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Most of the mathematical models that were developed to study the UK 2001 foot-and-mouth
disease epidemic assumed that the infectiousness of infected premises was constant over their
infectious periods. However, there is some controversy over whether this assumption is
appropriate. Uncertainty about which farm infected which in 2001 means that the only
method to determine if there were trends in farm infectiousness is the fitting of mechanistic
mathematical models to the epidemic data. The parameter values that are estimated using
this technique, however, may be influenced by missing and inaccurate data. In particular to
the UK 2001 epidemic, this includes unreported infectives, inaccurate farm infection dates
and unknown farm latent periods. Here, we show that such data degradation prevents
successful determination of trends in farm infectiousness.
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1. INTRODUCTION

In 2001, the UK experienced a major epidemic of foot-
and-mouth disease (Anderson 2002). In all, 2026
premises across the country reported infected animals.
In order to eliminate the disease from the UK, animals
were culled on infected premises (IPs), and pre-
emptively culled on farms thought to be at high risk
of harbouring the disease or of becoming infected. One
of the most controversial culling strategies was that of
animals on farms contiguous to IPs. Out of the 8131
pre-emptively culled premises, 3369 were designated
contiguous premises (CPs).

Mathematical models developed during and after the
epidemic have shown that pre-emptive culling was
effective in bringing the epidemic under control
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(Ferguson et al. 2001a,b; Kao 2001, 2003; Keeling
et al. 2001; Ap Dewi 2004). However, a key assumption
of all the models was that the infectiousness of IPs was
constant over their infectious periods. This has lead to
considerable controversy because if IP infectiousness
increases during infectious period, CP culling may have
been less effective at controlling the epidemic than has
been suggested (Ferguson et al. 2001a).

Ferguson et al. (2001a) looked at how variable
infectiousness altered the epidemic and the consequent
control measures required to eliminate the disease.
They included a parameter that allowed for a change in
IP infectiousness after reporting. When infectiousness
after reporting was equal to that before reporting,
control measures greater than just rapid IP slaughter
(e.g. CP pre-emptive culling) were predicted to be
necessary to bring the epidemic under control.
However, if infectiousness after reporting was five
times higher than before reporting, rapid slaughter of
IPs alone was sufficient to control the epidemic.
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What determines the infectiousness of a farm is poorly
understood. Some analyses suggest that animal species
and numbers are important determinants (Keeling et al.
2001). It is probably true that farm biosecurity is another
important determinant for both infectiousness and
susceptibility to infection. However, quantifying biose-
curity and its effect on transmission is extremely difficult.
However, it is unknown if time-dependent processes
change infectiousness. These include, for example, the
amount of virus excreted by animals, which increases by
several orders of magnitude during the first few days of
infection (Hyslop 1965), the number of infectious animals
on a farm, and farmers’ responses to reported infections
in their local area and on their farms.

The only practical method of estimating trends in
infectiousness for the UK 2001 epidemic is the fitting of
mechanistic mathematical models to the epidemic data.
However, estimated parameter values frommodel fitting
have to be tested for their sensitivity or robustness to the
quality of the data the model is being fitted to. There are
several such issues with the UK 2001 epidemic data.
First, we do not know, inmost cases, which farm infected
which; tracing of transmission is notoriously difficult
especially between farms where there are many possible
routes of infection. Second, infection dates and latent
periods are only estimates. Both are educated guesses
based on tracing, age of lesions and veterinary experi-
ence. Third, we are not sure if all IPs were infected. Only
1340 (66%) IPs were tested positive for infection (Ferris
et al. 2006), although a negative or inconclusive result
does not necessarily imply that a farm was not infected.
Finally, it is highly probable that not all infected farms
were reported as infected because they were pre-
emptively culled before clinical signs appeared. Such
missing and inaccurate data could bias parameter
estimates and reduce their significance. Thus, statistical
tests may not be able to show that trends in infectious-
ness exist even if they do.

To date, there is no evidence for or against trends in
infectiousness in the UK 2001 epidemic. Our aim in this
paper is to determine if the available data collected
during the epidemic are of sufficient quality to test the
hypothesis that infectiousness varied over infectious
period.

We will do this by fitting a mathematical model to
the data. The model is closely based on another model
that was developed during the 2001 epidemic and
further used to study the vaccination control strategies
in future outbreaks (Keeling et al. 2001; Tildesley et al.
2006). Our new model allows for changing infectious-
ness over infectious period. The model is fitted to the
UK 2001 epidemic using maximum likelihood, and
parameter estimates and their confidence intervals (CI)
are determined. The sensitivity of parameter signi-
ficance is analysed using simulated epidemics with the
different types of missing and inaccurate data.
2. METHODS

2.1. Demographic data

Ideally, we require the whole UK livestock demography
in February 2001; unfortunately, this will never be
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known. One predictor of this demography is the June
2000 agricultural census of livestock premises combined
with the Department of the Environment and Rural
Affairs (DEFRA) list of livestock premises (approx.
186 000 farms). This dataset has been extensively
analysed and cleaned and is the one we use here.
Clearly, though, there are several problems in using this
data. First and foremost are the numerous animal
births, deaths and movements that occurred between
June and February and beyond. Second, about 43 000
livestock premises are not recorded in the census that
are in the DEFRA list of premises. These farms are
recorded as having livestock present but with no
indication of animal numbers. Finally, the recording
of census information is not always accurate, especially
for sheep in England and Wales (P. Bessell 2006,
personal communication).

The data recorded in the epidemic Disease Control
System has more accurate information on animal
numbers culled; obviously, this information is only
available for farms that had animals culled on them.
The only animal numbers we have for the remaining
farms are from the census, and an understanding of
disease transmission requires knowledge of these farms
as well. The Disease Control System data have,
therefore, been used to validate the census data
(P. Bessell 2006, personal communication). A conse-
quence of using the June 2000 census is that the
parameter estimates refer to the demography as
recorded in the census and not to the true demography
in February 2001.
2.2. UK 2001 epidemic data

The Disease Control System data contain information
on all farms that were infected or pre-emptively culled.
Of particular interest to this work are the estimated
infection dates, the reporting dates and the cull dates.
Reporting and cull dates are assumed to be accurate.
Infection dates, however, were usually estimated by
dating the age of lesions in animals (Gibbens et al. 2001)
with additional assumptions about latent period and
possible windows of transmission from other farms
(Anderson 2002). They are, therefore, liable to
considerable error.

The database also includes possible tracings between
farms. In theory, this additional information could be
used to inform the fitting of models. In reality, the
tracings are scarce and their quality is poor, particu-
larly local spread after the nationwide movement ban
on 23 February 2001. Therefore, this information is not
included in our analyses.
2.3. Assumptions about IP latent periods in 2001

IP latent periods are needed to determine infectious
periods. Unfortunately, these are not known; previous
modelling studies have assumed periods from 1 to
5 days (Ferguson et al. 2001a,b; Keeling et al. 2001;
Tildesley et al. 2006). We assign IP latent periods as
follows. IPs are first split into those in which infection
was reported on or before being slaughtered and those
in which infection was reported after being slaughtered.



Table 1. Definition of regions on which analyses were performed.

region spatial window temporal window IPs pre-emptive culls

North Cumbria Cumbria above Northing 525 000 24 Feb–30 Jul 672 2140
Welsh borders Wales, Shropshire, Gloucestershire, Hereford

and Worcester and Avon
24 Feb–19 Aug 269 1389

South Cumbria Cumbria below Northing 525 000 11 May–30 Sep 220 811
Dumfries and Galloway Dumfries and Galloway 24 Feb–31 May 176 1148
Devon Devon 24 Feb–20 Jun 102 435
Settle Lancashire and North Yorkshire west of

Easting 437 000
25 Apr–24 Aug 171 774

Durham Durham and Cleveland 24 Feb–10 Jun 96 288

Table 2. Parameter values used for simulated epidemics.

parameter value

r 0 or 1
m 0 or 1
Tsheep 11.1!10K6

Tcattle 6.34!10K6

Scattle 7.14
d 0.71 km
b 1.66
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We assume that reporting before slaughter implies that
animals on an IP passed through their latent periods
were showing clinical symptoms and were therefore
infectious. Out of the 2026 IPs, 1959 were reported on
or before slaughter. The remaining 67,mainlydangerous
contacts (DCs) later found to be infected, were reported
after slaughter; either these IPs were never infectious,
or they were and clinical signs were not present or were
never spotted.

For IPs on which infection was reported on or before
slaughter, we assume that their latent periods each last
l days. Fixing the value of l, however, means that some
IPs will be reported before becoming infectious; for
these IPs (of which there are only 11 for lZ5 days), we
assume that their latent periods are equal to the time
from infection to being reported. For IPs slaughtered
before reporting, we again assume a latent period of l
days. If an IP was slaughtered before the latent period
ended, we assume that it was never infectious (only six
cases for lZ5 days). If we let td be the day an IP became
infected, ts the day it became infectious, t r the day it
was reported and tc the day it was slaughtered, then for
IPs reported on or before slaughter we have

ts Z
td C l if td C l! t r;

t r if td C lR tr;

(
ð2:1Þ

and for IPs reported after slaughter

ts Z
td C l if td C l! tc;

not defined if td C lR tc:

(
ð2:2Þ

2.4. The model

The model is based on a farm-level spatial model of the
UK 2001 epidemic that includes farm heterogeneity
(Keeling et al. 2001). The probability of a susceptible
farm i being infected on day t is given by

pi;t Z 1Kexp KSi

X
j2infectiousðtÞ

T jW ðtKts;jÞKðdi;jÞ

0
@

1
A;

ð2:3Þ
where Si is the susceptibility of farm i given by

Si ZNsheep;i CScattleNcattle;i: ð2:4Þ
T j is the transmissibility of IP j given by

T j ZTsheepNsheep;j CTcattleNcattle;j ; ð2:5Þ
where Scattle is cattle susceptibility (sheep are assumed
to have a susceptibility of 1); Tsheep and Tcattle are,
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respectively, sheep and cattle transmissibilities; Nsheep,j

and Ncattle,j are sheep and cattle numbers on farm j; and
ts,j is the day IP j becomes infectious. The function
W(tKts,j) describes change in infectiousness over
infectious period. We assume that infectiousness is
linearly related to time since becoming infectious and
becomes constant once disease has been reported on the
farm. Thus

W ðtKts;jÞZ
1CrðtKts;jÞ if t! tr;j

1Cm if tr;j% t% tc;j
;

(
ð2:6Þ

where r is the rate of change of infectiousness from the
first day of being infectious up to the report date and m

is the proportional change in infectiousness from report
date onwards compared to the first day of being
infectious. This reflects the potential change in infec-
tiousness after disease has been reported. Both r and m

are assumed constant across all farms. Farms are
considered non-infectious the day after being culled.
Other forms for W(t) could be used, in particular an
exponentially increasing infectiousness. The advantage
of the linear form, however, is not only its simplicity,
but also that it will fit an increasing trend in
infectiousness whatever the form of that trend. If a
trend is found using the linear form, then further
analysis can be done to determine the precise form of
the trend.

K(di,j) is the spatial transmission kernel given by

Kðdi;jÞZ

1 if di;j!d;

d

di;j

0
@

1
Ab

if d%di;j%60 km

:

8>>>><
>>>>:

ð2:7Þ

This is a slight modification from previous work
(Keeling et al. 2001), incorporating a constant risk of



–1

0

1

2

3

r

(r,m) = (0,0)
(r,m) = (1,1)

IPs non-infectious IPs pre-emptive culls
unreported infectives treated as

–1

0

1

2

3

m

Figure 2. Boxplots of the distributions of estimated parameter
values from 1000 simulated epidemics. Horizontal line:
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emptive culls as they would be for the UK 2001 epidemic (i.e.
non-infected and non-infectious).
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Figure 1. Maximum-likelihood estimated parameter values
and CIs for various regions and for fixed IP latent periods of 4
(black circles), 5 (red squares) and 6 (green diamonds) days. r
quantifies the rate of change of infectiousness from the day a
farm becomes infectious to the day it is reported and m

quantifies infectiousness after reporting. Non-significance
from zero suggests no change in infectiousness over infectious
period.
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infection over the first d km, thus modelling spread
between very close (e.g. contiguous) farms.
2.5. Statistical analysis

Before the nationwide movement ban on 23 February
2001, infection was generally, but not wholly, long
range owing to the nationwide movement of infected
sheep. After the ban, infection generally became
localized to nearby farms. Thus, the epidemics seeded
in the various regions of the UK became decoupled. We
can therefore treat the regional epidemics separately
after 23 February. We apply the model to seven
regional epidemics; in order of size they are: North
Cumbria, Welsh borders, South Cumbria, Dumfries
and Galloway, Devon, Settle and Durham. Farms
included in a region are specified by spatial and
temporal windows defined in table 1.

The model is fitted to the UK 2001 epidemic data
and simulated epidemic data using maximum
likelihood. We assume that only IPs were infected in
the UK 2001 epidemic, not CPs and DCs. For the
simulated epidemics, we relax this assumption to
determine its effect on estimated parameter values.

The log-likelihood function is given by (Keeling
et al. 2001)

LZ
X
t

X
i2infectedðtÞ

ln pi;t
X

j2susceptibleðtÞ
lnð1Kpj;tÞ:

ð2:8Þ

The maximum log-likelihood lmax for each region is
found using the downhill simplex method (Press et al.
1992). The maximum-likelihood estimates of all
J. R. Soc. Interface (2007)
parameters are found although, here, we report only
values for r and m which describe changes in infectious-
ness. The other fitted parameters were checked for their
consistency to their true values. The 95% CIs on the
parameter estimates are found using the profile
likelihood. This is done by fixing the parameter of
interest and maximizing equation (2.8) on the other
parameters. The value of the parameter of interest
where the profile likelihood is within 1.92 of lmax is the
95% CI.
2.6. Simulated epidemics. Epidemics were simulated in
order to test the effect of missing and inaccurate data on
parameter estimates. For convenience, we used the
Devon demography and the Devon parameter esti-
mates determined by maximum likelihood as the basis
for the simulations. Initial conditions were infection of
five randomly selected farms. The probability that a
farm is infected in a given day is given by equation
(2.3). An infected farm is randomly assigned a latent
period uniformly distributed from 3 to 7 days. A further
1–3 days, uniformly distributed, then passes before it is
reported as an IP. All farms within 1.5 km of an IP are
pre-emptively culled (assumed for simplicity). For the
first 30 days of the epidemic, both IPs and pre-emptive
culls are slaughtered 3 days after reporting. After
30 days, this changes to 1 and 2 days, respectively.

The model is not meant to reflect the control
procedures of the UK 2001 epidemic. It is used to
compare the changes in estimated parameter values
when we degrade epidemic data. For this reason, and
because it is difficult to parametrize (Tildesley et al.
2006), we did not model DC culling.
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Maximum-likelihood parameter estimates were
found using the same likelihood function as for the
UK 2001 epidemic. The parameter values used in the
simulations are given in table 2. These parameter
values give epidemic sizes of a few hundred IPs.
2.7. Effect of data degradation on sensitivity and
specificity

The effects of missing infections, inaccurate infection
dates and constant latent periods on parameter
estimates and test sensitivity (probability of accepting
the model of changing infectiousness given that it is
true) and specificity (probability of accepting the model
of constant infectiousness given that it is true) were
analysed for two cases: (r,m)Z(0,0) and (r,m)Z(1,1).
For both, 1000 simulations with these parameter values
were performed and the model fitted to the resulting
epidemics using maximum likelihood.

We tested the effect of missing infections, i.e.
unreported infected farms being treated as pre-emptive
culls. This could occur in the UK 2001 epidemic when
an infected farm was culled before clinical symptoms
were apparent because, for example, it was a DC or CP
linked to an IP. We consider three cases when
unreported infected farms are treated as (i) IPs, (ii)
non-infectious IPs, and (iii) pre-emptive culls (as they
would be in the UK 2001 epidemic).

We tested the effect of inaccurate infection dates.
These were modelled by adjusting the true infection
dates of IPs by a number of days randomly chosen from
a discrete uniform distribution. We analysed two cases:
Uniform(K1,1) and Uniform(K2,2). Unreported infec-
tives were treated as pre-emptive culls.

We tested the effect of assuming equal latent periods
for all IPs. Periods of 4–6 days were used (the average
latent period in the simulations was 5 days with a range
of 3–7 days).

To check the sensitivity of the test for r, the model
was fitted to each of the 1000 (r,m)Z(1,1) simulations
both under the full model and with r fixed to 0 with all
other parameters estimated as usual. The likelihood
ratio test was applied to the 1000 pairs of maximum-
likelihood estimates to determine significance of r. This
gave us the frequency that the test correctly accepted
the hypothesis that r was significantly greater than 0,
i.e. sensitivity of the test for rZ1. A similar procedure
was done for m. Note that for different values of r and m,
sensitivity can change. However, the point of the
exercise is to demonstrate the qualitative effect of
data degradation on sensitivity, not the effect of
changes in parameter values.

Test specificity was found in a similar fashion but
using the (r,m)Z(0,0) simulations and estimating the
frequency of non-significant difference from zero.
3. RESULTS

3.1. Parameter estimates from the UK 2001
epidemic

Figure 1 shows the estimated parameter values and
95% CIs of r and m (equation (2.6)) across the various
J. R. Soc. Interface (2007)
regions and for latent periods of 4 (black circles),
5 (red squares) and 6 days (green diamonds). The other
fitted model parameters were consistent with their true
values (not shown).
3.2. Effects of missing infections, inaccurate
infection dates and constant latent periods

We first tested the effect of missing infections, i.e.
unreported infected farms being treated as pre-emptive
culls. All farm infection dates and latent periods are
known. Figure 2 shows the effect on the parameter
estimates when unreported infected farms are treated
as (i) IPs, (ii) non-infectious IPs, and (iii) pre-emptive
culls. The (r,m)Z(0,0) case is shown in black, and the
(r,m)Z(1,1) case in grey. The boxplots represent the
distribution of estimated parameter values found from
the simulations.

With full knowledge of the infectiousness of all
infected farms (unreported infectives treated as IPs),
the median estimated values of r and m are very close to
their true values. When unreported infectives are
treated as pre-emptive culls, the median estimated
values of r and m drop for both cases. This drop is owing
to unreported infectives assumed to be uninfected
rather than being infected but not infectious, as is
shown when we treat unreported infectives as infected
but not infectious (non-infectious IPs). The sensitivity
of the test when rZ1 is 85% (table 3), but drops to 57%
when unreported infectives are treated as pre-emptive
culls. Similarly form, the sensitivitydrops from92 to80%.

We next tested the effect of inaccurate infection
dates. As the error in the infection date increases, the
median values of r and m for both cases tend towards
zero (figure 3). In other words, the infectiousness tends
to be flatter over infectious period when there is
uncertainty in infection dates. This is reflected in the
test sensitivity which falls to 26% and 19% for r and
41% and 21% for m.

Next, we tested the effect of assuming equal latent
periods for all IPs. The longer the latent period the
lower the estimated values of r and m, and the worse the
sensitivity of the test becomes. Specificity of the tests
remains around 60–95% for most cases of data
degradation.
4. DISCUSSION AND CONCLUSION

If we take the parameter estimates in figure 1 as
reliable, then in the majority of cases there is no
evidence of changing infectiousness over infectious
period, i.e. r and m are not significantly different from
zero. Some values are significantly lower than zero,
suggesting a declining infectiousness. However, even
with complete and accurate data, estimates of r and m

can be significantly negative even if in reality they are
not (for example, the case (r,m)Z(0,0) when unreported
infectives are treated as IPs in figure 2). This is owing to
estimation with finite data and the arbitrariness of
statistical significance tests.

However, the conclusions drawn from figure 1 are
only valid if we believe the parameter estimates to be
reliable. The results from simulations with missing and



Table 3. Sensitivity and specificity of the significance test for r and m for inaccurate IP infection dates and latent periods.

type of data degradation r m

sensitivity specificity sensitivity specificity

unreported infectives treated as
IPs 85 94 92 92
non-infectious IPs 85 94 92 94
pre-emptive culls 57 81 80 78

tdCUniform(K1,1) 26 81 41 80
tdCUniform(K2,2) 19 83 21 79
lZ4 days 89 76 62 59
lZ5 days 77 79 50 65
lZ6 days 55 79 40 79
tdCUniform(K1,1) and lZ4 days 52 81 38 73
tdCUniform(K1,1) and lZ5 days 38 82 25 81
tdCUniform(K1,1) and lZ6 days 26 81 26 85
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Figure 3. Boxplots of the distributions of estimated parameter values from 1000 simulated epidemics. Two cases were simulated
(r,m)Z(0,0) (black) and (r,m)Z(1,1) (grey). In all cases, unreported infectives were treated as pre-emptive culls. Control: IP
infection dates and latent periods known. IP infection dates (td) were made inaccurate by adjusting them by a number of days
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inaccurate data suggest that the parameter estimates in
figure 1 are not reliable. Although we cannot directly
compare the estimates from the simulations to the
estimates from the UK 2001 epidemic (because the
simulations do not model DC and CP culling), we can
examine how inaccuracies in the 2001 data quali-
tatively affect the parameter estimates.

Some farms during the UK 2001 epidemic may have
been infected, but were never reported as such because
they were pre-emptively culled before clinical signs could
appear. It is not yet knownhowmanyof these farms there
were. In our simulations, such farms do occur and their
effect is to reduce estimates of r and m (figure 2), thus
J. R. Soc. Interface (2007)
reducing the sensitivity of the statistical test (table 3).
The infection dates of IPs in the UK 2001 epidemic were
usually estimated, either by tracing possible transmission
events, or by dating lesions in infected animals. When
errors in infectiondates are introduced into our simulated
data, parameter estimates of r and m tend towards zero
(figure 3), again reducing the sensitivity of the test
(table 3). This means that infectiousness will show less
change over infectious period than in reality. Assuming
an equal latent period for all IPs when in reality IP latent
period varies also affects the parameter estimates
(figure 3), probably more so than missing infections and
uncertain infection dates.
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In conclusion, our parameter estimates of the trends
in infectiousness during the UK 2001 epidemic are not
robust to uncertainties in IP infection and infectious
status. Having said that, the majority of our estimates
are not significantly different from zero. This means
that allowing infectiousness to change over infectious
period does not significantly improve the fit of our
model to the available data. Parsimony then dictates
that we must assume a constant infectiousness until
evidence to the contrary arises.

Allmodels developedduring the epidemic agreed that
the control policy as implemented was not controlling
the epidemic, and that a fully implemented IP/CP cull
would if there were no increases in infectiousness over
infectious period. If infectiousness did increase over
infectious period, however, then CP culling may or may
not have been effective depending on the magnitude by
which infectiousness increased. Such uncertainty in this
and other parameter estimates means that it is
impossible to find an optimal control strategy (in
terms of numbers of animals killed) that includes
neighbourhood culling (Matthews et al. 2003). However,
it has been shown that total losses are not sensitive for a
control effort above the optimal, but can quickly
increase below the optimal (Matthews et al. 2003). Our
results suggest, therefore, that CP culling was a less
risky policy than IP and DC culling alone in the face of
considerable uncertainty in the transmission process.

The likelihood function we used to fit the model to
the data could be expanded in several ways, and may
affect our parameter estimates but not our conclusions
about data degradation. We are currently working on
estimating infection dates, latent periods and the
proportion of IPs and DCs infected using Markov
chain Monte Carlo-based Bayesian inference.

This research is supported by the Wellcome Trust. We thank
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