbit IgG (NKI,
BA1000), or biotinylated anti-guinea pig IgG (VGlut2 or VGlut3, BA7000) and visualized
using the ABC method without nickel for ChAT, and with nickel for VGlut2, VGlut3 and NKI.
Sections were also incubated for single immunostaining of each antibody. Controls for double
staining included omission of one or both of each of the primary and secondary antibodies.
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The spinal cord was delineated into five regions; dorsal horn (laminae I–III); intermediate gray
(laminae IV, V, VI, VII); lateral gray (IML, lateral spinal nucleus and lateral gray of laminae
IV, V, VI and VII); medial gray (lamina X, intermediomedial nucleus and laminae IV and V);
and ventral horn (laminae VII, VIII, IX) (figure 1E and F) [41]. The number and location of
fos-I nuclei in each region (dorsal horn, lateral gray, intermediate gray and ventral horn) were
counted from T11-S2 for each animal (~every 170 μm, this strategy gave around 6–10 sections
per segment). These data were then averaged according to segment. The data were examined
by region and then grouped into T11–T12, T13-L2, L3-L4, and L5-S1. Comparisons between
the surgical controls and nerve stimulated groups were done using one-way ANOVA followed
by Scheffe’s post-hoc tests using SPSS 13.0 for Windows and unpaired t-test (Excel 6.0).
Differences were considered significant when P < 0.05. Photomicrographs were generated
using a Retiga 2000R camera attached to a Leica microscope. Images were captured using
Adobe Photoshop 7.0. Alterations to images were limited to enhancement of brightness/
contrast.
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Figure 1.
Photomicrographs of coronal sections of L5/6 spinal cord showing the distribution of fos-I
nuclei [A–D]. [A] L5 pudendal nerve surgical control [B] L5 pudendal nerve stimulated [C]
L6 pelvic nerve surgical control and [D] L6 pelvic nerve stimulated rat. Arrows in B and D
show the location of the parasympathetic preganglionic neurons and the dorsal gray
commissure. CC – central canal, VH – ventral horn. Scale bar = 500μm. [E] Spinal laminae I–
X. [F] Regions counted. DH - dorsal horn, I -intermediate gray, L - lateral gray, M - medial
gray and VH – ventral horn. Note the distribution pattern of fos-immunoreactivity in the dorsal
horn and medial and lateral gray.
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Figure 2.
Histograms showing the total number of fos-I nuclei in each spinal segment of surgical control
and pudendal or pelvic nerve stimulated groups. Data represent mean ± SE (n = 4). Open bar
- control group; filled bars – stimulated group. * represents a significant difference p< 0.05
from the surgical control group.
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Figure 3.
Photomicrographs illustrating the colocalization of fos-I nuclei with VGlut2 (A, E), VGlut3
(B, F), NKI (D, G) and ChAT (C). [A and B] Show the dorsal horn, the dotted line represents
the approximate border of lamina II and lamina III. VGlut2 immunoreactivity is more
prominent in the superficial laminae where it is co-distributed with fos-I nuclei. VGlut3
immunoreactivity is predominate in laminae III and not associated with fos-I nuclei in the
superficial dorsal horn. [C] ChAT and fos-I nuclei in the dorsal horn and lateral gray. Arrows
shows examples of cells colocalized with c-fos and ChAT in the PPN. [D and G] Examples of
NKI activated cells in the dorsal horn (arrows). [E] VGlut2 immunoreactive dendrites and
boutons adjacent to fos-I nuclei in the lateral gray (arrows). [F] VGlut3 immunoreactive
dendrites and boutons associated with fos-I nuclei in the dorsal horn (arrows). Abbreviations:-
DH - dorsal horn, CC -central canal, PPN - parasympathetic preganglionic nucleus. Scale bars
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= 250μm for A and B; 100μm for C-G. [H] Illustrates a summary diagram showing areas that
resulted in increased fos-immunoreactivity after both pudendal sensory and pelvic nerve
stimulation. The relationship of these areas with NKI, VGlut2 and VGlut3 is also shown. Left
side shows the spinal laminae. Right side shows shaded areas in which fos-immunoreactivity
was significantly increased with both pudendal and pelvic nerve stimulation. Specific shading
subcategorizes areas showing significant overlap of fos-I nuclei with NKI, VGlut2 or VGlut3.
Dark grey = NKI+VGlut2; vertical lines = VGlut3; diagonal lines = NKI; horizontal lines =
VGlut2; and light shading = neither NKI, VGlut2 nor VGlut3.
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