
REVIEW

doi:10.1098/rsif.2006.0177

Published online 28 November 2006
*Author for c

Received 30 S
Accepted 23 O
Neural systems engineering

Steve Furber* and Steve Temple

School of Computer Science, University of Manchester, Oxford Road,
Manchester M13 9PL, UK

The quest to build an electronic computer based on the operational principles of biological
brains has attracted attention over many years. The hope is that, by emulating the brain, it
will be possible to capture some of its capabilities and thereby bridge the very large gulf that
separates mankind from machines. At present, however, knowledge about the operational
principles of the brain is far from complete, so attempts at emulation must employ a great
deal of assumption and guesswork to fill the gaps in the experimental evidence. The sheer
scale and complexity of the human brain still defies attempts to model it in its entirety at the
neuronal level, but Moore’s Law is closing this gap and machines with the potential to
emulate the brain (so far as we can estimate the computing power required) are no more than
a decade or so away. Do computer engineers have something to contribute, alongside
neuroscientists, psychologists, mathematicians and others, to the understanding of brain and
mind, which remains as one of the great frontiers of science?

Keywords: neural networks; computer engineering; computational neuroscience;
massively parallel computing; spiking neurons
1. INTRODUCTION

Biological brains and engineered electronic computers
fall into different categories. Both are examples of
complex information processing systems, but beyond
this point their differences outweigh their similarities.
Brains are flexible, imprecise, error-prone and slow;
computers are inflexible, precise, deterministic and
fast. The sets of functions at which each excels are
largely non-intersecting. They simply seem to be
different types of system. Yet, throughout the
(admittedly still rather short) history of computing,
scientists and engineers have made attempts to cross-
fertilize ideas from neurobiology into computing in
order to build machines that operate in a manner more
akin to the brain. Why is this?

Part of the answer is that brains display very high
levels of concurrency and fault-tolerance in their
operation, both of which are properties that we struggle
to deliver in engineered systems. Understanding how the
brain achieves these propertiesmayhelp us discoverways
to transfer them to our machines. In addition, despite
their impressive ability to process numbers at ever-
increasing rates, computers continue to be depressingly
dumb, hard touse and totally lacking in empathy for their
hapless users. If we could make interacting with a
computer just a bit more like interacting with another
person, life would be so much easier for so many people.
orrespondence (steve.furber@manchester.ac.uk).

eptember 2006
ctober 2006 193
More fundamentally, understanding how the brain
functions is one of the last great frontiers of science.
‘Wet’ neuroscience has revealed a great deal about the
structure and operation of individual neurons, and
medical instruments such as functional magnetic
resonance imaging machines reveal a great deal about
how neural activity in the various regions of the brain
follows a sensory stimulus. But there is a wide gulf
between these micro- and macro-level perspectives on
brain function. Somewhere in this gulf are issues such as
neural codes—how do populations of neurons jointly
encode sensory and high-level information, modularity,
temporal behaviour, memory (short- and long-term),
attention and, of course, consciousness?

The objective of understanding the architecture of
brain and mind is recognized as one of the grand
challenges in computing research (Sloman 2004) and is
a long-term multi-disciplinary project pursued at many
different levels of abstraction.

The computer engineer brings a constructionist
approach to these issues. Given the various different
models that have been offered to describe the infor-
mation processing function of an individual neuron,
how do we go about selecting an appropriate model and
constructing useful computational functions using it
(instead of logic gates) as the basic component part?
Can we build a library of such functions as a kit of parts
from which to construct higher-level systems? Will the
results of this enterprise deliver new and better ways to
build computers, and/or will it tell us anything at all
J. R. Soc. Interface (2007) 4, 193–206
This journal is q 2006 The Royal Society

194 Review. Neural systems engineering S. Furber and S. Temple
about the biological systems that are the source of
inspiration for this approach?

Therefore, we have two goals in this work: (i) to
develop a ‘neural toolkit’ that can be used to build
computers that share some of the properties of the brain,
such as high levels of concurrency and fault-tolerance and
(ii) to build a machine that will allow realistic simulation
and study of the brain itself. In this review, we present a
framework for thisfieldof inquiry, suggest promising lines
of attack and indicate when and where answers may
emerge, so far as this can be foreseen.
Figure 1. A view of the neuron cells and connections from a
very small area of the cortex. Photo courtesy of the Brain
Mind Institute, EPFL, Lausanne, Switzerland.
1.1. The neuron

The basic biological control component is the neuron.
A full understanding of the ‘architecture of brain and
mind’ (Sloman 2004) must, ultimately, involve finding
an explanation of the phenomenological observations
that can be expressed in terms of the interactions
between neurons.

Neurons appear to be very flexible components
whose utility scales over systems covering a vast
range of complexities. Very simple creatures find a
small number of neurons useful. Honeybees find it
economic to support brains comprising around 850 000
neurons, which give them exceptional navigational
capabilities while travelling several miles from their
hive. Humans have evolved to carry brains comprising
1011 neurons or so and use these to support exceptional
motor control and complex societal interactions.
Figure 1 illustrates a very small part of the cortex
and gives an indication of the extent of the inter-
connections between neurons.

The basic logic gate used in digital circuits can be
considered to be ‘universal’, in the sense that any
digital circuit can be built using the same basic gate
provided that a sufficient number of these gates are
available—one structure can support all the functions
within a class. The component neuron used across the
range of biological brains is basically the same in its
principles of operation, so in some sense it enjoys a
universality similar to that of the logic gate in digital
engineering, though the family of neurons employed in
biological systems displays considerably more diversity
in its members’ physical characteristics.

There is a further similarity between neurons and
logic gates: both are multiple-input single-output
components. However, while the typical ‘fan-in’ (the
number of inputs to a component) and ‘fan-out’ (the
number of other components the output of a particular
component connects to) of a logic gate are in the range
2–4, neurons typically have a fan-in and fan-out in the
range 1000–10 000.

A more subtle difference between a logic gate and a
neuron is in their internal dynamics. Whereas a logic
gate implements a process that is essentially static and
defined by Boolean logic, so that at any time (from a
short time after the last input change) the output is a
well-defined stable function of the inputs, a neuron has
complex dynamics that includes several time constants,
maintains a more complex internal state, and its output
is a time-series of action potentials or ‘spikes’. The
information conveyed by the neuron’s output is
J. R. Soc. Interface (2007)
encoded in the timing of the spikes in a way that is
not yet fully understood, although rate codes, popu-
lation codes and firing-order codes all seem to offer valid
interpretations.

Accurate computer models of biological neurons
exist, but they are very complex (e.g. Hodgkin &
Huxley 1952). Various simpler models have been
proposed that capture some of the features of the
biology but omit others. The difficulty lies in deter-
mining which of the features are essential to the
information processing functions of the neuron and
which are artefacts resulting from the way the cell
developed, its need to sustain itself and the complex
evolutionary processes that led to its current form.
1.2. Neural microarchitecture

The universality of the neuron as a component is also
reflected in certain higher-level structures of the brain.
For example, the cortex displays a six-layer structure
and a regularity of interconnect between the neurons in
the various layers (Mountcastle 1978) that suggest the
use here of a neural ‘microarchitecture’. The same
regular laminar cortical microarchitecture is in evidence
across the cortex in regions implementing low-level
vision processes such as edge detection and in regions
involved in high-level functions such as speech and
language processing. This apparent ‘universality’ (used
here as defined earlier) of the cortical microarchitecture
suggests that there are principles being applied, the
understanding ofwhich could offer a breakthrough in our
understanding of brain function.

Review. Neural systems engineering S. Furber and S. Temple 195
In contrast to the regularity and uniformity of the
microarchitecture, the particular connectivity patterns
that underpin these structures appear to be stochastic,
guided by statistical principles rather than specific
connectivity plans. The connectivity is also locally
adaptive, so the system can be refined through tuning
to improve its performance, a process termed ‘neuro-
plasticity’ (Schwartz & Begley 2003).
1.3. Engineering with neurons

As computer engineers we find the neuron’s univers-
ality across wide ranges of biological complexity to be
intriguing, and there is a real challenge in under-
standing how this component can be used to build
useful information processing systems. There is an
existence proof that this is indeed possible, but few
pointers to how the resulting systems might work.

There are other ‘engineering’ aspects of biological
neurons that are interesting too. We have already
mentioned the regularity of neural microarchitecture.
Neurons are physically much larger than transistors,
having cell bodies with dimensions typically less than
30 mm, whereas today’s transistors have dimensions
below 0.1 mm. The power efficiency of neurons
(measured as the energy required to perform a given
computation) exceeds that of computer technology,
possibly because the neuron itself is a relatively slow
component. While computer engineers measure gate
speeds in picoseconds, neurons have time constants
measured in milliseconds. While computer engineers
worry about speed-of-light limitations and the number
of clock cycles it takes to get a signal across a chip,
neurons communicate at a few metres per second. This
very relaxed performance at the technology level is, of
course, compensated by the very high levels of
parallelism and connectivity of the biological system.
Finally, neural systems display levels of fault-tolerance
and adaptive learning that artificial systems have yet
to approach.
1.4. Scoping the problem

The scale of the problem of modelling the human brain
has been scoped by, among others, Mead (1990). The
hundred billion neurons have of the order of 1015

connections, each coupling an action potential at a
mean rate of not more than a few hertz. This amounts
to a total computational rate of around 1016 complex
operations per second. No computer has yet been built
that can deliver this performance in real time, though
this gap will be closed in the near future. Current
supercomputer developments are aimed at delivering
petaFLOP (1015 floating-point operations per second)
performance levels, perhaps only one order of magni-
tude short of the performance required to model the
human brain.

Perhaps more challenging is the issue of power
efficiency. Moore (1965) observed that the number of
transistors on a microchip doubled every year, and he
predicted that this trend would continue for another
10 years. The doubling period was subsequently
modified to 18 months, but has continued at this rate
J. R. Soc. Interface (2007)
to this day and is expected to continue for at least
another decade. The observation is widely referred to as
‘Moore’s Law’. In fact, Moore’s Law ceased to be merely
an observation a long time ago, becoming instead a
semiconductor industry boardroom planning tool;
therefore, it is now a self-fulfilling prophecy for as
long as physics, engineering and industry economics
allow. Although Moore’s paper referred only to the
increasing number of transistors on a microchip, the
process of component miniaturization that makes this
possible has also led to the spectacular improvements in
performance, power efficiency and cost-per-function
that underpins the pervasive digital technology that we
enjoy today.

Mead argued that current computer technology will
still be 10 million times less power efficient than biology
even when Moore’s Law has run its full course, so a real-
time digital model of the brain will consume tens of
megawatts of power. He argued that analogue elec-
tronics can close much of that gap, and he has built
several silicon implementations of analogue neural
systems that support this argument (Mead 1989). The
very high power efficiency of the biological system has
been emphasized more recently by Laughlin &
Sejnowski (2003) and presents a real challenge to the
computer engineer to find ways to build artificial
systems that come anywhere close to matching it.

Delivering the necessary level of computational
power is a pre-requisite to building a real-time model
of the human brain, but it is far from being the only
problem facing researchers in this area. One daunting
challenge is the need to obtain the neural ‘netlist’, a
term that we borrow here from electronic engineering
where it is used to refer to a formalized description of
an electronic circuit in terms of the type and
parameters of each of the components (here neurons)
and their connectivity patterns. A second challenge is
to understand the developmental aspects of the brain’s
structure—the netlist is not static, but neurons grow
and die and their interconnections extend and contract
in response to activity and other biological factors.
Thirdly, a brain needs a sensory system to provide its
inputs and actuators to respond to its outputs—it needs
to be embodied in some way in order to have a purpose
for its activities. Fourthly, embodied brains do not live
in isolation, they form societies and cultures that define
and constrain their actions.
1.5. The research agenda

We use the term ‘neural systems engineering’ to describe
the constructionist approach to exploring the potential of
the neuron as a component in an information processing
system (in the widest sense of this term).

This approach could be pursued entirely through
software modelling; though because the computational
demands of large-scale neural modelling are high, there
have been many projects where special-purpose hard-
ware has been constructed to accelerate the compu-
tation. Building the system in hardware also ensures
that real-world issues such as noise are addressed. The
special-purpose hardware may be aimed at modelling
the low-level details of the neuronal processes in

dendrites

soma

axon

synapses

Figure 2. The four primary structures of a neuron. Inputs are
collected via the dendrites and passed to the soma, the main
body of the cell. The action potential (spike) generated in the
soma propagates along the axon, where it passes through
synapses to the dendrites of other neurons.

196 Review. Neural systems engineering S. Furber and S. Temple
analogue electronic circuitry—an approach known as
neuromorphic computing—or, at the other extreme,
building massively parallel digital supercomputers with
special features to support neural modelling.

The key issues at present are the following:

—To identify the simplest models that capture the
information processing functions of a neuron.
Neurons are very complex cells, but how much of
this complexity is functionally relevant and how
much is an artefact of the cell’s evolutionary
heritage, its need to grow, find energy, self-repair
and so on?

—To represent the heterogeneous nature of biological
neural systems. There are many different types of
neurons in the brain, and each instance of a
particular type has unique parameters.

—To identify and implement the necessary connec-
tivity patterns of the natural system.

—To identify the neural ‘codes’ whereby populations
of neurons represent complex information and
through which the continuous sensory inputs can
influence discrete actions and decisions.

—To identify the mechanisms of neural adaptation
that enable the system to self-organize and learn,
continually tuning and optimizing its performance.

Ultimately, it would be extremely useful to be able to
raise the level of abstraction at which neural networks
are modelled. If, for example, the functionality of the
cortical microcolumn could be encapsulated in a set of
mathematical equations, then the computational (and
consequently power) demands of modelling the brain
might come down by one or two orders of magnitude.

Among all these is the hope that some understanding
will be gained of the emergent properties of complex
dynamical systems, together with some insights into
the fault-tolerant capabilities of biological systems and
how these capabilities might be better emulated by
engineered systems.
1.6. Structure of review

In §2, we look at the basic principles at work in neural
computation. In §3, we look in detail at the problem we
are addressing—what is known about the neuron’s
function and connectivity in its role as a component in
complex biological systems—and we look at some of the
models that are used to capture its function. In §4, we
discuss the issues that arise in constructing large-scale
artificial neural systems, and in §5, we look at how these
issues have been addressed by various teams around the
world, including our own work in this area. Section 6
concludes the paper with some speculation about the
prospects for progress and potential breakthroughs in
our understanding of brain function and our capability
for engineering more intelligent systems in the future.
2. NEURAL COMPUTATION

In this section, we begin to look at the neuron as an
information processing device. Any computational
system must achieve a balance between its processing,
J. R. Soc. Interface (2007)
storage and communication functions. It is useful to
consider how these three functions are achieved in
neural systems.

In discussing neurons, it is useful to use some
biological terminology albeit, perhaps, with an engin-
eer’s interpretation of what this terminology signifies.
A neuron may be viewed as comprising the following
four structures (see figure 2):

—Dendrites are the tree-like structures that gather the
inputs to the neuron from other neurons or sensory
inputs and couple them to the soma.

—The soma is the central body of the neuron where the
inputs are processed and the output is generated.

—The axon carries the output of the neuron through
another tree-like structure tocouple it tootherneurons
or physical actuators, incurring a signal-propagation
delay that depends on the length of the axon.

— Synapses form the coupling between neurons. These
can develop wherever the axon from one neuron is
physically proximate to a dendrite of another. The
coupling process incurs some time delay, but this can
generally be added into the axonal delay for modelling
purposes.

The synapse is the primary location of adaptation in
the neural system: the strength of the coupling between
two neurons self-adjusts over time in response to factors
such as the correlation between the activities of the two
neurons that are coupled through the synapse.

We can now look at how these structures contribute
to the three aspects of computation that must be kept in
balance: processing, communication and storage of
information.
2.1. Processing

The processing function is performed within the
neuron. The inputs are combined in the dendrites in
some way and passed to the soma which produces
output events in response to input events through a
nonlinear transfer function, which we will model using
suitable differential equations whose complexity is
limited only by the available computing power. In
some models, the dendrites simply sum the inputs,
whereas in others they interact in more complex ways.

w1

×

w3

×

w2

×

w4

×

∫dt ∆t Σ

Figure 3. The neuron as a component. In the leaky integrate-
and-fire model, input spikes are multiplied by their respective

Review. Neural systems engineering S. Furber and S. Temple 197
2.2. Communication

Communication in neural systems is predominantly
through the propagation of spike ‘events’ from one
neuron to the next. The output from the neuron’s
body—its soma—passes along its axon which conveys
the spike to its many target synapses. Each synapse
uses chemical processes to couple the spike to the input
network—the dendritic tree—of another neuron.

Since the spike carries no information in its shape or
size, the only information conveyed is in which neuron
fired and when it fired.
synaptic weights, summed and integrated over time. If the
integral exceeds a threshold, the neuron fires and the
integration restarts. The output spike may be delayed to
model the propagation time along the axon.
2.3. Storage

It is in the storage of information that the neuron’s
story becomes most complex. There are many processes
that can be seen as storing information, some operating
over short time-scales and some very long term.
Examples of these processess are as follows:

— the neural dynamics include multiple time con-
stants, each of which serves to preserve input
information for some period of time;

— the dynamical state of the network may preserve
information for some time;

— the axons carry spikes at low speeds and therefore
act as delay lines, storing information as it propa-
gates for up to 20 ms; and

— the coupling strength of a synapse is, in many cases,
adaptive, with different time constants applying to
different synapses.

In a neural modelling system, we expect the model to
capture the neural and network dynamics, and hence
the contributions these mechanisms make to infor-
mation storage. The axon delay-line storage does not
come so easily as the high speeds of electronic signalling
make spike communication effectively instantaneous. It
is likely that the axon delay is functionally important,
for example, enabling networks to learn complex
spatio-temporal patterns as exhibited in polychroniza-
tion (Izhikevich 2006), so we must put these delays
back in, either by delaying the issue of the spike or by
delaying its effect at the destination.

The primary long-term storage mechanism is synap-
tic modification (within which we include the growth of
new synapses). This is the most fundamental storage
mechanism; here, we require long-term stability and
support for a range of adaptive mechanisms.
3. THE NEURON AS A COMPONENT

We take the neuron to be a device that, like a logic gate,
has several inputs and a single output. The number of
inputs will, however, typically be in the thousands
rather than the two or three inputs that a logic gate
normally has. The general scheme of the component
neuron is illustrated in figure 3, which may be compared
with figure 2 to see how it captures the major functional
components of the biological neuron.
J. R. Soc. Interface (2007)
3.1. Communicating with spikes

Although for most of its history the field of artificial
neural networks has taken the output of a neuron to be
a real value that varies from one discrete time-step to
the next in a highly synchronous way, we will take the
more biologically realistic model of the output as a
time-series of action potentials (spikes) which, since the
form of the spike is largely invariant, can be viewed as a
time-series of asynchronous events. The output of
neuron i is then simply

yi Z
X

n

dðtKti;nÞ; ð3:1Þ

where d(t) is the Dirac delta function representing a
unit impulse at time t and ti,n, nZ0,., Ni, are the
times of the spikes on neuron i.

In this model, information is conveyed solely in the
times at which the events occur, perhaps in the rate of
spiking, but there are other possibilities such as the
relative timing of spikes from different neurons.

Although spikes appear to represent the primary
means of propagating information in mammalian
brains, they are clearly not the only means. Specialized
neurons cause the emission of chemicals that have a
broad effect on adjacent regions of neurons, and these
are likely to be important in learning mechanisms.
There is also evidence for direct analogue information
exchange between neurons whose dendritic trees
make contact.

We will proceed on the assumption that equation
(3.1) captures the most important neural information
exchange process, but remain aware that there may be
other important processes in addition to spiking
communication.
3.2. Point-neuron models

There are many different models that describe the
internal operation of a neuron at different levels of
detail. The simplest of these are point-neuron models,
which ignore the spatial characteristics of the neuron.
The inputs are combined through a weighted summing
process to give a single driving force

Ii Z
X

j

wijyj ; ð3:2Þ

0 20 40 60 80 100 120 140 160 180 200
−100

−80

−60

−40

−20

0

20

40

time (ms)

u
−8

0,
 v

 (
m

V
)

Figure 4. A solution to Izhikevich’s equations, driven by an
input step function at 20 ms. The slow variable, u (lower
curve), has been offset by K80 mV for clarity. This solution
was obtained using a 10 bit fixed-point approximation to the
equations, but is very close to the real-valued solution.

198 Review. Neural systems engineering S. Furber and S. Temple
where wij represents the strength of the synapse
coupling neuron j into neuron i, and the sum is taken
over all of the inputs yj to neuron i.

This driving force is then applied to some form of
nonlinear function to generate the output spikes from
the neuron. A simple first-order differential equation is
used in the leaky integrate-and-fire (LIF) model,

_Ai Z IiKAi=t; ð3:3Þ
if AiRw fire neuron i and reset Ai Z 0: ð3:4Þ

Here, the activation, Ai, of neuron i decays to its zero
rest state with time constant t. It is increased by an
amount wij every time input neuron j fires, and if at any
time it exceeds the threshold w, it fires and its
activation is reset to zero.

The LIF model captures some of the essential beha-
viour of a biological neuron, but is often adapted to
greater realism through the addition of features, such as

—Habituation. When presented with a step function in
its input stimulus, a biological neuron tends to fire
rapidly for a short period but does not sustain this
firing rate for long, whereas the LIF model will fire at
a steady high rate. Habituation can be added to the
LIF model by making the threshold a leaky
integrator of the neuron’s own output,

_wi Z yiKðwiKw0Þ=tw; ð3:5Þ
so each spike from the neuron increases its threshold
above its rest state w0, but this effect decays with
time constant tw.

—Refractory period. Immediately after a neuron fires,
it is insensitive to further inputs. The LIF neuron
can be extended to model this in a number of ways,
including simply causing it to ignore inputs for a
fixed period after a spike, or resetting its activation
after firing (equation (3.4)) to a negative level.

Adding these ‘bells and whistles’ to the LIF model
increases both its biological accuracy and compu-
tational complexity. The trade-off between accuracy
and computational complexity is a recurring theme in
large-scale neural modelling.

3.3. The spike response model

The spike responsemodel generalizes the LIFmodel and
can describe the behaviour of any neuron that responds
linearly to its inputs (Gerstner 1995). Each input causes
a perturbation to the neuron’s potential, which follows a
characteristic course over time (which may depend on
when this neuron last spiked). This can be captured by a
kernel function 3(t), and the activation potential of the
neuron is then formed from a linear sum of these kernel
functions, each scaled by its respective synaptic weight.

Similarly, when this neuron fires, its potential
follows a characteristic time course that can be
represented by another kernel function, h(t),

AiðtÞZ hðtKti;Ni
ÞC

X

j

wij

X

n

3ðtKtj;nÞ: ð3:6Þ

As with the LIF model, the neuron fires when the
threshold is reached, and the threshold can be dynamic
to model habituation. For computational efficiency, the
kernel functions can be stored as look-up tables.
J. R. Soc. Interface (2007)
3.4. The Izhikevich model

A rather different approach to the primary function of a
point-neuron model is offered by Izhikevich (2004). His
approach is to observe that the biological mechanism
that gives rise to the neuron’s spike output must have
its basis in an instability in the electrochemical process
that generates and sustains the spike as it propagates
along the axon. He therefore turns to the mathematics
of bifurcating processes to identify equations that
capture the nature of this bifurcation at the lowest
computational cost.

His investigations yielded the following pair of
coupled differential equations:

_v Z 0:04v2 C5vC140KuCI ; ð3:7Þ

_u Z aðbvKuÞ; ð3:8Þ

if vR30 then v Z c; u Z uCd; ð3:9Þ
where v is a ‘fast’ variable corresponding to the neuron’s
activation (A in equation (3.3), scaled to correspond to
the activation of a biological neuron measured in
millivolts); u is a ‘slow’ variable that adapts the
neuron’s dynamics over time; I is the weighted sum of
inputs as in equation (3.2); and a, b, c and d are
parameters that define the characteristic spiking
patterns the neuron produces. The test for v reaching
30 mV in equation (3.9) is not a firing threshold, as was
the test in equation (3.4), since equations (3.7) and
(3.8) generate the spike directly. This test is detecting
the peak of the spike itself.

An example of the behaviour of these equations is
shown in figure 4, where the input I undergoes a step-
function change at time 20 ms. The neuron spikes
repeatedly, twice in quick succession and then at a
slower, stable rate, displaying habituation. This figure
was produced using a 10 bit fixed-point implementation
of the equations, showing that relatively simple digital
hardware is sufficient for this purpose.

The Izhikevich model is comparable in terms of
computational complexity with the LIF model when
the latter includes habituation and a refractory period,

Review. Neural systems engineering S. Furber and S. Temple 199
but it is able to model a much wider range of neural
behaviours. As such, it is a very promising basis for
large-scale neural modelling at the point-neuron level of
complexity. Izhikevich has himself used it for
simulating cortical activity with very large numbers
of neurons (Izhikevich 2005).
3.5. Axons: the Hodgkin–Huxley model

Ground-breaking experiments on the giant axon of the
squid (chosen because its size minimized the still-
considerable experimental difficulties) culminated in
the publication in 1952 of a seminal paper that
presented equations describing the electrical behaviour
of a nerve fibre (Hodgkin & Huxley 1952).

The equation for the axon membrane potential V is

Cm
_V ZKgLðVKVLÞK�gNam

3hðVKVNaÞ

K�gKn
4ðVKVKÞ; ð3:10Þ

where Cm is the membrane capacitance per unit area;
gL, �gNam

3h and �gKn
4are the conductances per unit area

of the membrane for various ions that are involved in
the axon processes; and VL, VNa and VK are the
associated equilibrium potentials. The dimensionless
quantities m, h and n represent voltage-dependent
channel variables which obey equations of the form

_cZaðV Þð1KcÞKbðV Þc; ð3:11Þ
where each channel variable has different a(V) and
b(V) functions that involve negative exponentials of
the membrane voltage, V.

The Hodgkin–Huxley equations offer a very detailed
model of the propagation of action potentials along
neuronal fibres, but they are computationally demand-
ing. Since the solution is characterized by a sharp
transition between a continuous fluctuation for a weak
input and a distinct action potential for a stronger
input, spiking behaviour is often taken to be a good
approximation, and the axon process is modelled as a
simple delay, or possibly multiple delays, to allow for
the different lengths of axon to different target synapses.
3.6. Dendritic trees and compartmental models

The dendritic networks that capture the inputs to a
neuron are complex trees and may include nonlinear
interactions between inputs on different branches.
Point neurons generally ignore such effects and simply
sum all the inputs. A more accurate model is to view the
dendrites as similar to electrical cables and use
transmission line models to compute the dynamics of
input propagation towards the soma. As the dendritic
trees are non-uniform and include branch points,
‘compartmental’ models split the trees into small
cylindrical sections where each section has a uniform
physical property (Bower & Beeman 1995). These
models can be simple or highly detailed and can
incorporate nonlinearities for greater accuracy.

As with the Hodgkin–Huxley model, great accuracy
is achievable at the cost of considerable computational
effort.
J. R. Soc. Interface (2007)
3.7. The synapse

The functional effect of a synapse is to transfer a spike
from the axon at its input to the dendrite at its output.
The biological synapse does this by releasing a number
of packets of chemicals across the synaptic gap in
response to the incoming spike, and these packets then
affect the membrane properties of the receiving
dendrite. The effect is quantized (Fatt & Katz 1952)
and probabilistic in nature. It is often approximated by
a multiplicative ‘weight’ as in equation (3.2).

Of much greater subtlety is the adaptive nature of
the synapse. The ability of the synapse to adjust its
effectiveness as a connection (in which we include the
ability of the neuron to grow new connections) is
believed to be the major long-term memory mechanism
in the brain. Precisely how and when these changes take
place is not fully understood, but there are a number of
theories and explanations on offer.

Hebb (1949) postulated that when one neuron was
close to another and repeatedly played a causal role in
its firing, the coupling between them would strengthen.
This postulate has since been validated experimentally,
and the term ‘Hebbian learning’ is widely applied to
mechanisms that modify the strength of a synapse as a
result of correlations of various sorts between the
spiking patterns of the two neurons that it connects.
Long-term potentiation (LTP) is a term used to
describe the most direct experimental confirmation of
Hebb’s principle (Lømo 2003). The opposite effect has
also been observed in some areas of the brain—long-
term depression (LTD), also known as ‘anti-Hebbian
learning’, which describes a circumstance where corre-
lations between two neurons result in a weakening of
the synaptic strength.

Investigations into the detailed mechanisms of LTP
and LTD have led to the observation of spike–time-
dependent plasticity (STDP), where the scale of the
synaptic modification has a well-defined dependency on
the precise relative timing of the spikes from the input
and output neurons, including changing sign if the
order is not consistent with causality. Quite subtle
models of the biophysical processes involved in STDP
have been developed (Saudargiene et al. 2004).

STDPisunlikely tobe thewhole story, however.There
are reward mechanisms in the brain that release
chemicals that may modulate synaptic plasticity in
some way, and mechanisms that lead to the growth of
new connections (where causality cannot be involved,
since before the growth there was no causal connection).
4. ENGINEERING NEURAL SYSTEMS

Now that we appreciate the behaviour of an individual
neuron as a component and have a choice of models that
we can use to represent its functionality, we can begin
to consider the construction of systems of neurons. A
number of questions arise in the development of any
system of neurons, which reflect the issues listed
previously in §1.5:

—At what level of detail should each neuron be
modelled?

100

150

200

250

300

350

400

450

500

fi
ri

ng
 r

at
e

200 Review. Neural systems engineering S. Furber and S. Temple
—How do populations of neurons jointly encode
information?

—How is the connectivity of the network determined?
— How is the connectivity of the network

implemented?
—How does the network learn, adapt or tune itself?
—How is the network embodied and the body placed

into an environment with which it interacts?

We will address each of these issues in the following
sections, and then offer some examples of neural
systems to illustrate how everything can come together.
−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0
0

50

parameter

Figure 5. Representation of a physical parameter (x -axis) by
the spike firing rates (y -axis) of a heterogeneous population of
50 neurons. Each curve shows the firing rate of one neuron
(after Eliasmith & Anderson 2003).
4.1. Neural models

Much of the past work on building artificial neural
networks has adopted the rate-coding view of neural
output, where the only significant information that a
neuron conveys about its inputs is in its firing rate
(Adrian 1964). The firing rate can be represented by a
real-valued variable, and the spiking behaviour of the
biological neuron is abstracted entirely into this
variable. Equation (3.2) is still used to compute the
neuron’s activation, but the variables yj are real valued
and no longer a time-series of spikes. The activation is
modulated by a nonlinear transfer function to produce
the real-valued output. The nonlinear transfer function
is often a sigmoid function, which gives a smooth
differentiable transition from 0 to 1 as the activation
increases from its minimum to its maximum value.

In the most abstract models, the nonlinear transfer
function is a simple threshold and all neural states are
represented by binary values: 0 when the neuron is not
firing and 1 when it is firing (McCulloch & Pitts 1943).

Recently, there has been a return to interest in more
biologically accurate models that incorporate spiking
behaviour. All of the models described in §3 have been
explored, and others too. There is no consensus on the
correct level of trade-off between complexity and
biological realism, and none is likely to arise until
many more questions have been answered about which
features of the biological component are essential to its
information processing function and which are simply
artefacts of its biological origins.
4.2. Population encoding

The representationof sensory informationbypopulations
of neurons has been the subject of study. Eliasmith &
Anderson (2003) offer detailed analytical tools for under-
standing how the combined spike firing rates of a
heterogeneous population of neurons can represent a
continuous physical parameter with arbitrary accuracy,
and how successive layers of such populations can
perform computations on those parameters.

An illustration of the representation of a continu-
ously variable physical parameter is shown in figure 5.
Here, a population of 50 LIF neurons, each with
randomly selected sensitivity and offset (but all having
the same maximum firing rate), together give an
accurate estimate of the parameter even in the presence
of noise. The error in the estimate is inversely
proportional to the square root of the population size.
J. R. Soc. Interface (2007)
In these population codes, each neuron is firing
independently and the information is encoded across
the individual firing rates of the neurons that form the
population.This is not the onlyway inwhichapopulation
of neurons can represent information, but the other
encodingmechanismsdescribedbelowall require that it is
not only the firing rate of the neuron that is significant but
also the timing of the individual spikes. Evidence that
precise spike timing is important in biological systems is
sparse, but one can point to O’Keefe & Recce’s (1993)
work on rat hippocampal place cells, where individual
neurons fire in a well-defined phase relationship to the
theta wave cycle.

Van Rullen & Thorpe (2001) take observations of
the speed with which humans can respond to visual
images, which does not allow enough time for any
individual neuron to emit more than one spike, as
evidence that individual firing rates are an insufficient
explanation of the performance of the system. They
have postulated rank-order codes as an alternative
description. With rank-order codes, a population of
neurons, in this case the ganglion cells in the retina,
spike in an order determined by their tuning to the
current sensory stimulus. The information is carried in
the order of firing of the neurons in the population.

It is not necessary for the entire population to fire in
a rank-order code, in which case information can be
conveyed both in the order of firing of the subset that
does fire and in the choice of that subset.

In a final simplifying step, it is possible to use just the
subset choice to convey information and to ignore the
order of firing altogether. In this case, the result is an
N-of-M code, where all of the information is conveyed in
the choice of the N neurons that fire from a total popu-
lation of M neurons. Time has now been abstracted out
of the model, and the system can be described and
analysed in terms of pure binary patterns.
4.3. Spatio-temporal spike patterns

While unordered N-of-M codes are purely spatial and
rely on approximate spike synchrony across the active
subpopulation, rank-order codes represent a first step

Review. Neural systems engineering S. Furber and S. Temple 201
towards exploiting the temporal properties of spiking
patterns to convey information. This can be taken
further and generalized to polychronizaton (Izhikevich
2006). Here, the ability of an individual neuron to
detect coincident inputs is combined with the intrinsic
delays in the axons of the neurons that connect into its
synapses to tune the neuron to respond to a very
particular spatio-temporal pattern of activity on those
input neurons. These spatio-temporal patterns can be
very difficult to identify in neural firing traces, but have
considerable information-bearing capacity and may
play an important role in biological neural systems.
4.4. Defining connectivity

Abstract neural networks have a connectivity that
can be defined algorithmically. Full connectivity is
commonly used, where every neuron in one layer
connects to every neuron in the next layer. In
recursive networks, every neuron may connect to all
of its peers in the same layer. Such networks have
readily defined connectivity and are generally conceived
in terms of this connectivity, which often has little to
do with biological realism.

The availability of accurate, detailed network
connectivity data for biological neural systems is
fundamental to the task of building computer models
of biologically realistic neural networks. Techniques for
producing this connectivity information are improving,
and recently Binzegger et al. (2004) have developed an
approach based upon a statistical analysis of the
proximity of the dendritic and axonal processes of
different neuron populations in a three-dimensional
reconstruction of the cat neocortex. This approach
leads to highly detailed connectivity data that have
been used to build computer models of large-scale
biological neural systems (e.g. Izhikevich 2005).
4.5. Implementing connectivity

Biology employs massive numbers of low-speed
channels to communicate neural spike events from
their sources to their destinations. Despite the major
advances in the density of microelectronic components,
artificial neural systems cannot approach the physical
connectivity of the natural systems.

However, electronic systems do have one advantage
here: electronic communication is about five orders of
magnitude faster than biology. An axon may carry tens
to hundreds of spikes per second; a computer bus can
operate at tens of MHz (Boahen 2000). Therefore, it is
reasonable to seek ways to multiplex events from many
neurons along the same bus or channel. A neural spike
is an asynchronous event which carries information
only in its timing, so the multiplexed information need
simply identify the neuron that has fired. This led
Sivilotti (1991) and Mahowald (1992) to propose the
address-event representation of spikes, where each
neuron in a system is given a unique number (address),
and when the neuron fires this number is propagated
through the interconnect to (at least) all neurons to
which the firing neuron is connected.
J. R. Soc. Interface (2007)
A problem with multiplexing multiple asynchronous
events through the same channel is that of collisions—
when two events coincide closely in time, either one
event must be dropped or they must be serialized,
incurring some timing error. Boahen (2000) argues that
asynchronous arbitration can be used to serialize the
events with low timing error, even when 95% of the
channel capacity is being used, and this approach scales
well to faster technologies.
4.6. Learning, adapting and tuning

A key feature of any neural network, biological or
engineered, is its ability to (i) learn new responses, (ii)
adapt to new stimuli, and (iii) tune itself to improve its
performance at the task in hand. These processes are
generally achieved through the adjustment of synaptic
weights in accordance with some sort of learning rule.

The long-standing way of optimizing artificial neural
networks to a particular task is through the use of error
back-propagation (Werbos 1994). Error back-propa-
gation compares the outputs of a neural network with
the desired output and then reduces the error in the
output by adjusting weights and propagating errors
backwards through the entire network. There are two
problems with this approach for biological or large-
scale engineered systems: (i) it assumes that the desired
output state is known and (ii) it assumes the existence
of an agent external to the system with global control of
it. Neither of these is generally true for the systems of
interest here. It is worth noting, however, that with
suitable network topologies and local learning rules,
biologically plausible systems have been shown to
operate in ways that effectively deliver error back-
propagation (O’Reilly 1996).

We will look for local learning rules that are based on
Hebbian principles, adjusting weights according to local
spike activity along the lines of STDP. In some cases
this can be reduced to a simple rule, as in the case of the
binary associative memories described in the §4.7. In
more general applications this remains an uncertain
aspect of the system engineering, where new insights
and approaches are likely to lead to significant progress.
4.7. Example neural systems

Many applied neural systems are based on abstract
neural models and do not depend directly on spike
generation or communication. Examples that demon-
strate principles of operation that could be employed
in spiking systems with local learning rules include
Willshaw et al.’s (1969) non-holographic memory and
its close relative, the correlation matrix memory
(CMM; Kohonen 1972). CMMs employ binary output
neurons with binary synaptic weights and often use
N-of-M population codes. They have proved very
effective for building large-scale associative search
systems such as the AURA system at the University
of York (Austin et al. 1995), which has found a wide
range of industrial applications.

Similar abstract models are employed in sparse
distributed memories (SDMs). Although Kanerva’s
(1988) original SDM was not directly compatible with

202 Review. Neural systems engineering S. Furber and S. Temple
standard spiking neuron models, our variants of
Kanerva’s SDM employing N-of-M codes (Furber
et al. 2004) or rank-order codes (Furber et al.
in press) can readily be implemented with such models.
4.8. Neuromorphic systems

An approach to engineering artificial neural systems
that have been explored in certain application domains is
to implement neuralmodels in analogue hardware. Some
functions such as multiplication are very much cheaper
and less power hungry when implemented in analogue
rather than digital electronics, and analogue systems
also offer intriguing nonlinearities that offer elegant
solutions to certain tricky aspects of neural modelling.

The analogue approach has been applied to vision
systems (Mead 1989; Lichtsteiner et al. 2006; Yang
et al. 2006) and similar early-stage sensory input
processing. The combination of analogue neural models
with digital spike communications models the biologi-
cal solution closely and is probably the most promising
microelectronic approach to building large-scale neural
networks in the long term. In the shorter term, the
uncertainties over the optimal neural model make the
inflexibility of the analogue implementation (compared
to a programmable digital system) unattractive for the
general-purpose neural processor.
5. LARGE-SCALE PROJECTS

It seems reasonable to assume that some of the most
challenging and interesting aspects of neural functionwill
be manifest only in systems of considerable scale where,
for example, there is scope for very high-dimensional
representation and processing of sensory input. This
makes the construction of large-scale systems an
important component of neural systems engineering
research. There have been several projects in recent
times aimed at building large-scale computer models of
neural systems, using different complexities of model and
different techniques to accelerate the computation:

— Software systems run on conventional machines are
highly flexible but can be slow, unless run on very
powerful computers such as Blue Brain (Markram
2006). Izhikevich (2005) ran a simulation of one second
of activity in a thalamocortical model comprising 1011

neurons and 1015 synapses, a scale comparable with
the human brain. The simulation took 50 days on a
27-processor Beowulf cluster machine.

— Field-programmable gate arrays (FPGAs) have
the potential to accelerate key software routines
(Zhu & Sutton 2003), though it can be difficult to
get the correct system balance between processing
and memory. FPGAs are very flexible but some-
what harder to program than software, and high-
performance computer manufacturers are very
interested in the possibility of integrating FPGAs
into their parallel machines. This may result in
software tools that deliver the acceleration transpar-
ently to the programmer.

—Building bespoke hardware to support neural model-
ling is an approach that has been tried from time to
J. R. Soc. Interface (2007)
time with limited lasting success. The fundamental
problem is the same as for other areas of application-
specific hardware—the commercial momentum
behind the progress of the general-purpose computer
renders any benefit of special-purpose hardware hard-
won and short-lived. In the neural modelling area
there is also the issue of deciding howmuch the neural
model should be cast into hardware, optimizing
performance but losing flexibility, against making
the system as soft and general-purpose as possible.

Here, we give brief descriptions of three projects
aimed at large-scale neural modelling: Blue Brain, at
EPFL, Switzerland; SPINN, at the Technical University
of Berlin; and our own plans for the SpiNNaker machine.
5.1. Blue Brain

By far, the largest-scale project aimed at building
computer simulations of sections of the brain is the
Blue Brain project at EPFL in Switzerland (Markram
2006). This work is based upon one of the world’s most
powerful supercomputers, the IBM Blue Gene/L. This
machine delivers up to 360 teraFLOPS of computing
power from 8192 PowerPC CPUs each running at
700 MHz and arranged in a toroidal mesh. Alongside
the IBM supercomputer is a sophisticated stereo visuali-
zation system based upon SGI graphics computers.

The Blue Brain project simulates biological neural
networks using detailed compartmental neuron models
and aims to deliver biologically accurate models of
neural microcircuits such as the neocortical microcol-
umn. The computations are based upon the Hodgkin &
Huxley (1952) equations and Rall’s (1959) cable models
of the dendritic and axonal trees and use the NEURON
(2005) simulator codes, extended to use a message-
passing interface to communicate action potentials
between neurons modelled on different processors.

In addition to exploiting their computational
resources, the Blue Brain team is also assembling a
major database of biological neural data upon which to
base their computer models.

The Blue Brain project as currently configured has
a machine capable of simulating up to 100 000 very
complex neurons or 100 million simple neurons. The
emphasis is on maximally accurate models of biological
neural systems.
5.2. SPINN

The Spiking Neural Network activity at the Technical
University of Berlin has yielded a series of hardware
systems for the acceleration of neural network modelling
over more than a decade of related research projects:
BIONIC, NESPINN, MASPINN, SP2INN and, most
recently, SPINN Emulation Engine (SEE).

The Biological Neuron IC (BIONIC) project yielded
a chip capable of modelling up to 16 neurons each with
16 synapses (Prange & Klar 1993). The NESPINN
(Neurocomputer for Spiking Neural Networks) project
aimed to model 16 000 neurons each with 83 synapses
(Jahnke et al. 1996), with the possibility of handling
larger systems with multiple accelerator boards.

Review. Neural systems engineering S. Furber and S. Temple 203
The Memory Optimized Accelerator for Spiking
Neural Networks (MASPINN; Schoenauer et al. 1998)
was a hardware accelerator that connects to a host PC
via a standard PCI bus. The neural model treated the
dendritic tree as a set of independent leaky integrators,
each receiving a number of inputs. The outputs of these
integrators then interact in a programmable way to form
the driving current for a soma model with a dynamic
threshold (again generated by a leaky integrator).
Axonal delays are modelled at the neuron’s output, so
a neuron that connects with different delays to other
neurons has multiple outputs, one for each delay value.
MASPINN employs a number of optimizations to reduce
the computational demands. It caches synaptic weights
that are used heavily, and it tags inactive components
so that they do not consume resource computing the
leaky integrator function. The MASPINN project aimed
to simulate a million relatively simple neurons and
had a specific application area—image processing—as
its target.

The Synaptic Plasticity in Spiking Neural Networks
(SP2INN) project (Mehrtash et al. 2003) aimed at
building hardware to model a million neurons with
several million synaptic connections but, at the end of
the paper, the authors contemplate the difficulties of
designing special-purpose hardware to compete with
the relentless advances in the performance of general-
purpose computers.

The SEE project abandons custom hardware in
favour of FPGAs and exploits the embedded general-
purpose processing power incorporated in some of
today’s FPGA architectures (Hellmich et al. 2005).
The system can model half a million neurons each with
1500 synaptic connections.

Taken together, these projects represent a consider-
able body of experience in designing hardware to support
spiking neural network modelling, and it is instructive to
see how each project has built on the ideas displayed in
its predecessors but how little the hardware components,
presumably designed with considerable effort, have
carried forward. This illustrates the difficulty of making
bespoke hardware flexible enough to solve more than the
problem of the moment.
5.3. SpiNNaker

The SpiNNaker project at the University of Manchester
(Furber et al. 2006b) has as its goal the development of
a massively parallel computer based on chip multi-
processor technology and a self-timed Network-
on-Chip (NoC) communications system (Bainbridge
& Furber 2002). The system is aimed at modelling
large-scale systems of up to a billion spiking neurons in
real time and is optimized for point neurons such as
the LIF and Izhikevich models. It is not intended to
run models with high biological accuracy, but is much
more aimed at exploring the potential of the spiking
neuron as a component from which useful systems may
be engineered. Biological data are taken as a very
useful source of inspiration, but not as a constraint,
and useful ideas for novel computation systems will be
seen as a positive outcome irrespective of their
biological relevance.
J. R. Soc. Interface (2007)
The philosophy behind the system architecture is
based on the observation that modelling large systems of
spiking neurons falls into the ‘embarrassingly parallel’
class of applications, where the problem can be split into
as many independent processing tasks as is useful. The
performance of an individual processor in the system is
not an important parameter. What matters is the cost
effectiveness of the implementation, which can be broken
down into the capital cost and the running cost, which
can be assessed, respectively, in terms of:

—MIPS (millions of instructions per second) per mm2:
how much processing power can we get on a given
area of silicon? And,

—MIPS per watt: how energy efficiently can this
processing power be delivered?

The choice for this system is between employing a
small number of high-end processors or a larger number
of lower-performance embedded processors on each chip.
The performance density (MIPS per mm2) of both
classes of microprocessor is similar, but the embedded
processors are an order of magnitude more energy
efficient. Hence, the decision is to use embedded
processors in large numbers, and the SpiNNaker chip
will incorporate up to 20 ARMprocessor cores to execute
the neural modelling code.

The organization of the SpiNNaker multiprocessor
chip is illustrated in figure 6. One of the processors on the
chip is selected to act as monitor processor, and runs the
operating system functions on the chip. The remaining
processors act as fascicle processors, each modelling a
group of up to a thousand individual neurons where that
group is selected to have as much commonality as
possible in the neurons that connect into its member
neurons and the neurons elsewhere that its member
neurons connect to.

Each fascicle processor receives spike events from,
and issues spike events into, a packet-switching com-
munications system, with each spike event encoded as a
single packet. Within a chip, these spike events converge
through the NoC Communications to an arbiter, where
they are selected and sent in sequence to a router
(Furber et al. 2006a). The router uses internal tables to
identify which fascicle processors should receive each
event (which can be determined from the connectivity
netlist of the neural network that is being modelled) and
passes the event on accordingly; this mapping may
include none, one or several of the fascicle processors, so
a full multicast routing mechanism is required that is
based on address-event communication as described
in §4.5.

The Communications NoC also extends between
chips, so the system can be enlarged by connecting
multiple chips together, as illustrated in figure 7. Each
chip has six transmit interfaces (‘Tx i/f ’ in figure 6) and
six receive interfaces (‘Rx i/f ’) that effectively extend
the Communications NoC to six neighbouring chips
through bi-directional links. The Router can direct
packets from any on- or off-chip source to any on- or
off-chip destination and has sufficient capacity to
support systems comprising very large numbers (up to
tens of thousands) of chips.

Figure 7. SpiNNaker system architecture. Each of the chip
multiprocessor nodes is connected to its six nearest neigh-
bours by bi-directional links. The left and right sides of the
mesh are connected, as are the top and bottom edges, to form
a two-dimensional toroidal surface.

fascicle
processor

fascicle
processor

fascicle
processor

fascicle
processor

Rx i/f

Rx i/f

Tx i/f

Tx i/f

monitor
processor

Rx i/f

Rx i/f

Tx i/f

Tx i/f

system
NoC

arbiter

router
Figure 6. Organization of a SpiNNaker chip multiprocessor
node, illustrating the Communications Network-on-Chip
(NoC) that is used to carry spike event packets around the
system. Each fascicle processors models many neurons.
Packets from other nodes arrive through the receiver
interfaces (‘Rx i/f’) and are merged with packets issued by
the fascicle processors into a sequential stream by the arbiter.
Each packet is then routed to one or several destinations,
which may include other processing nodes (via the transmit
interfaces—‘Tx i/f’) and/or local fascicle processors. The
monitor processor carries out operating system functions and
provides visibility to the user of on-chip activity.

204 Review. Neural systems engineering S. Furber and S. Temple
5.4. Virtual communications

The SpiNNaker architecture illustrates one of the impor-
tantprinciples of engineering large-scale neuralmodelling
systems: the need todecouple thephysical organizationof
the engineered system from the physical organization of
the biological system it is designed to model.

Biological neural systems develop in three dimen-
sions, though the way the three-dimensional space is
used is quite variable. The cortex, for example, is often
described as a thin sheet of neurons, where the third
dimension is used largely for long-range connections and
to enable the large two-dimensional area to be folded
into a convoluted shape in order to fit into a small three-
dimensional volume. On a small scale, the sheet does
have a thickness which is divided into a characteristic
six-layer structure.

The SpiNNaker system architecture, as illustrated in
figure 7, has a strongly two-dimensional structure.
However, this does not imply in any way that it can
J. R. Soc. Interface (2007)
only model two-dimensional neural structures. Indeed,
SpiNNaker can model neural networks that are formed
in two, three or even more dimensions. The key to this
flexibility is to map each neuron into a virtual address
space, which means that each neuron is assigned a
unique number. The assignment can be arbitrary,
though an assignment related to physical structure is
likely to improve the modelling efficiency. Then neurons
are allocated to processors; again in principle the
allocation can be arbitrary, but a well-chosen allocation
will lead to improved efficiency. Finally, the routing
tables must be configured to send spike events from each
neuron to all of the neurons to which it connects, and this
can be achieved using the neurons’ addresses.

The dissociation between the physical organization of
the computer system and the physical organization of
the biological system it is being used to model is possible
owing to the very high speed of electronic communi-
cations relative to the speed of propagation of biological
signals. This means that the delays inherent in getting a
spike event across many chips in the SpiNNaker system
are negligible on the time-scales of neuronal processes.
There is a drawback to the high speed of electronics,
however. The physical delays in the biological system are
likely to be functionally important; therefore, they must
be re-instated in the electronic model. This is one of
the more difficult and expensive aspects of the compu-
tational task.
5.5. Diverse approaches

Blue Brain and SpiNNaker are both highly parallel
systems employing large numbers of general-purpose
processors to deliver flexibility (through programmabi-
lity) in the neuron models that they support. Beyond

Review. Neural systems engineering S. Furber and S. Temple 205
this apparent similarity, however, there are marked
differences in the way these two machines will be used to
investigate neural computation.

The Blue Brain project emphasizes biological fidelity
and as a result uses high-performance processors with
support for high-precision real-valued arithmetic which
allows complex equations to be solved efficiently. The
SpiNNaker design emphasizes the real-time modelling of
very large numbers of much simpler equations; therefore,
it uses simpler processors which support only integer
arithmetic, which can still yield accurate solutions to
differential equations as illustrated in figure 4, though
considerable care must be taken over operand scaling.

There are many other differences between the two
machines, with Blue Brain using an ‘off-the-shelf’
supercomputer while SpiNNaker is a bespoke design,
the latter therefore having a lightweight communi-
cations architecture highly tuned to the neural modelling
application.

While there remains so much uncertainty about the
fundamental principles of biological neural processing,
the diversity of approach reflected in the differences
between Blue Brain and SpiNNaker (and neuromorphic
and FPGA-based systems) is to be welcomed. No one
knows which of these approaches is the most promising.
It is our belief, based upon our experience as computer
engineers, that large-scale complex systems are unlikely
to be robust if they depend critically on the fine detail of
the components from which they are constructed, so we
are looking for explanations and insights at the network
level and ignoring much of the biological detail. Whether
or not this belief is justified only time will tell, but this is
the belief that is driving the current direction of the
SpiNNaker project.
6. FUTURE PROSPECTS

A great deal is known about the function and behaviour
of the neuron, but a great deal more remains to be
revealed. If estimates of the computing power required to
model a neural system of the complexity of the human
brain are not grossly misconceived, computers fast
enough to do the job are not far away. But computing
power alone will not solve the problem.

It is not predictable when or where a breakthrough in
our understanding of brain function will emerge, so there
is considerable merit in the diversity of approaches that
are now in evidence. The core activities will remain for
some time the painstaking bottom-up laboratory work of
the neuroscientist and the top-down human-centric
approach of the psychologist. But alongside these,
there are challenges for computational neuroscientists,
computer scientists, and electronic and computer
engineers, all of whom can find opportunities to explore
the potential of the neuron as inspiration for novel ideas
in computation.

There are many possible approaches within the
constructionist territory, some of which we have
indicated in this paper. The spectacularly well-resourced
Blue Brain project has the computing power to build
highly accurate models of biological systems, and we can
expect dramatic insights into the operation of complex
neural systems to arise from that work, to complement
J. R. Soc. Interface (2007)
the exotic images and visualization facilities they have
already demonstrated. With our own work, we are
leaving a lot of the biological complexity behind and
working with more abstract neural models, with the
expectation that the world of complex event-driven
dynamical systems will yield insights both into the
biology that we employ loosely as inspiration for our
work and into novel models of computation.

S.T. is supported by the EPSRC Advanced Processor
Technologies Portfolio Partnership at the University of
Manchester. S.F. holds a Royal Society-Wolfson Research
MeritAward.The SpiNNaker research is supported byEPSRC,
and by ARM Ltd and Silistix Ltd. The support of these
sponsors and industrial partners is gratefully acknowledged.
The authors would also like to acknowledge the constructive

suggestions for improvement offered by the anonymous
referees who reviewed this paper prior to its publication.
REFERENCES

Adrian, E. D. 1964 Basis of sensation. London, UK: Haffner
Publishing Company.

Austin, J., Kennedy, J. & Lees, K. 1995 The Advanced
Uncertain Reasoning Architecture, AURA. In Proc.
WNNW’95.

Bainbridge, W. J. & Furber, S. B. 2002 CHAIN: a delay-
insensitive chip area interconnect. IEEE Micro. 22, 16–23.
(doi:10.1109/MM.2002.1044296)

Binzegger, T., Douglas, R. J. & Martin, K. A. C. 2004 A
quantitative map of the circuit of cat primary visual cortex.
J. Neurosci. 24(39), 8441–8453. (doi:10.1523/JNEUROSCI.
1400-04.2004)

Boahen, K. A. 2000 Point-to-point connectivity between
neuromorphic chips using address events. IEEE Trans.
Circuits Syst. 47(5), 416–434. (doi:10.1109/82.842110)

Bower, J. M. & Beeman, D. 1995 The book of GENESIS:
exploring realistic neural models with the GEneral NEural
SImulation System. New York, NY: Springer.

Eliasmith, C. & Anderson, C. H. 2003 Neural engineering.
Cambridge, MA: MIT Press.

Fatt, P. & Katz, B. 1952 Spontaneous subthreshold activity at
motor nerve endings. J. Physiol. 117, 109–128.

Furber, S. B., Bainbridge,W. J., Cumpstey, J.M.&Temple, S.
2004A sparse distributedmemorybaseduponN-of-Mcodes.
Neural Netw. 17(10), 1437–1451. (doi:10.1016/j.neunet.
2004.07.003)

Furber, S. B., Temple, S. & Brown, A. D. 2006a On-chip and
inter-chip networks for modelling large-scale neural
systems. In Proc. ISCAS’06, pp. 1945–1948.

Furber, S. B., Temple, S. & Brown, A. D. 2006b High-
performance computing for systems of spiking neurons. In
Proc. AISB’06 workshop on GC5: architecture of brain and
mind, vol. 2, pp. 29–36.

Furber, S. B., Brown, G., Bose, J., Cumpstey, M. J., Marshall,
P. & Shapiro, J. L. In press. Sparse distributed memory
using rank-order neural codes. IEEE Trans. Neural Netw.

Gerstner, W. 1995 Time structure of the activity in neural
network models. Phys. Rev. E 51, 738–758. (doi:10.1103/
PhysRevE.51.738)

Hebb, D. O. 1949 The organization of behavior: a neuropsy-
chological theory. New York, NY: Wiley.

Hellmich, H. H., Geike, M., Griep, P., Mahr, P., Rafanelli, M.
& Klar, H. 2005 Emulation engine for spiking neurons and
adaptive synaptic weights. In Proc. IJCNN, pp. 3261–3266.

Hodgkin, A. &Huxley, A. F. 1952 A quantitative description of
membrane current and its application to conduction and
excitation in nerve. J. Physiol. 117, 500–544.

http://dx.doi.org/doi:10.1109/MM.2002.1044296
http://dx.doi.org/doi:10.1523/JNEUROSCI.1400-04.2004
http://dx.doi.org/doi:10.1523/JNEUROSCI.1400-04.2004
http://dx.doi.org/doi:10.1109/82.842110
http://dx.doi.org/doi:10.1016/j.neunet.2004.07.003
http://dx.doi.org/doi:10.1016/j.neunet.2004.07.003
http://dx.doi.org/doi:10.1103/PhysRevE.51.738
http://dx.doi.org/doi:10.1103/PhysRevE.51.738

206 Review. Neural systems engineering S. Furber and S. Temple
Izhikevich, E. M. 2004 Which model to use for cortical spiking
neurons? IEEE Trans. Neural Netw. 15, 1063–1070. (doi:10.
1109/TNN.2004.832719)

Izhikevich, E. M. 2005 Simulation of large-scale brain models.
www.nsi.edu/users/izhikevich/interest/index.htm.

Izhikevich, E. M. 2006 Polychronization: computation with
spikes. Neural Comput. 18, 245–282. (doi:10.1162/089976
606775093882)

Jahnke, A., Roth, U. & Klar, H. 1996 A SIMD/dataflow
architecture for a neurocomputer for spike-processing
neural networks (NESPINN). MicroNeuro 96, 232–237.

Kanerva, P. 1988 Sparse distributed memory, Cambridge, MA:
MIT Press.

Kohonen, T. 1972 Correlation matrix memories. IEEE Trans.
Comput. C–21, 353–359.

Laughlin, S. B. & Sejnowski, T. J. 2003 Communication in
neuronal networks. Science 301, 1870–1874. (doi:10.1126/
science.1089662)

Lichtsteiner, P., Posch, C. & Delbruck, T. 2006 A 128!128
120dB 30mW asynchronous vision sensor that responds to
relative intensity change. In Proc. ISSCC, pp. 508–509.

Lømo, T. 2003 The discovery of long-term potentiation. Phil.
Trans.R. Soc. B 358, 617–620. (doi:10.1098/rstb.2002.1226)

Mahowald, M. 1992 VLSI analogs of neuronal visual proces-
sing: a synthesis of form and function. Ph.D. dissertation,
California Inst. Tech., Pasadena, CA.

Markram, H. 2006 The blue brain project. Nat. Rev. Neurosci.
7, 153–160. (doi:10.1038/nrn1848)

McCulloch, W. S. & Pitts, W. 1943 A logical calculus of the
ideas immanent in nervous activity. Bull. Math. Biophys. 5,
115–133. (doi:10.1007/BF02478259)

Mead, C. A. 1989 Analog VLSI and neural systems. Reading,
MA: Addison-Wesley.

Mead, C. A. 1990 Neuromorphic electronic systems. Proc.
IEEE 78(10), 1629–1636. (doi:10.1109/5.58356)

Mehrtash, N., Jung, D., Hellmich, H. H., Schoenauer, T., Lu,
V. T. & Klar, H. 2003 Synaptic plasticity in spiking neural
networks (SP2INN): a systemapproach. IEEETrans.Neural
Netw. 14(5), 980–992. (doi:10.1109/TNN.2003.816060)

Moore, G. E. 1965 Cramming more components onto
integrated circuits. Electronics 38(8), 114–117.

Mountcastle, V. 1978 An organizing principle for cerebral
function: the unitmodule and the distributed system. InThe
mindful brain (eds G. M. Edelman & V. B. Mountcastle),
pp. 7–50. Cambridge, MA: MIT Press.

NEURON 2005 www.neuron.yale.edu/neuron.
J. R. Soc. Interface (2007)
O’Keefe, J. & Recce, M. L. 1993 Phase relationship between
hippocampal place units and the EEG theta rhythm.
Hippocampus 3(3), 317–330. (doi:10.1002/hipo.450030307)

O’Reilly, R. C. 1996 Biologically plausible error-driven
learning using local activation differences: the generalized
recirculation algorithm. Neural Comput. 8(5), 895–938.

Prange, S. J. & Klar, H. 1993 Cascadable digital emulator
IC for 16 biological neurons. In Proc. 40 th ISSCC,
pp. 234–235, 294.

Rall, W. 1959 Branching dendritic trees and motoneuron
membrane resistivity. Exp. Neurol. 1, 491–527. (doi:10.
1016/0014-4886(59)90046-9)

Saudargiene, A., Porr, B. &Wörgötter, F. 2004 How the shape
of pre- and post-synaptic signals can influence STDP: a
biophysical model. Neural Comput. 16, 595–625. (doi:10.
1162/089976604772744929)

Schoenauer, T., Mehrtash, N., Jahnke, A. & Klar, H. 1998
MASPINN: novel concepts for a neuro-accelerator for
spiking neural networks. In Proc. VIDYNN’98.

Schwartz, J. & Begley, S. 2003 The mind and the brain:
neuroplasticity and the power of mental force. New York,
NY: Regan Books.

Sivilotti, M. 1991 Wiring considerations in analog VLSI
systems, with application to field-programmable networks.
Ph.D. dissertation, California Inst. Tech., Pasadena, CA.

Sloman, A. 2004 GC5: The architecture of brain and mind.
In UKCRC grand challenges in computing—research
(eds C. A. R. Hoare & R. Milner), pp. 21–24. Edinburgh,
UK: British Computer Society.

Van Rullen, R. & Thorpe, S. 2001 Rate coding versus temporal
order coding: what the retinal ganglion cells tell the visual
cortex. Neural Comput. 13(6), 1255–1283. (doi:10.1162/
08997660152002852)

Werbos, P. 1994 The roots of backpropagation: from ordered
derivatives to neural networks and political forecasting.
New York, NY: Wiley.

Willshaw, D. J., Buneman, O. P. & Longuet-Higgins, H. C.
1969 Non-holographic associative memory. Nature 222,
960–962. (doi:10.1038/222960a0)

Yang, Z., Murray, A. F., Wörgötter, F., Cameron, K. L. &
Boonsobhak, V. 2006 A neuromorphic depth-from-motion
vision model with STDP adaptation. IEEE Trans. Neural
Netw. 17(2), 482–495. (doi:10.1109/TNN.2006.871711)

Zhu, J. & Sutton, P. 2003 FPGA Implementations of neural
networks—a survey of a decade of progress. In Proc. 13 th

Ann. Conf. on Field Programmable Logic and Applications,
pp. 1062–1066.

http://dx.doi.org/doi:10.1109/TNN.2004.832719
http://dx.doi.org/doi:10.1109/TNN.2004.832719
http://www.nsi.edu/users/izhikevich/interest/index.htm
http://dx.doi.org/doi:10.1162/089976606775093882
http://dx.doi.org/doi:10.1162/089976606775093882
http://dx.doi.org/doi:10.1126/science.1089662
http://dx.doi.org/doi:10.1126/science.1089662
http://dx.doi.org/doi:10.1098/rstb.2002.1226
http://dx.doi.org/doi:10.1038/nrn1848
http://dx.doi.org/doi:10.1007/BF02478259
http://dx.doi.org/doi:10.1109/5.58356
http://dx.doi.org/doi:10.1109/TNN.2003.816060
http://www.neuron.yale.edu/neuron
http://dx.doi.org/doi:10.1002/hipo.450030307
http://dx.doi.org/doi:10.1016/0014-4886(59)90046-9
http://dx.doi.org/doi:10.1016/0014-4886(59)90046-9
http://dx.doi.org/doi:10.1162/089976604772744929
http://dx.doi.org/doi:10.1162/089976604772744929
http://dx.doi.org/doi:10.1162/08997660152002852
http://dx.doi.org/doi:10.1162/08997660152002852
http://dx.doi.org/doi:10.1038/222960a0
http://dx.doi.org/doi:10.1109/TNN.2006.871711

	Neural systems engineering
	Introduction
	The neuron
	Neural microarchitecture
	Engineering with neurons
	Scoping the problem
	The research agenda
	Structure of review

	Neural computation
	Processing
	Communication
	Storage

	The neuron as a component
	Communicating with spikes
	Point-neuron models
	The spike response model
	The Izhikevich model
	Axons: the Hodgkin-Huxley model
	Dendritic trees and compartmental models
	The synapse

	Engineering neural systems
	Neural models
	Population encoding
	Spatio-temporal spike patterns
	Defining connectivity
	Implementing connectivity
	Learning, adapting and tuning
	Example neural systems
	Neuromorphic systems

	Large-scale projects
	Blue Brain
	SPINN
	SpiNNaker
	Virtual communications
	Diverse approaches

	Future prospects
	S.T. is supported by the EPSRC Advanced Processor Technologies Portfolio Partnership at the University of Manchester. S.F. holds a Royal Society-Wolfson Research Merit Award. The SpiNNaker research is supported by EPSRC, and by ARM Ltd and Silistix Ltd...
	References

