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The deoxycytidine analogue 20,20-difluoro-20-deoxycytidine (dFdC, gemcitabine) is a potent radiosensitiser, but has limited efficacy in
combination with radiotherapy in patients with pancreatic cancer due to acute toxicity. We investigated whether cyclopentenyl
cytosine (CPEC), targetting the ‘de novo’ biosynthesis of cytidine triphosphate (CTP), could increase dFdC cytotoxicity alone or in
combination with irradiation in a panel of human pancreatic cancer cells (Panc-1, Miapaca-2, BxPC-3). To investigate the role of
deoxycytidine kinase (dCK), the rate-limiting enzyme in the activation of dFdC, human lung cancer cells without (dFdC-resistant SWg)
and with an intact dCK gene (dFdC-sensitive SWp) were included. We found that CPEC (100–1000 nmol l�1) specifically reduced
CTP levels in a dose-dependent manner that lasted up to 72 h in all cell lines. Preincubation with CPEC resulted in a dose-dependent
increase in dFdC incorporated into the DNA only in dFdC-sensitive cells. Consequently, CPEC increased the effectiveness of dFdC
(300 nmol l�1 for 4 h) only in dFdC-sensitive cells, which was accompanied by an increase in apoptosis. We also found that CPEC
enhanced the radiosensitivity of cells treated with dFdC (30–300 nmol l�1 for 4 h). These results indicate that CPEC enhances the
cytotoxicity of dFdC alone and in combination with irradiation in several human tumour cell lines with an intact dCK gene.
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Pancreatic cancer is the fourth leading cause of cancer death
worldwide with an overall 5-year survival rate less than 5%. At
diagnosis, about half of all patients have unresectable, locally
advanced disease, whereas 30% of the patients present with distant
metastases, leaving only 20% candidates for surgery. Gemcitabine
(Gemzars, 2020-difluoro-20-deoxycytidine, dFdC), a deoxycytidine
analogue with a broad spectrum of antitumour activity against
solid tumours, is considered to be the reference treatment for
patients with locally advanced pancreatic cancer by many, but with
only marginal clinical benefit (Burris et al, 1997). 20,20-Difluoro-20-
deoxycytidine has been identified as a potent enhancer of
radiosensitivity of human cancer cells, including pancreatic cancer
cells, which is persistent up to 72 h after the end of drug exposure
(Rockwell and Grindey, 1992; Shewach et al, 1994; Lawrence et al,
1996, 1997; Buchsbaum et al, 2002). Several phase I and II studies
have investigated concurrent dFdC and radiotherapy, but acute
gastrointestinal toxicity was encountered with standard doses of
dFdC and radiotherapy, which depended on the irradiated volume
(Crane et al, 2001; Wilkowski et al, 2006; Murphy et al, 2007).
Either with a reduction of the dFdC dose or the radiation dose or
the volume, concurrent chemoradiotherapy appears feasible.
However, this will likely reduce the efficacy of treatment whereas

an increase in efficacy of the combined treatment for local tumour
control is clearly required (Wilkowski et al, 2006; Yip et al, 2006;
Murphy et al, 2007; Yamazaki et al, 2007).

Several approaches, based on increasing the anabolism of dFdC,
have been described to enhance its effectiveness (Duxbury et al,
2004; Giovannetti et al, 2004; Verschuur et al, 2004; Bierau
et al, 2006). 20,20-Difluoro-20-deoxycytidine is activated by
intracellular phosphorylation to its active metabolites dFdC
diphosphate and dFdC triphosphate. The initial phosphorylation
to dFdC-monophosphate is performed by deoxycytidine kinase
(dCK) and is the rate-limiting step. The activity of dCK is feedback-
inhibited by dCTP present in cells. The ‘de novo’ pathway for the
synthesis of both cytidineribonucleotides and cytidinedeoxyribo-
nucleotides is mediated by the enzymes CTP synthetase (CTPs).
This pathway has been reported to be upregulated in solid tumours
(Kizaki et al, 1980) and is therefore an attractive target for
increasing the therapeutic ratio of dFdC and radiotherapy.

Cyclopentenyl cytosine (CPEC, NSC 375575) is a cytidine
analogue which, in its active 50-triphosphate form, is a non-
competitive inhibitor of CTPs leading to depletion of both cytidine
pools and deoxycytidine pools (Kang et al, 1989; Verschuur et al,
2004; Bierau et al, 2006). Consequently, mRNA and protein levels
as well as the activity of dCK are elevated (Bierau et al, 2006),
which enhance the effectiveness of dFdC in human leukaemia
(Verschuur et al, 2004) and human neuroblastoma cells (Bierau
et al, 2006). However, to date there is no information available
whether CPEC could enhance dFdC effectiveness in human
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pancreatic tumour cell lines nor on the interaction between dFdC
and radiation. In this report, we show that CPEC strongly enhances
the effectiveness of dFdC alone and in combination with radiation
in three human pancreatic tumour cell lines. We incorporated a
dFdC-sensitive and a dFdC-resistant human nonsmall cell lung
carcinoma (NSCLC) cell line (SWp and SWg respectively, van Bree
et al, 2002) to show that these CPEC-induced effects can also be
obtained in other human solid tumour cell lines and requires the
presence of dCK activity.

MATERIALS AND METHODS

Drugs and chemicals

Leibovitz-15 medium (L-15), DMEM, RPMI with HEPES and PSG
(100� stock of 10 000 U ml�1 penicillin, 10 mg ml�1 streptomycin
and 20 mmol l�1 glutamine) were purchased from GIBCO-BRL
(Paisley, Scotland), cell proliferation kit II from Roche (Mannheim,
Germany), dFdC from Eli Lilly (Nieuwegein, The Netherlands) and
[3H]-dFdC (14Ci mmol�1) from Moravek Biochemicals (BREA, CA,
USA). Cyclopentenyl cytosine (NSC 375575) was obtained from the
Developmental Therapeutics Program, National Cancer Institute
(Bethesda, MD, USA). All nucleotide standards were obtained from
Sigma Chemicals (Zwijndrecht, The Netherlands). All other
chemicals were of analytical grade and commercially available.

Cell cultures

Human pancreatic cell lines Panc-1, Miapaca-2 and BxPC-3
(American Type Culture collection, Manassas, VA, USA) were
grown as monolayers in DMEM (Panc-1 and Miapaca-2) or RPMI
(BxPC-3) supplemented with 10% heat-inactivated fetal bovine
serum (FBS) and with PSG at 371C at 5% CO2. The human NSCLC
SWp and its dFdC-resistant variant SWg have been described (van
Bree et al, 2002; Jordheim et al, 2004). These cells were grown as
monolayers in L-15 medium supplemented with 10% heat-
inactivated FBS and PSG at 371C without additional CO2. All cell
lines were passaged twice weekly to ensure exponential growth.

Drug treatment and irradiation

Cells were seeded (8500 cells per cm2) in Petri dishes and were
allowed to attach overnight. Various doses of CPEC and dFdC were
added from freshly prepared 100� stock solutions in sterile
phosphate-buffered saline without refreshing the medium. Cells
were irradiated with g rays from a 137Cs source at a dose rate of
approximately 0.7 Gy min�1.

Extraction and analysis of nucleotides and detection of
radiolabelled dFdC metabolites

For the analysis of the effects of CPEC alone on nucleotide
triphosphate levels and for the detection of radiolabelled
metabolites of dFdC after a 4 h incubation with 300 nM [3H]-dFdC,
cells were extracted with 200 ml of ice-cold 0.4 M perchloric acid for
10 min on ice with intermittent scraping with a disposable cell
scraper. The resulting suspension was centrifuged at 10 000 g at
41C for 5 min. Supernatant was removed, neutralised with K2CO3

and used for HPLC analysis. Nucleotide profiles were determined
by ion-exchange HPLC, using a Whatman (Clifton, NJ, USA)
Partisphere SAX 4.6� 125 mm column (5mm particles) and a
Whatman 10� 2.5 mm AX guard column. The pellet obtained after
perchloric acid precipitation was taken up in 300 ml of 0.2 M NaOH
and precipitated again by adding an equal volume of 1.2 M

perchloric acid. The protein- and DNA-containing fraction was
obtained by centrifugation and the pellet dissolved in a final
volume of 200 ml NaOH. The protein content was determined using
bicinchoninic acid solution containing 0.1% CuSO4 using bovine
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Figure 1 The effects of CPEC with respect to CTP depletion and to the
anabolism of dFdC in human pancreatic carcinoma (Panc-1, Miapaca-2 and
BxPC-3) and NSCLC cells (SWp and its dFdC-resistant variant SWg).
Cellular CTP/UTP ratios relative to untreated controls are shown as means
with standard errors of at least three separate experiments for the dose
dependency at 24 h after CPEC (A) and for the kinetics after exposure to
1000 nM CPEC (B). Incorporation of dFdC into DNA as a function of
CPEC dose for 48 h preincubation are shown as means with standard
errors of at least three separate experiments (C).
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serum albumine as a standard. Radioactivity was detected on-line
with a Radiometric 525TR Flow Scintillation Analyser with a 500 ml
TR-LSC cell (Packard, Meriden, CT, USA) using Ultima Flo AP
(Packard, Dowers Grove, IL, USA) at an effluent-to-scintillation
fluid ratio of 1 : 1. Radioactivity of the protein pellet was measured
on a ß counter (Bierau et al, 2003).

Clonogenic and proliferation assay

Cells were harvested at different time points and different
treatments, kept on ice, counted, diluted and sparsely plated for
standard clonogenic assay (Franken et al (2006); plating efficien-
cies for Panc-1, Miapaca-2, SWp and SWg cells were 0.62±0.07
(mean±s.e.), 0.35±0.08, 0.89±0.10 and 0.80±0.08 respectively).
In parallel experiments, the treated cells were plated for
proliferation assay at higher densities (8500 cells per cm2) in
6- or 96-well plates to allow reutilisation of dFdC from dying cells
(Rockwell and Grindey, 1992). Six-well plates were fixated after
6–10 days with 6% glutaraldehyde and stained with crystal violet.
Wells were scanned with HP Scanjet 5300C using HP Precision
Scan-software and HP Intelligent Scanning Technology (version
3.4). Proliferation in 96-well plates was determined by the cell

proliferation kit II according to the recommendations of the
manufacturer (Roche Diagnostics GmbH, Mannheim, Germany).

Apoptosis by DNA fragmentation assay

A flow cytometric method was used for measuring the percentage
of apoptotic nuclei after propidium iodide staining in hypotonic
buffer, and thereby assessing apoptosis of specific cell populations
in heterogeneous tissues (Nicoletti et al, 1991). Both detached and
attached cells were harvested, pelleted and counted. From each
sample, 2� 105 cells were resuspended in 100 ml of Nicoletti buffer
(0.1% sodium citrate, 0.1% Triton X-100, 50 mg ml�1 propidium
iodide, dissolved in demi water) and stored for 24 h at 41C. Flow
cytometry was performed with FACScan cytometer (BD, San Jose,
CA, USA).

Statistical analysis

Differences in radiosensitivity were analysed using SPSS (Chicago,
IL, USA) statistical software by means of a fit of the data by a
weighted, stratified, linear regression, according to the linear-
quadratic formula (Franken et al, 2006). All other differences
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Figure 2 The effects of preincubation with CPEC on the effects of dFdC with respect to cell proliferation (A and B), loss of clonogenic capacity after
correction for the cytotoxicity of CPEC alone ((C) Panc-1: 0.71±0.12; Miapaca-2: 1.00±0.06; SWp: 1.07±0.08; SWg: 0.85±0.26) and induction of
apoptosis (D) in human pancreatic carcinoma (Panc-1, Miapaca-2 and BxPC-3) and NSCLC cells (SWp and its dFdC-resistant variant SWg). Representative
examples (A and D) or means with standard errors of at least three separate experiments (B and C, *Po0.05) are shown.
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between experimental groups were analysed by the two-tailed
Student’s t-test assuming equal or unequal variances using
Microsoft Excel.

RESULTS

CPEC depletes cellular CTP levels and increases the
anabolism of dFdC

Three widely used human pancreatic carcinoma cell lines, Panc-1,
MiaPaca-2 and BxPC-3, in which dFdC-induced radiosensitisation
has been described (Lawrence et al, 1996, 1997; Buchsbaum et al,
2002), were selected for this study. First, the ability of CPEC to
specifically deplete CTP pools was investigated (Figure 1A and B).
In all three cell lines, CPEC specifically reduced CTP/UTP ratios in
a dose-dependent manner (Figure 1A) without prominent effects
on ATP levels (varying between 0.8 and 1.5 for all data points).
Importantly, the decrease in CTP levels was not dependent in the
presence of a wild-type dCK activity, as the human NSCLC cell line
SWg, which has a disrupted dCK gene (van Bree et al, 2002;
Jordheim et al, 2004), showed similar CTP depletion as compared
to its parental cell line SWp. The depletion of CTP was already
detected at 4 h of exposure to 1000 nM CPEC and was almost
complete at 16 h (Figure 1B). The reduction of CTP levels by CPEC
was maintained in all cell lines up to 72 h. We next determined the
ability of CPEC to enhance the anabolism of dFdC (Figure 1C).
The dFdC-resistant cell line SWg served as a control and
confirmed the necessity of normal dCK activity for incorporation
of dFdC. In all other cell lines, an increase of 3H-dFdC
incorporation into the DNA was observed after preincubation of
the cells for 48 h with CPEC doses as low as 30 nM. For the dFdC-
sensitive cell lines, a maximal increase in dFdC incorporation of
10- to 15-fold was observed at 100– 300 nM CPEC.

CPEC increases the efficacy of dFdC

As an increased anabolism of dFdC has been shown to enhance the
antiproliferative effect of dFdC (Verschuur et al, 2004; Bierau et al,
2006), we determined the treatment efficacy of CPEC and dFdC in
our cell panel (Figure 2). Preincubation for 48 h with 100 nM CPEC
markedly increased the growth inhibitory effect of dFdC, but only
at high concentration (Figure 2A and B). This was also observed
for exposures to higher doses of CPEC (up to 1000 nM, data not
shown). As expected from Figure 1C, CPEC could not increase the
sensitivity to dFdC of the dFdC-resistant SWg cells. In addition to
the antiproliferative effects of the combined treatment, we
determined the clinically more relevant effects on cell survival by
clonogenic assay and on apoptosis. After correction for the toxicity
of CPEC alone, we observed that the combined treatment of dFdC-
sensitive pancreatic cell lines that display clonogenic growth is
significantly more effective than dFdC alone in reducing survival
(Figure 2C). We noted that different incubation periods (24–72 h)
with CPEC did not induce significant differences in its cytotoxicity
nor in dFdC cytotoxicity in Panc-1 and SWp cells. Using DNA
fragmentation after treatment as an indicator of apoptosis, we
observed that CPEC markedly increased dFdC-induced apoptosis
in the three human pancreatic tumour cell lines (Figure 2D). This
increase in apoptosis likely contributes to the improved efficacy of
dFdC.

CPEC increases dFdC-induced radiosensitisation

As dFdC is a well-known radiosensitiser of human cancer cells
including pancreatic carcinoma cells (Rockwell and Grindey, 1992;
Shewach et al, 1994; Lawrence et al, 1996, 1997; Buchsbaum et al,
2002), we investigated the effects of CPEC on dFdC-induced
radiosensitisation in our cell panel (Figure 3). In most clinical
trials investigating concurrent application of dFdC and
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Figure 3 Treatment efficacy of preincubation with CPEC, a nonradiosensitising dose of dFdC and irradiation in human pancreatic carcinoma cells (Panc-1,
Miapaca-2, BxPC-3) and NSCLC cells (SWp and its dFdC-resistant variant SWg). Cyclopentenyl cytosine enhanced the efficacy of dFdC combined with
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(C, *Po0.05).
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radiotherapy, the dFdC dose is reduced to circumvent acute
gastro-intestinal toxicity (Crane et al, 2001; Wilkowski et al, 2006),
which likely reduces treatment efficacy. We therefore studied the
interaction with radiation of a lower dose of dFdC (30 nmol l�1 for
4 h), which by itself does not induce radiosensitisation (Figure 3).
In proliferation assays, CPEC, dFdC and radiation alone hardly
affected the growth of Panc-1 cells (Figure 3A). This dFdC dose did

not induce radiosensitisation in proliferation or clonogenic assays
(Figure 3C). Although CPEC was not able to enhance the efficacy of
this lower dFdC dose, it could clearly inhibit proliferation when
combined with dFdC as well as radiation. This effect was also
observed in the other dFdC-sensitive cells, but not in dFdC-
resistant SWg cells (Figure 3B). Clonogenic survival analysis
demonstrated that CPEC could significantly increase the radio-
sensitivity of Panc-1 and Miapaca-2 cells that were also treated
with dFdC (Figure 3C). This increased efficacy of dFdC and
radiation induced by CPEC was again accompanied by an
increased apoptosis in all three human pancreatic cell lines
(Figure 3D). Subsequently, we investigated whether CPEC influ-
enced the interaction between dFdC and radiation in a higher dose
of dFdC (300 nmol l�1 for 4 h), which may represent the clinical
setting in which a full dFdC dose can be given. In Panc-1 cells,
CPEC was again able to completely inhibit proliferation when
combined with dFdC (Figure 4A). A further inhibition of
proliferation by the addition of radiation could not be detected.
To investigate the possible influence of CPEC with or without
dFdC on radiosensitivity, clonogenic assays were performed
(Figure 4B). We observed that dFdC alone induced significant
radiosensitisation in Panc-1 cells (Po0.001), but that CPEC alone
did not. The radiation dose survival curves of CPEC combined
with dFdC and that of dFdC alone are similar, indicating that in the
combined treatment, dFdC-induced radiosensitisation was still
present. Similar observations were made for MiaPaca-2 and SWp
cells and for preincubation for 48 h with 100 nmol l�1 of CPEC
(data not shown). As we demonstrated a significant increase in
efficacy of dFdC by preincubation with CPEC (Figure 2C), the
plating efficiency, that is, the number of surviving colonies relative
to the number of cells plated, after the various treatments is shown
(Figure 4C). The combined treatment of CPEC and dFdC combined
with radiation is clearly the most effective in reducing cellular
survival of Panc-1 cells.

DISCUSSION

Cyclopentenyl cytosine in its triphosphate form is an antagonist of
CTP synthetase, which catalyses the conversion of UTP into CTP.
In this paper, we show for the first time that CPEC is able to induce
specific depletion of CTP levels in human pancreatic carcinoma
and NSCLC cells, which markedly sensitised these cells for
treatment with dFdC alone and in combination with radiation.
This was achieved at clinically relevant doses of CPEC that were
previously shown to decrease CTP levels in leukaemic samples of
85 adult and paediatric patients (Verschuur et al, 2000) and
reduced CTPs activity in bone marrow mononuclear cells of
patients treated with CPEC (Politi et al, 1995). Cyclopentenyl
cytosine was shown to be active against leukaemia, glioblastoma,
neuroblastoma and colon carcinoma (Moyer et al, 1986; Viola
et al, 1995; Verschuur et al, 2002; Bierau et al, 2003). In humans,
CPEC has been studied in a phase I clinical trial in adults with solid
tumours (Politi et al, 1995); 26 patients suffering from predomi-
nantly colon carcinoma were treated every 3 weeks with increasing
doses of CPEC, ranging from 1 to 5.9 mg m�2 h�1 for 24 h (total of
87 cycles). Only mild toxicity was observed in patients with steady-
state plasma concentrations below 1.5 mM (3.0 mg m�2 h�1). The
most severe toxicity was cardiovascular: six episodes of hypo-
tension occurred in five patients who had been treated with doses
ranging from 3.0 to 4.7 mg m�2 h�1. Two patients treated with
4.7 mg m�2 h�1 experienced fatal hypotension, which has never
been fully explained. The conclusion from these results was,
therefore, not to proceed clinically with CPEC as a single agent for
solid tumours, but to investigate the exploitation of its targeting
effect on CTPs.

Targeting of the de novo pathway for the synthesis of
nucleotides by RNAi against a subunit of ribonucleotide reductase

P
la

tin
g 

ef
fic

ie
nc

y

0 2 4

100

10–1

10–2

100

10–1

10–2

10–3

10–4

Control
CPEC
dFdC
CPEC+dFdC

Control
CPEC
dFdC
CPEC+dFdC

Radiation dose (Gy)

0 2 4

Radiation dose (Gy)

S
ur

vi
vi

ng
 fr

ac
tio

n

No CPEC CPEC, 1000 nM, 48 h

No 
dF

dC

No 
dF

dC

dF
dC

, 3
00

 n
M
,4

 h

dF
dC

, 3
00

 n
M
,4

 h 

No radiation

4 Gy

Figure 4 Preincubation with CPEC (1000 nM for 48 h) additively
enhances dFdC-induced (300 nM for 4 h) radiosensitisation in human
pancreatic carcinoma Panc-1 cells. Representative example of a prolifera-
tion assay (A) or means with standard errors of at least three separate
experiments are shown for clonogenic survival after correction for the
toxicity of either treatment alone (B, Panc-1: CPEC, 0.53±0.16; dFdC,
0.89±0.13; CPECþ dFdC, 0.10±0.02) or for plating efficiency without the
correction (C). Significant radiosensitisation was observed for dFdC alone
and for CPEC combined with dFdC (B, Po0.001), but not after CPEC
alone.
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has proven to be an effective strategy to enhance the effectiveness
of dFdC in a xenograft pancreatic model (Duxbury et al, 2004).
Recently, CPEC has been shown to enhance dFdC effectiveness in
human leukaemia (Verschuur et al, 2004) and in human
neuroblastoma cells (Bierau et al, 2006). Similar to our findings
in human pancreatic carcinoma and NSCLC cells, CPEC enhances
the incorporation of dFdC and other nucleotide analogues such as
cytarabine into the DNA (Verschuur et al, 2002, 2004; Bierau et al,
2003, 2006). A decrease in the feedback inhibition of dCTP on dCK
was suggested to be the underlying mechanism (Verschuur et al,
2004; Bierau et al, 2006). But even a 2-h exposure to CPEC, which
is probably too short to influence dCK activity, already increased
the anabolism of cytarabine (Verschuur et al, 2002). The specific
depletion of CTP by CPEC may therefore be more important in the
enhanced anabolism of dFdC and cytarabine. Another drug, which
depletes cellular nucleotide pools, is the multitargeted antifolate
pemetrexed (Giovannetti et al, 2004). Although less specific as
compared to CPEC, pemetrexed has also been shown to
synergistically interact with dFdC in human pancreatic cancer
cells (Giovannetti et al, 2004). To our knowledge, these strategies
have not been applied in combination with radiation, which has
been shown to alleviate pain in patients with locally advanced
pancreatic cancer (Ceha et al, 2000). Although there is insufficient
evidence to recommend chemoradiation in patients with locally
advanced inoperable pancreatic cancer as a superior alternative to
dFdC alone (Yip et al, 2006), an increase in treatment efficacy is
clearly required for this patient group (Wilkowski et al, 2006;
Yip et al, 2006; Murphy et al, 2007; Yamazaki et al, 2007).

Both in vitro and in vivo, dFdC is a potent enhancer of the
cytotoxic effects of ionising radiation (Rockwell and Grindey, 1992;
Shewach et al, 1994; Lawrence et al, 1996, 1997; Buchsbaum et al,
2002). Our results show that the increased incorporation of dFdC
by CPEC clearly enhanced the efficacy of dFdC, which was shown
for proliferation as well as for clonogenic survival. An elevated
induction of apoptosis is likely to be one of the underlying
mechanisms. For the interaction with radiation, an additive
enhancement was observed if a radiosensitising dose of dFdC
was used and a more than additive interaction if a nonradiosensi-
tising dose of dFdC was used. This is in agreement with earlier
findings that radiation enhancement by dFdC increases with
increasing dFdC dose, but with an optimum, likely to be due to its
inhibitory effect on dCK at higher concentrations (Shewach et al,
1994). Recently, the simultaneous alteration of the de novo and

salvage pathway to the deoxynucleoside triphosphate pool by (E)-
20-deoxy-(fluoromethylene)cytidine and zidovudine has also been
shown to increase the radiosensitivity of human colon cancer cells
in vitro (Coucke et al, 2007). Our survival data were obtained using
a standard clonogenic assay in which sparsely plated cells are used
(Franken et al, 2006). When similar cell numbers were plated in
higher density, the interaction of CPEC, dFdC and radiation
appears to be more impressive. This phenomenon, called
reutilisation, has been noted earlier for dFdC and has been
suggested to be the cause for the efficacy of dFdC in solid tumours
(Rockwell and Grindey, 1992; Haveman et al, 1995). These
observations were verified in all three human pancreatic carcino-
ma cells as well as in human NSCLC cells. Moreover, the
importance of an intact dCK gene in this interaction was
demonstrated by the dFdC-resistant variant of the human NSCLC
SWp (van Bree et al, 2002; Jordheim et al, 2004). The observed
differences in dFdC incorporation between the cell lines used in
this study suggest that they differ in dCK activity. Cyclopentenyl
cytosine clearly enhanced the dFdC incorporation in cells with an
intact dCK gene, which may be related to an enhanced dCK activity
(Bierau et al, 2006). This would be in agreement with the finding
that the dCK activity correlates with dFdC-induced radiosensitisa-
tion (Gregoire et al, 2002).

In conclusion, we report that CPEC in a low, clinically
achievable and nontoxic dose increases dFdC effectiveness as
well as its radiosensitising effect in human pancreatic carcinoma
cells. Since heterogeneous chemotherapeutic distributions are
inherent to solid tumours (Jain, 2001), the combination of
CPEC, dFdC and radiation appears to be a promising strategy
for patients with locally advanced pancreatic cancer. The influence
of CPEC on therapeutic ratio of dFdC combined with radiation in
pancreatic xenograft models is warranted for future clinical
application.
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