
11

Advances in endophenotyping schizophrenia
SPECIAL ARTICLE

DAVID L. BRAFF1, TIFFANY A. GREENWOOD1, NEAL R. SWERDLOW1, GREGORY A. LIGHT1, 
NICHOLAS J. SCHORK2 AND THE INVESTIGATORS OF THE CONSORTIUM ON THE GENETICS OF SCHIZOPHRENIA*
1Department of Psychiatry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA
2Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
*The investigators of the Consortium on the Genetics of Schizophrenia are listed in the Appendix

The endophenotype concept was introduced to the field
of psychiatric genetics 34 years ago by Gottesman and
Shields (1), linked to the use of the glucose tolerance test
(GTT) as an endophenotype for diabetes. Endophenotypes,
such as the GTT, are heritable biomarkers that are not ob-
served by the naked eye. After a long latency period, interest
in the endophenotype approach has become remarkably
strong. This exponential growth of interest in the “endophe-
notype strategy” (Figure 1) undoubtedly reflects the useful-
ness of deconstructing the complex phenotypes of “fuzzy”
DSM psychiatric disorders into their pathophysiological
and genetic components (2-4).

When implemented in psychiatric research, endopheno-
types are quantifiable traits that are conceptualized as being
“closer” to gene-based neurobiological deficits than an ill-
ness itself, but are significantly associated with and may co-
segregate with the illness. These endophenotypes can be
measured objectively and reliably in the laboratory (1,3,5,6).
In this broad context, endophenotypes show: a) heritability;

b) state independence (i.e., they exhibit test-retest stability,
with impairments evident in patients that are not due to
medications, and are observed regardless of illness state);
and c) elevated rates of deficits in close non-affected biolog-
ical relatives (e.g., first-degree relatives). Compared to clini-
cal psychiatric diagnoses, it is hypothesized that endophe-
notypes are usually simpler, more easily quantified, closer to
gene expression and neural circuitry disturbances, and more
amenable to gene discovery. We are cognizant that the use of
the terms “endophenotype” versus “intermediate pheno-
type” is being debated in the literature (7) but, based on the
established use of “endophenotype”, we will maintain our
use of this term, as described above.

In this paper, we will often refer to the Consortium on the
Genetics of Schizophrenia (COGS), the first multi-site, large
scale family-based effort to apply a comprehensive en-
dophenotype approach to schizophrenia in probands and
their families (8). The COGS strategy is comparable to the
identification of vulnerability genes and substrates in type-2
diabetes, noted by Jim Neel 30 years ago to be a “geneticist’s
graveyard” (9). 

THE PROMISE OF THE ENDOPHENOTYPE STRATEGY
AS APPLIED TO SCHIZOPHRENIA

The endophenotype strategy, as applied to schizophrenia,
follows a series of steps that are expected to ultimately lead
to novel treatments (10). Step 1 is clinical observation (e.g.,
schizophrenia patients don’t “gate” irrelevant information
and are subject to “sensory overload” and cognitive frag-
mentation) (11). Step 2 is laboratory-based, quantifiable
measurement of the Step 1 traits (e.g., Bleuler’s observation
that distractibility was a hallmark of schizophrenia laid a
foundation for laboratory-based measures that quantify the
failure to inhibit responses to repetitive stimuli) (12). In Step

The search for the genetic architecture of schizophrenia has employed multiple, often converging strategies. One such strategy entails the use
of tracing the heritability and neurobiology of endophenotypes. Endophenotypes are quantifiable traits not visible to the eye, which are
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lecular targets for the treatment of schizophrenia.
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Figure 1 The growing importance of the endophenotype strategy in
psychiatry, as seen in the increase of the number of citations from 1987
to 2006
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3, studies demonstrate the level of heritability and genetic ba-
sis of the trait via family and association studies. In Step 4,
model organism and brain imaging studies clarify the neuro-
biological basis of the trait, and specific molecular variations
are identified, which can serve to explore novel molecular
targets for pharmacotherapies. Step 5 is drug development.

Thus, endophenotypes offer a “window” on genetically
mediated vulnerability to developing schizophrenia. In this
context, Steps 1-3 may take 10 to 20 years to refine, test, repli-
cate and provide a viable platform for the family and genetic
studies that follow (3). Once a familial-transmitted endophe-
notype is identified, it is of interest to see if it co-segregates
with the disorder itself. While these family based studies are
carried on, it is often the case that model organism (13) and
brain imaging studies identify the neural substrate dysfunc-
tion that underlies endophenotypic dysfunctions.

It is widely assumed (and confirmed) that schizophrenia
has a polygenic basis. It is possible that the common dis-
ease/rare single highly penetrant nucleotide polymorphism
(SNP) hypothesis is accurate for some schizophrenia patients
(14). This would mean that single, highly penetrant mutations
are myriad and that each case or family with schizophrenia
has a single mutation in the neural circuit underlying a key en-
dophenotype, whose disruption could result in a “final com-
mon pathway” of schizophrenia. The (not exclusive) alterna-
tive is that in the remaining (majority of cases) there are more
“ancient” and more common mutations characteristic of mul-
tiple families with schizophrenia, and vulnerabilities associat-
ed with gene carriers may act alone or “add up” for genetic
loading for mild to severe forms of the disorder. It seems most
likely that some (e.g., 10% or less) of schizophrenia is ac-
counted for by the rare SNP hypothesis, although this is mere-
ly a well informed guess at the present time. 

SELECTION OF NEUROPHYSIOLOGICAL AND
NEUROCOGNITIVE CANDIDATE ENDOPHENOTYPES 

The use of endophenotypes for genetic studies of the kind
described above requires large family and patient samples
and multisite collaborations to achieve sufficient statistical
power. Endophenotype measures must be reliable and suit-
able for administration to large numbers of participants. The
COGS chose 6 well-established neurophysiological and neu-
rocognitive measures to be primary endophenotypes. Then,
based on initial heritability analyses (8), six Penn Computer-
ized Neurocognitive Battery (CNB) measures were added.
All twelve COGS measures show between-site reliability and
heritability (3,8,15-17). In addition, these endophenotypes
have significant relationships to functional status and out-
come, pointing to possible molecular targets for therapies
once association studies identify the molecular deficits un-
derlying these endophenotype abnormalities. We will focus
in this paper on neurophysiological and neurocognitive en-
dophenotypes, but many other areas (e.g., metabolic, neu-
rodevelopmental) pose similar risks and rewards. 

Neurophysiological endophenotypes 

The importance of inhibitory deficits in schizophrenia de-
rives from the clinical observation that patients are unable to
“screen out” trivial stimuli and focus on salient aspects of the
environment (11,18,19). Inhibitory functions of sensory gat-
ing, sensorimotor gating, and oculomotor control are strong
determinants of this ability to “gate” stimuli, and are assessed
via measures of P50 suppression, prepulse inhibition of the
startle response (PPI), and the antisaccade task. The impor-
tance of these inhibitory measures also resides in the fact that
they are understood at neurobiological (and in some cases,
molecular) levels, based on extensive human and model or-
ganism studies.

Studies initiated by Freedman and colleagues, and repli-
cated by others, have identified P50 suppression as an im-
portant endophenotype of schizophrenia (3,20-25). In re-
sponse to the presentation of paired auditory “clicks”, there
is normally an 80% diminution of the second P50 wave rela-
tive to the first, and this is attributed to the activation of in-
hibitory neural circuitry by the first auditory stimulus. P50
suppression is likely regulated by wide-ranging neural cir-
cuitry, prominently involving hippocampal structures (26).
Brain cholinergic systems regulate some of these gating
deficits, as suggested by findings that P50 suppression abnor-
malities in schizophrenia patients (27) and their family mem-
bers (28) resolve temporarily after administration of nicotine.
The use of P50 suppression as a candidate endophenotype for
genetic studies is further supported by the identification of
significant linkage of P50 suppression with a genetic marker
in the promoter region of the alpha-7 subunit of the nicotinic
receptor (29). This finding is the first to link a candidate en-
dophenotype in schizophrenia to a specific marker. 

Prepulse inhibition (PPI) occurs when a weak sensory
event (prepulse) normally inhibits the startle reflex to an in-
tense, abrupt stimulus. Since 1978 (30), PPI deficits have
been consistently identified in schizophrenia patients (31).
As is true for deficits of P50 suppression, PPI deficits ex-
tend beyond patients to their clinically unaffected relatives
(32,33), and schizotypal (non-psychotic, unmedicated) pa-
tients (32,34). PPI deficits correlate with distractibility
(35), with quantitative measures of thought disorder (36)
and with impaired function in schizophrenia patients (37).
Much is known about the neural regulation of PPI by ele-
ments of cortico-striato-pallido-thalamic circuitry in hu-
mans and animal models (31,38,39). PPI may become a
particularly valuable tool for screening novel therapeutic
agents based on molecular targets identified by COGS
(37,38,40).

Oculomotor measures are quite robust schizophrenia en-
dophenotypes. Measures of saccade control (rapid redirec-
tion of gaze to locations of interest), primarily those associ-
ated with saccadic inhibition, effectively differentiate schiz-
ophrenia subjects from controls at very large effect size lev-
els (41). Saccadic performance in schizophrenia patients is
characterized by an increased proportion of antisaccade er-
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rors (42). Importantly, patients’ performance is normal on
tasks measuring basic saccades to a newly appearing target. 

Central inhibitory deficits detected by neurophysiologi-
cal measures such as P50 gating, PPI and antisaccade per-
formance are not specific to schizophrenia. Normal inhi-
bition in these measures is regulated by specific forebrain
circuits, and these circuits in turn are controlled by a large
number of genes. For example, PPI deficits are detected in
Huntington’s disease (43), 22q11 deletion syndrome (44)
and fragile-X syndrome (45), and in animal models of each
of these disorders (45-47). 

In their immediate connection to neuronal mechanisms,
neurophysiological endophenotypes are a much stronger sig-
nal for the presence of disorder-related genes, compared to
more variable and complex clinical phenotypes. The COGS
strategy is to leverage this more direct physiological signal to
identify genes responsible for aberrant brain mechanisms. 

Neurocognitive endophenotypes

Neuropsychological deficits are detectable in genetic
high-risk subjects (48) and adult, non-psychotic relatives of
schizophrenia probands, with effect sizes of ~0.3-0.5, com-
pared to 1.0 in schizophrenia patients. These impairments in
genetic high-risk subjects are not confounded by psychosis
or medications, and their presence in high-risk children and
adolescents provided strong support for a neurodevelop-
mental model of pre-psychotic vulnerability for schizophre-
nia (49). There is substantial evidence that measures of sus-
tained attention or vigilance, verbal declarative memory and
working memory are valid endophenotypes in schizophre-
nia. Continuous performance tests (CPTs) are widely used
measures of deficits in sustained, focused attention and are
prominent indices of neurocognitive deficits in schizophre-
nia (50-53). Deficits in detection of target stimuli are evident
in CPT simple simultaneous discrimination and successive
discrimination (54-59). CPTs without working memory bur-
dens detect deficits (52,60), as do CPT versions with per-
ceptual or working memory loads, which are more sensitive
to subtle deficits (51,52). Effect sizes for discrimination of
schizophrenia patients from controls range from 0.45 to 3.30
(2). A longitudinal study of children of schizophrenia pa-
tients has found that those who later developed schizophre-
nia spectrum disorders had shown CPT deficits at age 12-13
(61). Positron emission tomography (PET) activation stud-
ies with the degraded stimulus CPT support the role of cor-
tical-striato-thalamic pathways in the deficits observed in
schizophrenia (62). 

Verbal episodic or declarative memory is one of the most
impaired neurocognitive functions in schizophrenia (63,64).
It is evident in neuroleptic naïve patients (65,66) and persists
after psychotic episodes (67). While schizophrenia patients
have impaired rates of encoding and forgetting, the prima-
ry deficit is in encoding and organization of information
(68,69). Verbal memory deficits are found among relatives of

schizophrenia patients (70,71). The deficits implicate left
temporal-hippocampal dysfunction (66,67,72-74), and dys-
function in a prefrontal-temporal limbic network (74,75).
Reduced hippocampal volumes among relatives of patients
and smaller hippocampal volumes in multiplex versus sim-
plex relatives and controls is consistent with the hypothesis
that increased genetic loading for schizophrenia affects the
neural substrates of verbal memory (76,77).

Schizophrenia patients show significant deficits on meas-
ures of working memory. The letter-number span (LNS),
used as a COGS endophenotype (78), yields large separation
between patients and controls, with effect sizes of 1.4 (78)
and 1.9 (79). This task requires subjects to categorize stimuli
into classes (numbers vs. letters) as well as order stimuli with-
in class, and to retrieve this information. Working memory is
also deficient among first-degree relatives of schizophrenia
probands, as detected with both verbal (80) and spatial tasks
(81). The New York High Risk Study reported that childhood
scores on a verbal working memory factor successfully pre-
dicted later schizophrenia-spectrum psychoses among off-
spring of schizophrenia mothers, further supporting its rele-
vance as an endophenotype for schizophrenia (82). 

In addition to these three neurophysiological endophe-
notypes, the COGS identified six measures from the Penn
CNB to be viable endophenotypes. The selection of these
measures as endophenotypes was based on their large effect
sizes, deficits in unaffected relatives, reliability across test
sites and strong evidence of heritability (8). The Penn CNB
provides measures of accuracy and speed for several neu-
robehavioral domains (83). Deficits in CNB performance
have been related to clinical features of schizophrenia (69)
and the tasks are also used in functional neuroimaging, per-
mitting inferences about neural substrates.

GENETIC LINKAGE AND ASSOCIATION
STUDIES IN SCHIZOPHRENIA

Family, twin, and adoption studies have consistently in-
dicated that, although schizophrenia is highly heritable, its
genetic etiology is complex. Genome-wide searches found
that susceptibility genes for schizophrenia may exist in rela-
tively broad regions of multiple chromosomes (84,85). Link-
age analyses have produced enticing but variable results. No
genome-wide scans have included enough families to con-
clusively establish a linkage. Meta-analytic studies suggest
that susceptibility genes for schizophrenia may exist in chro-
mosomes 6p, 10p, 13q, 15q, 18q, and 22q (86). Several can-
didate genes have been implicated in the susceptibility to de-
velop schizophrenia, including dysbindin-1 (DTNBP1),
neuregulin-1 and catechol-O-methyl transferase (COMT).
However, the causal variants have not been definitively
identified. Recently, Mutsuddi et al (87) noted that five repli-
cation studies with independent Caucasian samples report-
ed different risk alleles and haplotypes than the original
DTNBP1 study (88). In all six studies, the Caucasian sam-
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ples had haplotype patterns and frequencies that were con-
sistent with the HapMap Centre d’Etude du Polymorphisme
Humain and Utah (CEU) samples. Thus, it is unlikely that
population differences contributed to the observed pattern
of results. Mutsuddi et al concluded that the association be-
tween schizophrenia and DTNBP1 remains uncertain. In
summary, current molecular methods, such as linkage and as-
sociation analyses, have not clearly or indisputably identified
definitive causative genes for schizophrenia (89). Therefore,
it is necessary to develop new approaches to better under-
stand the genetics of this disorder. 

Which evolving strategies are likely to illuminate the ge-
netic basis of schizophrenia? First, family studies can yield
linkage information regarding where in the genome a “sig-
nal” for schizophrenia is located. Complementary to this
strategy, the COGS utilizes endophenotypes found in
schizophrenia to identify linkage regions that are associat-
ed with these specific neurophysiological and neurocogni-
tive deficits that “run” in schizophrenia families. Next, the
COGS has developed a custom 1536-SNP chip (Illumina)
in order to examine the association of candidate gene
SNPs to endophenotypes, where the SNPs are chosen on
the basis of understanding the neural and genetic sub-
strates of these endophenotypes. Lastly, whole genome as-
sociation studies utilizing extensive interrogations of the
genome can examine many DNA loci (e.g., 300,000 or
1,000,000) to see which specific “unselected” SNPs are
strongly associated with either schizophrenia or endophe-
notype deficits or both. The burgeoning power of the whole
genome association strategy is now being realized via the
use of large scale replication strategies with multiple sam-
ples, a time consuming but necessary endeavor that has
been authoritatively endorsed (90,91) and successfully em-
ployed for gene finding in type-2 diabetes (92). Still, ap-
proaches such as the COGS SNP chip have the advantage
of selecting candidate SNPs based on model organism,
brain imaging and neural substrate studies, and can be uti-
lized with smaller sample sizes since they are not atheoret-
ical and the SNP selection is neurobiologically guided by
extensive studies.

GENETIC ANALYSES: HERITABILITY VS. “MAPABILITY” 

It is important to recognize the distinction between heri-
tability and “mapability” in genetics. For example, height is
among the most heritable of human phenotypes but, because
it is highly polygenic, it would be a daunting task to com-
prehensively “map” its genetic basis. In contrast, the COGS
endophenotypes were carefully selected for their likely ease
of mapability. For some (e.g., P50 suppression, PPI), mapa-
bility has already been accomplished (29). With the signifi-
cant levels of heritability of all COGS endophenotypes, we
have strong reason to believe that mapability and gene dis-
covery will be quite feasible. This will position us to identify
therapeutic targets. This approach is already being utilized

with P50 suppression, where SNPs in the promotor region of
the alpha-7 nicotinic receptor (29) already led to the devel-
opment and initial clinical trials of alpha-7 nicotinic agonists
for the treatment of schizophrenia (10). 

COGS CUSTOM 1536 SNP CHIP FOR SCHIZOPHRENIA

We have constructed an innovative gene chip, contain-
ing 1536 SNPs in 94 genes of relevance to schizophrenia,
that were chosen based on knowledge of biological sys-
tems, as well as an extensive review of published associa-
tion and linkage studies. Many of these genes have also
been reputed to be involved in P50 suppression, PPI and
neurocognitive functioning. These genes cluster into sev-
eral domains and pathways, including cell signal transduc-
tion, amino acid metabolism, and glutamate, serotonin,
dopamine, and GABA receptor signaling. We have also used
the ingenuity pathway analysis (IPA) software to aid in the
visualization of the underlying molecular mechanisms and
biological processes that connect many of these genes and
may contribute to disease susceptibility. A path diagram that
details the interactions of 42 of the 94 genes on the COGS
chip can be constructed. Knowledge of such gene by gene
interactions will be accommodated in association with oth-
er analyses. In order to efficiently interrogate these genes, we
have chosen to use haplotype-tagging SNPs, which, when
available, derive solely from Caucasian populations, since
our sample is primarily Caucasian. Of the 1427 tagging SNPs
that were selected for 89 of the genes, many also had re-
ported associations in the literature. For the five genes for
which tagging SNPs were not available, 29 SNPs were cho-
sen for even coverage. We have also included an additional
80 SNPs that were reported to be associated with schizo-
phrenia in the literature, many of which had been replicated
by separate groups. The SNPs from this chip will be utilized
for association analyses of our endophenotypes for schizo-
phrenia in 143 of our COGS families for which local, site-
specific DNA samples have been collected (93). This COGS
SNP chip will also be of interest to other groups studying
schizophrenia and related phenotypes.

ACCOMMODATING MEDICATION EFFECTS

Many of the above-mentioned endophenotypic measures
appear to be relatively immune to antipsychotic medication
effects. Nonetheless, investigators can take advantage of
three complementary strategies to accommodate and/or as-
sess medication effects in their analyses: a) statistically assess
differences, if any, between medicated and unmedicated in-
dividuals, by treating medication status as a grouping factor;
b) perform a sensitivity analysis of findings by making worst
(or best) case assumptions about the unmedicated pheno-
typic values for individuals on medication; and c) use a nov-
el method for considering possible unmedicated values for
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medicated individuals, which exploits estimated probability
distributions for these values obtained from existing clinical
trials data where subjects have been measured both on and
off treatment. This last approach has been developed by
Schork and colleagues and has some parallels to imputa-
tion methods for missing data (94-96). Given information
about a subject’s medicated endophenotype value, age,
gender and other characteristics, one estimates the distri-
bution of possible unmedicated values. These values are
then weighed by the probability that the individual has the
assumed unmedicated value in subsequent analyses. Math-
ematically, this can be achieved by integrating over the un-
known unmedicated values using the estimated probabili-
ty distribution for that value. Also, recent CATIE-based re-
ports indicate that these cognitive endophenotypes are not
powerfully influenced by the administration of even atypi-
cal antipsychotic medication (97,98). Clearly, these con-
verging strategies are very useful in accounting for medica-
tion effects on endophenotypes and, in combination, offer
an acceptable strategy to deal with a problem ubiquitous in
biomedical genetics research.

CONCLUSIONS

The endophenotype strategy is a powerful and effective
means for identifying vulnerability genes in schizophrenia.
The probability of discovering genetic variations that pre-
dispose to schizophrenia (vulnerability genes) is greatly en-
hanced by the methods discussed in this overview. If too
many genes are involved in complex oligogenetic (to say
nothing of gene-environment) interactions, the probability
of finding the genetic basis of complex diseases decreases
dramatically (Figure 2). In addition, for common disorders
(e.g., incidence of about 1% or more), some portion of en-
dophenotypically relevant, disease gene polymorphisms

may be de novo (99,100). The requisite large scale patient
and family platforms necessary to conduct these studies of-
ten involve considerable expense and effort. Despite these
challenges, the identification of abnormal endophenotypes,
their underlying genetic architecture and the corresponding
strong inference based molecular targets offers the promise
of great rewards. These rewards center on ultimately finding
effective new treatments, which may provide inestimable
dividends in terms of decreasing the terrible disease burden
that schizophrenia imposes on patients and their families.

APPENDIX

The investigators of the Consortium on the Genetics of
Schizophrenia include: Monica E. Calkins, Raquel E. Gur,
Ruben C. Gur and Bruce I. Turetsky (University of Pennsyl-
vania); Dorcas J. Dobie, Allen D. Radant and Debby W.
Tsuang (University of Washington-Seattle); Robert Freed-
man and Ann Olincy (University of Colorado Health Sci-
ences Center); Kristin S. Cadenhead and Ming T. Tsuang
(University of California, San Diego); Michael F. Green, Jim
Mintz and Keith H. Nuechterlein (University of California,
Los Angeles); Larry J. Seidman and William S. Stone (Har-
vard University); Larry J. Siever and Jeremy M. Silverman
(Mount Sinai School of Medicine). 
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