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Ablation of germ-line precursor cells in Caenorhabditis elegans
extends lifespan by activating DAF-16, a forkhead transcription
factor (FOXO) repressed by insulin/insulin-like growth factor (IGF)
signaling (IIS). Signals from the gonad might thus regulate whole-
organism aging by modulating IIS. To date, the details of this
systemic regulation of aging by the reproductive system are not
understood, and it is unknown whether such effects are evolu-
tionarily conserved. Here we report that eliminating germ cells
(GCs) in Drosophila melanogaster increases lifespan and modulates
insulin signaling. Long-lived germ-line-less flies show increased
production of Drosophila insulin-like peptides (dilps) and hypogly-
cemia but simultaneously exhibit several characteristics of IIS
impedance, as indicated by up-regulation of the Drosophila FOXO
(dFOXO) target genes 4E-BP and l (2)efl and the insulin/IGF-binding
protein IMP-L2. These results suggest that signals from the gonad
regulate lifespan and modulate insulin sensitivity in the fly and
that the gonadal regulation of aging is evolutionarily conserved.

aging � endocrine regulation � reproduction � longevity � metabolism

Aside from dietary restriction, inhibition of reproduction is one
of the most effective ways to extend animal lifespan (1–3).

Despite the generality of this effect, the mechanisms by which
reproduction regulates aging remain unknown (4–6). Progress
toward this goal has been made with the nematode Caenorhabditis
elegans (7–9). Ablation of germ-line precursor cells is sufficient to
extend lifespan, and overproliferation of germ cells (GCs) shortens
lifespan. In contrast, ablation of the entire gonad has no impact on
longevity (7–8). These observations suggest that there is a balance
between longevity assurance signals from the somatic gonad and
signals from the germ line that promote aging (7). Longevity
extension by germ-line ablation depends on DAF-16, the C. elegans
ortholog of the forkhead transcription factor (FOXO), which is also
required for longevity extension by reduced insulin/insulin-like
growth factor (IGF) signaling (IIS) (7–8). To date, however, little
is known about how signals from reproductive tissues systemically
affect lifespan and whether the model developed in C. elegans is
relevant to animals beyond the nematode (4–6, 9). Here we
investigate this problem in the fruit fly, Drosophila melanogaster.

Several methods to inhibit reproduction extend Drosophila life-
span: removing oviposition substrate (10), reducing egg production
(10–13), and inhibiting mating (14, 15). However, reproduction can
also be reduced without affecting lifespan (3, 16–19), and whether
loss of GCs extends fly lifespan remains unclear (4). Irradiation or
the female-sterile mutation ovoD1 induce sterility and extend life-
span (12, 13), but whether these manipulations do so because they
damage GCs or disrupt processes upstream of germ-line activity is
unknown (4, 20, 21). Interestingly, a recent study suggests that GC
ablation might not extend lifespan in D. melanogaster (21). Failure
to form primordial GCs in grandchildless-like mutants (tudor, germ
cell-less, oskar) increases lifespan only slightly or not at all (ref. 21
and our unpublished data). However, this finding is at odds with the
observation that lack of a primordial germ line in a Drosophila

subobscura grandchildless mutant extends lifespan (11, 22). Thus, in
contrast to the worm, how reproductive processes modulate aging
in the fly remains poorly understood (3–5, 23).

One reason for the discrepancies in fly studies might be that some
grandchildless-like mutations impact the development of the so-
matic gonad (21, 24), perhaps precluding the capacity of this tissue
to produce longevity assurance signals (7, 21). If so, GCs might
modulate aging, but only when the somatic gonad has matured in
the presence of the germ line during development. Moreover,
because grandchildless-like mutants act during development (25),
their impact on adult demography might involve pleiotropic effects
independent of aging (5, 21). We therefore sought an alternative
system that eliminates GCs exclusively in late development or the
adult to test whether the D. melanogaster germ line modulates aging.

Here we investigate the impact of GC loss induced through
misexpression of bag of marbles (bam). In females, bam is necessary
and sufficient for differentiation of GCs, and overexpression of
bam� in GCs leads to precocious differentiation and subsequent
loss of GCs (26–28). In males, bam limits mitotic amplification
divisions of spermatogonia, which occur before the initiation of
terminal differentiation into spermatocytes. Overexpression of
bam� in early male GCs causes GC loss, presumably through
apoptosis (29). By manipulating bam, we investigate the impact of
GC ablation on aging and find that loss of GCs in female and male
flies extends lifespan and modulates insulin signaling.

Results and Discussion
Ectopic misexpression of bam� in the female germ line, by using the
binary GAL4�UAS system or heat shock-induction, eliminates
GCs (Fig. 1) (27, 28). Previous data suggest that the lost GCs are
germ-line stem cells (GSCs): heat shock-induced bam� expression
causes GC loss, but GCs that were not GSCs at the time of heat
shock develop normally (27). Although grandchildless-like mutants
lack pole cells and cannot form primordial GCs (21–22, 25, 30), heat
shock-induced bam� overexpression eliminates female GSCs in the
third larval instar (L3) or later but not before the L3 stage (27).
When driving constitutive overexpression of UASp-bam� (28) with
the germ-line-specific nanos (nos)-GAL4::VP16 driver (31), we
found that GC loss continues in adult females, after the ovary has
completed development. Females initially have the capacity to lay
a small number of eggs but become fully sterile by day 7 [Fig. 1 and
supporting information (SI) Fig. S1]. Similarly, in males, bam�

overexpression induced GC depopulation in the L3 stage or later
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(Fig. 1) (29). Moreover, bam� overexpression caused a dramatic
expansion of somatic cells in ovaries and testes (Fig. 1), reminiscent
of the enlarged somatic gonads of agametic grandchildless-like
mutants (21, 24). Thus, grandchildless-like mutants and flies misex-
pressing bam� have expanded somatic gonads but complete GC
loss at different times.

GC loss induced by misexpression of bam� significantly increased
lifespan in females and males, in several independent experiments

(Fig. 2 and Table S1). Lifespan was increased by 31.3% and 50% in
females and 21% and 27.8% in males by GC ablation in a y w
background by driving y w;UASp-bam� with nos-GAL4::VP16;
effects are relative to a coisogenic control (y w;UASp-bam�;
control 1) and a control with a heterozygous background (y w/w1118;
nos-GAL4::VP16; control 2) (Fig. 2 A and B and Table S1).
Longevity was also extended when UASp-bam� was driven by
nos-GAL4::VP16 in an independent background (w1118) lacking
one copy of genomic bam (Fig. 2 C and D; Table S1). The capacity
for GC ablation to extend lifespan was likewise effective with the
germ-line driver nos-GAL4-tubulin (NGT-GAL4) (32) in the y w
and w1118 backgrounds (Fig. 2 E–H and Table S1). Thus, bam�

misexpression in the germ line is sufficient to force GC loss and to
increase lifespan in multiple genetic backgrounds and with different
germ-line drivers. Because the failure of grandchildless-like mutants
to develop GCs has no consistent major effects on lifespan (ref. 21
and our unpublished data), we hypothesize that GC loss during late

Fig. 1. GC loss and expansion of somatic cells in gonads from flies misexpressing
bam�. (A–C) GC loss in adult females misexpressing bam� in the germ line (y
w/w1118;UASp-bam�::gfp/�; nos-GAL4::VP16/�). GCs are stained for GC specific
antigen vasa (green), somatic cells (FasIII, red), and DNA (DAPI, blue). Asterisk (*)
denotes somatic cap cells. (A) GCs are rarely observed in ovarioles from 2-day-old
females overexpressing bam� [24/225 ovarioles (10.7%) contained GCs]. (B) GC
loss is virtually complete by 7 days [3/325 ovarioles (0.9%) contained GCs]. See also
Fig. S1. (C) Germarium from a 2-day-old control female. All ovarioles from control
females contained GCs at 2 (n � 120) and at 7 days (n � 152). (A�–C�) shows FasIII�

somatic cells only. Note the expanded somatic gonad in GC-less females. (D and
E)GCloss inthird instar larval (L3)malesoverexpressingbam�.Control testesfrom
L3 males (D) have a normal number of GSCs (vasa) in contact with hub cells (*) at
the apical tip. (E) Males overexpressing bam� show loss of GSCs by this stage. (E�)
GCspresentnearthehubhavebranchedfusomes (arrows)asdetectedbystaining
with antibodies to �-spectrin. Note the reduced size of the gonad. Asterisk (*)
denotes the FasIII� apical hub. (F and G) Expansion of somatic cells in testes from
adults misexpressing bam�. (F) Control testes show normal distribution of FasIII�

hub cells (red) and TJ� somatic cells (green). (G) An expansion of FasIII� and TJ�

somatic cells is observed in testes. (Scale bars: 50 �m in A–C, F, and G; 20 �m in D
and E.)

Fig. 2. Adult GC loss extends lifespan in D. melanogaster. (A–D) Driving
UASp-bam� in germ line (no germ line, UASp-bam�/�; nos-GAL4::VP16/�) ex-
tends lifespan, both in a y w background (A, females; B, males) and a w1118

background lacking one copy of bam (C, females; D, males), relative to two
controls. Controls were, in the y w background, y w/y w;UASp-bam�::gfp/�
(control 1) and y w/w1118; nos-GAL4::VP16/� (control 2), and in the w1118 back-
ground, w1118/w1118;UASp-bam�::gfp/�; bam�86/� (control 1) and w1118/w1118;
nos-GAL4::VP16/� (control 2). (E–H) Misexpressing UASp-bam� with an alterna-
tive germ-line-specific driver, nos-GAL4-tubulin (UASp-bam�::gfp/NGT-GAL4),
also extends lifespan, both in the y w background (E, females; F, males) and in a
background lacking one copy of bam (G, females; H, males) compared with two
controls (control 1: y w/y w;UASp-bam�::gfp/� or w1118/y w;UASp-bam�::gfp/�;
bam�86/�, respectively; control 2: y w/y1 w*; NGT-GAL4/�). See Table S1 for
statistics.
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development or in the adult might promote longevity because GCs
associate and interact with somatic cells before loss.

If the germ line produces a signal that shortens lifespan or
represses a somatic signal that extends lifespan, GC overprolifera-
tion should decrease lifespan (7). To test this prediction, we
examined a sterile heteroallelic null mutant of bam (bam�86/
bam�59) in which mitotically active, nondifferentiating GSCs over-
proliferate (26). Mutant flies were short-lived relative to two fertile
controls (Fig. S2 and Table S1). Thus, eliminating GC proliferation
slows aging, whereas GC overproliferation shortens lifespan in the
fly, as in the nematode (7, 8). However, we cannot fully exclude the
possibility that the longevity effects of bam are independent of its
effects on GCs.

Germ-line loss might slow aging simply by abolishing the survival
costs of producing gametes (1–2, 4, 21, 23). To rule out that egg
production is required for GCs to shorten lifespan, we examined a
female-sterile mutant of egalitarian (egl) (33). Mutants of egl
prevent differentiation of cystoblasts into oocytes (34). Conse-
quently, flies produce eggs with 16 rather than 15 nurse cells, and
egg chambers degenerate before they acquire yolk (34). Lifespan of
sterile egl mutant females (eglPR29/eglwu50) was reduced compared
with fertile controls (Fig. S3 and Table S1), suggesting that oogen-
esis per se might not be sufficient for reproduction to shorten

lifespan. This result adds to a growing number of cases showing that
the tradeoff between reproduction and survival can be decoupled
(3, 16–19, 21, 23).

In C. elegans, lifespan extension by GC loss requires the FOXO
transcription factor DAF-16; FOXO activity is normally repressed
by IIS (7–8). Because reduced IIS slows Drosophila aging [by
mutations disrupting IIS (13, 35), constitutive activation of Dro-
sophila FOXO (dFOXO) (18), or ablation of insulin-producing cells
(36, 37)], we reasoned that GC loss might extend lifespan by
down-regulating IIS. Accordingly, we measured message abun-
dance for the three Drosophila insulin-like peptides (dilps) pro-
duced by median neurosecretory cells (mNSCs), the major insulin-
producing cells (IPCs) in the brain of the adult (Fig. S4A) (38–40).
Rather than reduced message from the dilp2, dilp3, and dilp5 loci,
we found that these transcripts were induced upon GC loss by 1.8-
to 26-fold relative to controls, in two independent genetic back-
grounds (Fig. 3 A–C and D–F).

Previous attempts to quantify DILPs by Western blot analysis
have failed because of low ligand abundance (37), and current
technology does not permit detection of circulating DILPs in the
hemolymph. However, several observations suggest that increased
dilp message in GC-ablated flies might be biologically meaningful.
Immunostaining of brains with DILP antibody indicated that the

Fig. 3. GC loss up-regulates dilp message but activates expression of dFOXO target genes. (A–D) GC-less flies (UASp-bam�/�; nos-GAL4::VP16/�) exhibit
increased production of dilp 2, dilp 3, and dilp 5, both in the y w (A–C) and w1118 backgrounds (D–F), relative to controls. (G–H) GC loss causes up-regulation of
dFOXO targets 4E-BP (G) and l (2)efl (H) in both backgrounds. For details of genotypes, see Fig. 1.
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IPCs of GC-less flies produced as much and, in some cases, more
DILP protein than controls, and DILP� staining of IPC axonal
projections was strong, suggesting functional DILP transport (Fig.
S4 B–E). Furthermore, neural DILPs homeostatically regulate
sugar levels in the hemolymph (37, 40), and GC-less flies had
reduced amounts of stored and circulating carbohydrates (Fig. S5
A and B).

The hyperinsulinism of GC-less flies is a paradox because
lifespan should not be extended in the face of increased DILPs.
Because high DILP levels should activate IIS in peripheral tissues
and repress dFOXO, we measured transcripts of two major
dFOXO targets from body tissue, the translational regulator thor
(encoding 4E-BP), and the small heat shock protein l (2)efl, which
are normally induced when IIS is repressed and dFOXO is activated
(41–43). Message levels of both dFOXO targets were up-regulated
in GC knockout flies (Fig. 3 G and H). Although we cannot rule out
that these targets have transcriptional inputs other than dFOXO
(44), flies with GC loss, despite elevated DILPs, express markers
consistent with active dFOXO and reduced IIS.

Because reduced IIS causes dephosphorylation and nuclear
translocation of dFOXO, nuclear accumulation of dFOXO can
be used to assess IIS pathway activity. To confirm that dFOXO
is active in GC-less flies, we examined its localization with
immunostaining in peripheral fat body, a major site of IIS
activity, and by Western blotting analysis with cell fractionation
in whole-body tissue (Figs. S6 and S7). As expected, dFOXO was
predominantly nuclear in GC flies, indicating that dFOXO is
active. Yet, despite differential up-regulation of dFOXO targets,
GC-less and control f lies did not differ in nuclear dFOXO
localization (Figs. S6 and S7), which suggests that GC loss might
affect dFOXO activity independent of its subcellular localiza-
tion, as recently found in C. elegans (45).

There are many mechanisms by which IIS can be impeded
between the site of insulin production and FOXO-dependent
responses of peripheral tissues: at the level of insulin secretion or
transport and at many steps within intracellular IIS of target tissues
(46, 47). To initiate an understanding of IIS impedance in GC-less
flies, we explored whether GC loss might change transcript abun-
dance of two DILP cofactors, dALS and IMP-L2 (48–50). In
mammals, circulating IGFs form a complex consisting of IGF-1,
IGF-binding proteins (IGF-BPs), and the liver-secreted scaffold
protein acid labile substrate (ALS); by creating a pool of circulating
IGFs, this ternary complex limits ligand availability (51). The
Drosophila homolog of ALS (dALS) is expressed in DILP-
expressing IPCs and the fat body (48, 52) and is up-regulated in
dFoxo null mutants (53). Consistent with the model that dALS
functions as a DILP cofactor, dALS forms a circulating trimeric
complex containing DILP2 and IMP-L2, an Ig-like homolog of
IGF-BP7 (48, 54). Binding of dALS requires prior formation of a
dimeric complex containing DILP2 and IMP-L2 (48). In cell culture
experiments, IMP-L2 binds mammalian insulin and IGF-1/-2, and
fall army worm (Spodoptera frugiperda) IMP-L2 inhibits IIS through
the human insulin receptor (55). Because overexpression of dALS
and IMP-L2 can systemically antagonize DILP function and IIS in
Drosophila in vivo (48, 49), we measured message abundance of
dALS and IMP-L2 upon GC loss. Although dALS levels did not
change, IMP-L2 message was increased 7-fold in GC-less flies (Fig.
4 A and B). Although this observation is correlational, it might
suggest a potential explanation for why IIS might be impeded in
GC-less flies in the face of elevated DILP production. It will be of
major interest to determine whether GC loss can modulate DILP
availability and IIS by affecting IMP-L2.

Together, our results show that GCs regulate aging and
modulate IIS in the fly. Although future work is required to fully
characterize IIS state upon GC loss, we observed that GC-less
flies exhibit characteristics of both increased and decreased IIS.
Increased DILPs and hypoglycemia are suggestive of increased
IIS, but GC-less flies also have markers of IIS impedance. The

induction of dFOXO targets is consistent with the finding that
lifespan extension by GC loss in the nematode requires FOXO/
DAF-16 (7–8). In the worm, GC loss induces nuclear translo-
cation of DAF-16 and activates DAF-16 targets, but nuclear
accumulation is also observed in worms that lack the entire
gonad and have normal lifespan (45). Similarly, we find that
GC-less and control f lies differ in dFOXO target activation, but
not dFOXO localization, suggesting that IIS can affect aging by
modulating FOXO/DAF-16 activity independent of subcellular
localization. Indeed, dietary restriction in C. elegans extends
longevity by activating AMP-activated protein kinase (AMPK),
which phosphorylates and activates DAF-16 but does not pro-
mote DAF-16 nuclear translocation (56).

Because extended longevity by GC loss is associated with up-
regulation of DILPs, GC loss might impede IIS downstream of
DILP production. In humans, compensatory hyperinsulinemia is a
hallmark of severe insulin resistance (57), and mutations in the
tyrosine kinase domain of the insulin receptor can cause hyperin-
sulinemic hypoglycemia coupled with insulin resistance (58). Re-
cent studies with fly and mouse also suggest that lifespan can be
extended despite hyperinsulinemia (59, 60). In Drosophila target-
of-rapamycin (dTOR) mutants, longevity extension is associated
with elevated DILP2 and hypoglycemia (59), and brain-specific
insulin receptor substrate-2 (Irs-2) knockout mice are hyperinsuline-
mic but insulin-resistant and long-lived (60). Clearly, further ex-
periments are needed to unravel the mechanisms by which insulin
production can be uncoupled from IIS sensitivity and modulation
of lifespan.

Our finding that GC loss affects neural DILP production also
adds to growing evidence suggesting evolutionary conservation of
endocrine feedback between brain and gonad (61). In Drosophila,
neural DILPs bind to the insulin-like receptor (dINR) on GSCs to
regulate GC proliferation (62, 63), and neuronal InR knockout
(NIRKO) mice show impaired spermatogenesis and ovarian follicle
maturation (64). Conversely, in rats, ovariectomy decreases IGF-1
receptor density in the brain but increases circulating IGF-1 levels
(65). Together with progress made in the worm (7–9, 66) and mouse
(67), the Drosophila system will allow us to dissect the mechanisms
underlying the fundamental and intricate relationship among IIS,
reproduction, and aging.

Materials and Methods
Fly Strains and Maintenance. For bam� misexpression, we used UASp-bam� in a
y w background, obtained by backcrossing w; [w�;UASp-bam�::gfp]/CyO;

Fig. 4. GC loss up-regulates message of IMP-L2, but not of dALS. (A) GC loss
does not alter message abundance of the DILP cofactor dALS. (B) In contrast,
GC loss strongly up-regulates expression of the insulin/IGF- binding protein
IMP-L2. See Fig. 1 for genotype information.
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bam�86/TM3 (28) for six generations into y w and eliminating the bam mutant
allele.Wealsomisexpressedbam� inaw1118 backgroundlackingonecopyofbam
(w; [w�;UASp-bam�::gfp]/CyO; bam�86/TM3). For each UAS responder, we in-
duced expression with two germ-line-specific nanos (nos)-GAL4 lines (w1118; �/�;
nos-GAL4::VP16 [MVD1] and y1 w*; NGT-GAL4 [nos-GAL4-tubulin]) (31, 32). Thus,
we examined how bam� misexpression affects lifespan in four sets of genotypes:
(i) no germ line: y w/w1118;UASp-bam�::gfp/�; nos-GAL4::VP16/�; control 1: y w/y
w;UASp-bam�::gfp/�; control 2: y w/w1118; nos-GAL4::VP16/�; (ii) no germ line:
w1118/w1118;UASp-bam�::gfp/�; nos-GAL4::VP16/bam�86; control 1: w1118/w1118;
UASp-bam�::gfp/�; bam�86/�; control 2: w1118/w1118; nos-GAL4::VP16/� (control
2); (iii) no germ line: y w/y1 w*;UASp-bam�::gfp/NGT-GAL4; control 1: y w/y
w;UASp-bam�::gfp/�; control 2: y w/y1 w*; NGT-GAL4 (Fig. 2 E and F); and (iv) no
germ line: w1118/y1 w*;UASp-bam�::gfp/NGT-GAL4; bam�86/�; control 1: w1118/y
w;UASp-bam�::gfp/�; bam�86/�; control 2: y w/y1 w*; NGT-GAL4/�. For the assay
in Fig. S2, we used a heteroallelic null mutant (ry506 e1 bam�86/red e bam�59) and
two heterozygous controls (w1118/�; red e bam�59/� and w1118/�; ry506 e1

bam�86).bam�59 isanundescribeddeletion,andbam�86 isdescribed inref.26.The
assay inFig. S3wasperformedwithaheteroallelicmutant (w; cnbweglPR29/cnbw
eglwu50) and a control overexpressing egl� in the mutant (w; cn bw eglPR29/cn bw
eglwu50; CA8B(egl�)/�) (33, 34). UASp-bam�, bam mutants, and w1118 were do-
nated by D. McKearin (University of Texas Southwestern Medical Center, Dallas);
ywbyE.Rulifson (UniversityofCalifornia, SanFrancisco);nos-GAL4::VP16andegl
by R.L.; NGT-GAL4 strain by the Bloomington Stock Center (Bloomington, IN);
dilp2-GAL4 by E. Hafen (ETH Zürich); and UAS-CD8::gfp by R. Stocker (Université
de Fribourg, Fribourg, Switzerland). Flies were reared and experiments were
conducted at 25°C and 40% relative humidity on a 12-hour light–dark cycle and
using a standard cornmeal/sugar/yeast/agar diet.

Gonad Immunocytochemistry. Immunofluorescence experiments on squashed
testes were performed as described in ref. 29. Ovaries were dissected into PBS,
fixed in fresh 4% formaldehyde/PBS for 30 min, and blocked in PAT (PBS/0.1%
Triton X-100/1% BSA) for 2 h at room temperature. Primary and secondary
antibodies were diluted in PAT; incubation with primary antibodies was carried
outovernightat4°C.Ovarieswerewashedquickly twice, followedbyfour30-min
washes at room temperature in PBT (PBS with 0.1% Triton X-100). Primary
antibodies used were mouse monoclonal anti-fasciclin III (FasIII) (7G10) and
anti-�-spectrin (3A9) at 1:10 (Developmental Studies Hybridoma Bank, University
of Iowa, Iowa City, IA), rabbit anti-Vasa at 1:2,000 (gift from P. Lasko, McGill
University,Montreal,QC),andguineapiganti-Traffic jam(Tj)at1:3,000 (gift from
D. Godt, University of Toronto, Toronto, ON). Secondary antibodies were ob-
tained from Molecular Probes. Samples were mounted in Vectashield medium
with DAPI (Vector Laboratories). Images were obtained by using a Zeiss Axiovert
200 microscope and processed with Zeiss AxioVision (version 4.5) and Adobe
Photoshop software.

Lifespan Assays. Adult survival was determined by using previously described
methods (23, 35, 68). Newly eclosed adult flies were collected within a 24-hour
period. To minimize stress-induced mortality in very young flies, we lightly
anesthetized flies with moist CO2. Each 1-liter demography cage (68) was initi-
ated with �150 newly eclosed adults, mixed sexes (unless otherwise noted; Table
S1). Dead flies were recorded and removed every 2 days, at which time fresh food
was provided in a vial with 3 ml of medium. We used four to five replicate cages
for each treatment/genotype; data were combined across replicates for each
treatment/genotype. Survival, lx, was estimated as Nx/N0, where Nx is the number
of flies alive at the beginning of each census interval and N0 is the initial cohort
size (69). We tested for significant differences in survival between pairs of cohorts

using log-rank tests (69). Data were analyzed with JMP (SAS Institute) (70). We
also inspected and analyzed patterns of age-specific mortality (69) to verify that
differences in survival were caused by continuous differences in mortality rate
(data not shown).

Quantitative PCR (qPCR). mRNA transcript levels were measured with reverse-
transcription qPCR. Ten-day-old live females were snap-frozen in liquid nitro-
gen and stored at �80°C. Heads were separated from bodies by using a funnel
with a fine mesh. For neural dilps, we measured message from heads, whereas
for all other transcripts we measured message from decapitated bodies.
Because heads can thaw rapidly and mRNA degrades, all sample preparations
were performed with iced reagents and containers before RNase inactivation.
We prepared total RNA from three to four replicates per genotype, each
replicate with 75 heads or bodies, using TRIzol reagent (Invitrogen). The purity
and amount of RNA was determined spectrophotometrically (NanoDrop,
ND-1000). DNase-treated total RNA was reverse-transcribed by using the
iScript cDNA synthesis kit (Bio-Rad) according to the manufacturer’s protocol.
For qPCR we used iTaq SYBR Green Supermix with ROX (Bio-Rad) and an ABI
prism 7300 Sequence Detection System (Applied Biosystems). Each PCR was
performed by using three to four biological replicates; each biological repli-
cate was replicated three times (technical replicates). For each transcript, we
normalized message levels relative to a GAPDH2 control by the method of
2���CT (71). Previous work, confirmed by independent microarray analysis,
suggested that GAPDH2 is a robust control when analyzing dilp transcript
levels (18); statistical analysis of CT values of GAPDH2 controls confirmed that
GAPDH2 did not differ among genotypes (Fig. S8). For information on primers
see SI Materials and Methods.

Fecundity Assay. Details of the fecundity assay are described in SI Materials and
Methods.

Carbohydrate Measurements. Hemolymph and total carbohydrates were mea-
sured as described (37, 40). For details see SI Materials and Methods.

DILP Immunocytochemistry. DILPs were detected by immunostaining of brains
with DILP antibody as described (19, 72). Details are given in SI Materials and
Methods.

FOXO Immunocytochemistry and Western Blot Analysis. We examined dFOXO
subcellular localization with anti-dFOXO antibody in peripheral fat body
tissue, as described in ref. 18, and in nuclear and cytosolic extracts of whole-
body samples by Western blotting. Details are given in SI Materials and
Methods.
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