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Abstract
Inclusion body myositis and Alzheimer’s disease are age-related disorders characterized in part by
the appearance of intracellular lesions composed of filamentous aggregates of the microtubule-
associated protein tau. Abnormal tau phosphorylation accompanies tau aggregation and may be an
upstream pathological event in both diseases. Enzymes implicated in tau hyperphosphorylation in
Alzheimer’s disease include members of the casein kinase-1 family of phosphotransferases, a group
of structurally related protein kinases that frequently function in tandem with the ubiquitin
modification system. To determine whether casein kinase-1 isoforms associate with degenerating
muscle fibers of inclusion body myositis, muscle biopsy sections isolated from sporadic disease cases
were subjected to double-label fluorescence immunohistochemistry using selective anti-casein
kinase 1 and anti-phospho-tau antibodies. Results showed that the alpha isoform of casein kinase 1,
but not the delta or epsilon isoforms, stained degenerating muscle fibers in all eight inclusion body
myositis cases examined. Staining was almost exclusively localized to phospho-tau bearing
inclusions. These findings, which extend the molecular similarities between inclusion body myositis
muscle and Alzheimer’s disease brain, implicate casein kinase-1 alpha as one of the
phosphotransferases potentially involved in tau hyperphosphorylation.
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Sporadic inclusion body myositis (s-IBM) is a progressive muscle disease that leads to atrophy
of specific muscle groups [12]. Characteristic histopathological findings include vacuolar
degeneration of muscle fibers and mononuclear cell inflammation [3]. s-IBM muscle also
shares pathobiochemical features with affected neurons in Alzheimer’s disease (AD), including
the accumulation of β-amyloid peptide [4,32] and the formation of intracellular filamentous
inclusions composed of the microtubule associated protein tau [5]. In both s-IBM and AD, the
tau proteins incorporated into filaments contain elevated stoichiometries of phosphorylation
[23,24] and ubiquitination [6,20]. Depending on the sites occupied, tau hyperphosphorylation

*Corresponding author: Jeff Kuret, Ph.D., 1060 Carmack Road, Columbus, OH 43210, TEL: (614) 688-5899, FAX: (614) 292-5379,
E-mail address: kuret.3@osu.edu
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neurosci Lett. Author manuscript; available in PMC 2009 January 31.

Published in final edited form as:
Neurosci Lett. 2008 January 31; 431(2): 141–145.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



can lead to loss of microtubule binding activity and promotion of aggregation [33]. Thus,
inappropriate phosphorylation of tau may contribute to lesion formation in both s-IBM and
AD.

Tau phosphorylation reflects a balance among protein kinase and phosphoprotein phosphatase
activities. Phosphotransferases implicated in tau hyperphosphorylation in AD include
extracellular regulated kinase (ERK) [27] and Cdk5 [8,38]. Both enzymes associate with
inclusions within degenerating muscle fibers in s-IBM [35,36,47,48], suggesting that common
mechanisms may mediate tau hyperphosphorylation in both s-IBM and AD. Recently we
showed that members of the casein kinase 1 (CK1) family of phosphotransferases fulfill criteria
expected of protein kinases involved in AD pathogenesis [22]. The human CK1 family is
composed of at least six gene products (Ckiα, γ1, γ2, γ3, δ and ε), each containing a conserved
protein kinase domain joined to variable amino- and carboxyl-terminal tails [18]. CK1 isoforms
are candidates for mediating protein hyperphosphorylation because their phosphotransferase
domains selectively recognize acidic amino acid sequences including those containing
phospho-amino acids. As a result, they can function processively or synergize with other
protein kinases to support high-stoichiometry substrate phosphorylation [14]. CK1 activity
associates with brain microtubules [42] and contributes to basal levels of tau phosphorylation
in cultured cells [28]. Moreover, at least one isoform, Ckiδ, can phosphorylate tau and modulate
its binding affinity for microtubules when highly overexpressed in cultured cells [28]. To
identify which isoforms gain access to substrates under pathophysiologically relevant
conditions, their colocalization with intact AD lesions has been investigated
immunohistochemically in diseased tissue. In AD hippocampus, CK1 isoforms colocalize with
ubiquinated cytoplasmic lesions including both granulovacuolar degeneration bodies and
neurofibrillary tangles [15,22]. Isoforms Ckiδ and ε preferentially associate with the former
whereas Ckiα predominates in the latter [22]. Consistent with these observations, Ckiα
copurifies with paired helical filaments from AD brain, composing ∼0.3% (w/w) of affinity
purified preparations [25]. Because CK1 isoforms are expressed widely in tissues, including
muscle [26], they may modulate tau phosphorylation and aggregation state in s-IBM as well
as AD. If so, then CK1 isoforms may be expected to colocalize with tau inclusions in affected
muscle fibers of s-IBM. Here we test this hypothesis by examining the distribution of Ckiα,
δ and ε in degenerating muscle fibers of s-IBM.

Muscle biopsy samples were obtained from the Neuromuscular Center at The Ohio State
University College of Medicine. Muscle from four subjects undergoing biopsy for aching
muscles were without pathological findings and these served as controls (mean age ± SD of
51 ± 13 yrs; Table 1). Muscle from eight subjects (mean age ± SD of 71 ± 9 yrs; Table 1)
fulfilled diagnostic criteria for s-IBM [17]. The affected population was biased toward elderly
males because s-IBM occurs predominantly in men aged over 50 years [12]. Transverse
cryostat sections (10-μm thick) were cut from each biopsy, fixed in ice-cold acetone [46], and
processed as described [35]. The hematoxylin and eosin staining pattern for each section was
consistent with the diagnosis listed in Table 1, showing invading mononuclear inflammatory
cells in s-IBM cases but not in control cases (data not shown).

To further characterize s-IBM lesions with respect to tau protein and CK1 isoforms, tissue
sections were stained with primary antibodies PHF1 [16], 128a [15,22,25], Ckiε [22], and C19
[22], and subjected to single-label confocal fluorescence microscopy as described previously
[22]. PHF1 is a mouse monoclonal antibody that binds tau phosphorylated at residues Ser396
and Ser404 [40]. It was chosen for analysis because tau phosphorylated at these residues
colocalizes with a range of IBM pathological features, including cytoplasmic inclusions,
atrophic fibers, and subsarcolemmal tau, but not with diffuse cytoplasmic tau [30,34]. In
addition, Ser396/Ser404 are substrates CK1 [28] as well as for other protein kinases thought
to contribute to tau hyperphosphorylation including GSK3 [2] and Cdk5 [41]. 128a (Icos
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Corporation, Bothell, WA) and anti-Ckiε (BD Transduction Laboratories, CA) are mouse
monoclonal antibodies raised against Ckiδ and ε, respectively. C19 (Santa Cruz Biotech, CA)
is a goat polyclonal IgG recognizing the C-terminus of human Ckiα isoforms. These antibodies,
which have been characterized for binding specificity by immunoblot analysis [22,25], have
been used for double label staining of AD lesions [22]. All primary antibody labelings were
conducted as described previously for 16 h at room temperature [22]. Immunostaining was
visualized with Alexa 488 or Alexa 594 goat anti-mouse IgG and Alexa 594 donkey anti-goat
IgG secondary antibodies (Molecular Probes, Inc., Eugene, Oregon). Images were collected
on a Zeiss LSM 510 Meta Laser Scanning Confocal Microscope fitted with Argon and Helium/
Neon I lasers.

Muscle fibers containing tau inclusions were found using PHF1 (Fig. 1A). The immunostaining
pattern was specific for s-IBM tissue and never found in normal control samples. In AD brain
sections, fluorescence microscopy is complicated by the presence of autofluorescent
substances which can appear over large spectral ranges [43,44]. However, in muscle tissue,
under single labeling conditions using Alexa 488-linked secondary, autofluorescence detected
in the red channel was minor (Fig. 1B) and did not overlap with PHF1 staining appearing in
the green channel (Fig. 1C). Among CK1 isoforms α, δ and ε, only Ckiα immunoreactivity
was found in s-IBM tissue (shown for Ckiα only in Fig. 1 D-F). Like PHF1 immunoreactivity,
detectable autofluorescence, this time in the green channel, was minimal (Fig. 1D). These data
indicated that Ckiα was the major CK1 isoform associated with s-IBM lesions, and that
autofluorescence background was sufficiently low to make double-label fluorescence methods
feasible.

Therefore, double-label confocal immunohistochemistry was performed to determine whether
Ckiα colocalized with tau-bearing lesions in s-IBM sections. On average, 6.4 ± 1.1 (SEM)
PHF1-positive vacuolated fibers were quantified per each of the eight s-IBM cases, with
multiple PHF-1 positive cytoplasmic inclusions, including those with “squiggly” morphology
[3], being observed per fiber (Figs. 2 and 3). Similarly, C19-positive fibers were found in every
s-IBM case examined (Table 1), with 3.5 ± 0.7 (SEM) C19-positive fibers found per case (Fig.
3). In these fibers, C19-positive immunoreactivity overlapped extensively with PHF1
immunoreactivity within cytoplasmic inclusions and also rimmed vacuoles (Fig. 2). When
quantified using the Wilson score statistical method [37], the proportion of all PHF1-positive
muscle fibers (n = 51) containing C19 immunoreactivity was 51 ± 13% (95% C.I.) (Fig. 3).
Conversely, 93 ± 16% (95% C.I.) of C19-positive muscle fibers were also PHF1-positive fibers
(Fig. 3).

These findings extend the observation that CK1 isoforms differentially associate with tau
pathology. In normal tissues, Ckiα activity is widely distributed within cells [9,18] where it
binds diverse proteins including nuclear protein regulator of chromosome condensation 1
(RCC1), high mobility group proteins 1 and 2, synaptotagmin IX, centaurin-α1, and members
of various transcription factor families [9,10,21,39]. Some of these proteins have important
functions in muscle. For example, centaurin-α1 activates ERK kinases implicated in the
pathological phosphorylation of tau in IBM [47], whereas deficiency in at least one member
of the synaptotagmin family (synaptotagmin VII) results in an inflammatory myopathy
resembling IBM [7]. In many cases, CK1-mediated phosphorylation precedes ubiquitination
and subsequent intracellular trafficking or proteasome-mediated turnover of substrates. For
example, Ckiα mediates phosphorylation-dependent turnover of transcription factor Cubitus
Interruptus [21]. Other mammalian CK1 homologs modulate turnover of substrates in involved
in circadian rhythm [11] and the Wnt [31] and Hedgehog [21] signaling pathways. In lower
eukaryotes, CK1 isoforms play a similar role in the regulation of plasma membrane-bound
substrates including mating type receptors Ste2p and Ste3p [13,19] and also components of
the permeases and sensors involved in the detection and transport of extracellular nutrients
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[1,29,45]. These observations suggest that CK1 isoforms function in part to mediate
ubiquitination of diverse proteins in different biological contexts. Immunohistochemical
studies indicate that Ckiα is positioned to contribute to tau hyperphosphorylation and
ubiquitination in both AD [22] and s-IBM (herein). In contrast, Ckiδ is more closely associated
with ubiquitinated inclusions associated with granulovacuolar degeneration in hippocampal
neurons [15].

In summary, these data extend the pathological similarity between the tau-bearing lesions of
AD and IBM to include CK1 colocalization. The results implicate CK1 isoform Ckiα in the
upstream pathological events that lead to accumulation of tau phospho-epitopes in both
diseases.
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Fig. 1.
Histochemical analysis of tissue sections (10-μm thick) prepared from s-IBM vacuolated
muscle fibers. Single label immunofluorescence confocal microscopy performed with
monoclonal anti-phospho tau antibody PHF1 (∼4 μg/ml) and Alexa 488-linked secondary
showing phospho-tau inclusions in the (A) green channel, with minimal autofluorescence
background in (B) the red channel. (D-E), Single label immunofluorescence confocal
microscopy performed with polyclonal anti-Ckiα antibody C19 (3 μg/μl) and Alexa 594-linked
secondary showing Ckiα-bearing inclusions in the (E) red channel, with minimal
autofluorescence background in (D) the green channel. (C, F), merged images, where yellow
color corresponds to colocalization. Scale bars for each row represent 10 μm.
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Fig. 2.
Double-label confocal images from two s-IBM vacuolated muscle fibers stained with (A, D)
PHF1/Alexa 488-linked secondary antibodies to visualize phospho-tau, and (B, E) C19/Alexa
594-linked secondary antibodies to visualize Ckiα. (D, F) Merged images, where yellow color
corresponds to colocalization. Scale bars for each row represent 10 μm. Ckiα and phospho-tau
colocalize in both cytoplasmic inclusions and rimmed vacuoles (arrow).
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Fig. 3.
Colocalization of phospho-tau and Ckiα in s-IBM lesions is extensive. Double-label
immunofluorescence images (similar to those shown in Fig. 2) were collected from all s-IBM
cases summarized in Table 1 (n = 8 cases). Numbers of muscle fibers positive for PHF1 (p-
tau), for C19 (Ckiα), or for both C19 and PHF1 (Ckiα/p-tau) were then quantified ± SEM.
Approximately 50% of PHF1-positive lesions colocalized with Ckiα immunoreactivity,
whereas nearly all Ckiα immunoreactivity was associated with PHF-1 positive lesions.
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Table 1
Case demographics and results

Case (#) Age (y) Gender Diagnosis Vacuolated fibers positive
for Ckiα

1 38 F Control -
2 40 F Control -
3 61 F Control -
4 63 M Control -
5 66 M s-IBM +
6 82 M s-IBM +
7 79 M s-IBM +
8 65 F s-IBM +
9 75 F s-IBM +
10 56 M s-IBM +
11 77 M s-IBM +
12 70 M s-IBM +
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