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Versican is a large chondroitin sulphate proteoglycan produced by several tumour cell types, including high-grade glioma. The
increased expression of certain versican isoforms in the extracellular matrix (ECM) plays a role in tumour cell growth, adhesion and
migration. Transforming growth factor-b2 (TGF-b2) is an important modulator of glioma invasion, partially by remodeling the ECM.
However, it is unknown whether it interacts with versican during malignant progression of glioma cells. Here, we analysed the effect
of TGF-b2 on the expression of versican isoforms. The expression of versican V0/V1 was upregulated by TGF-b2 detected by
quantitative polymerase chain reaction and immunoprecipitation, whereas V2 was not induced. Using time-lapse scratch and spheroid
migration assays, we observed that the glioma migration rate is significantly increased by exogenous TGF-b2 and inhibited by TGF-b2-
specific antisense oligonucleotides. Interestingly, an antibody specific for the DPEAAE region of glycosaminoglycan-b domain of
versican was able to reverse the effect of TGF-b2 on glioma migration in a dose-dependent manner. Taken together, we report here
that TGF-b2 triggers the malignant phenotype of high-grade gliomas by induction of migration, and that this effect is, at least in part,
mediated by versican V0/V1.
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Glioma cell invasion is a complex and multi-step mechanism
involving a large array of molecules and cell–cell and cell–
extracellular matrix (ECM) interactions. These processes allow
individual tumour cells to migrate into and invade the healthy
surrounding brain even after surgical resection, leading to the
failure of current therapeutic modalities (Goldbrunner et al, 1998;
Bellail et al, 2004).

Transforming growth factor-b (TGF-b) is a multifunctional
cytokine which interferes with immune responses and
which modulates migration, invasion and angiogenesis in high-
grade glioma. In this regard, TGF-b antagonistic strategies
are among the most promising of the current innovative
approaches targeting glioblastoma, particularly in conjunction
with novel approaches of immunotherapy and vaccination (Wick
et al, 2006).

TGF-b exerts a complex set of effects in cancers. In early stages
of tumour development, it inhibits tumour growth, but later on, it
turns to a highly tumorigenic molecule, including increased
tumour cell motility and invasion, induction of angiogenesis and
immune suppression. The three different isoforms of TGF-b (TGF-
b1, TGF-b2, TGF-b3) are differentially expressed in high-grade
glioma (Kjellman et al, 2000).

The importance of TGF-b1 decreases with the tumour grade in
high-grade gliomas (Jachimczak et al, 1996; Pan et al, 2006), and
its expression does not correlate to time to progression (Hau et al,
2006). However, some authors report on TGF-b1-stimulated
migration and invasion of glioma cells (Merzak et al, 1994; Platten
et al, 2000), and marked inhibition of glioma invasion modulated
by TGF-b1-specific antisense oligonucleotides (Paulus et al, 1995)
and by RNA interference targeting both TGF-b1 and TGF-b2 was
reported (Friese et al, 2004).

In comparison to TGF-b1 and TGF-b3, TGF-b2 is the
predominant isoform of TGF-b secreted by human malignant
glioma cells (Kjellman et al, 2000). TGF-b2-targeted therapies are
currently evaluated in randomised clinical trials (Fakhrai et al.,
2006; Schlingensiepen et al, 2006) in consistent with the reports on
the relevance of TGF-b2 for the progression of high-grade gliomas.
TGF-b2-derived immunosuppression of glioma patients is well
described (Jachimczak et al, 1993; Grauer et al, 2006) and plays a
pivotal role in glioma progression. In addition, there is increasing
evidence for a prominent role of TGF-b2 in glioma cell motility
(Platten et al, 2001; Uhl et al, 2004). TGF-b-triggered glioma cell
motility is based on a very complex system consisting of a step-like
process of attachment and migration, which involves components
of ECM, proteases and integrins as well as the tumour cells (Platten
et al, 2001). Understanding the functions and regulatory processes
of glioma cell migration is critical for developing appropriate anti-
invasive therapies.

Versican, a large multi-domain chondroitin sulfate (CS)
proteoglycan, is a major component of the ECM involved in cell
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adhesion, migration, proliferation and differentiation, all processes
vital to tumour development and progression (Landolt et al, 1995;
Zhang et al, 1998; Ang et al, 1999; Cattaruzza et al, 2004). Versican
consists of an N-terminal globular domain (G1), a selectin-like
domain (G3) at the C-terminal and the central glycosaminoglycan
(GAG) attachment domains, which are encoded by exons that can
undergo differential splicing (Lemire et al, 1999). Alternative
splicing of versican generates at least four isoforms known as V0,
which contains both GAG-a and GAG-b exons; V1, containing the
GAG-b exon; V2, having the GAG-a exon and V3, consisting only
of the globular domains. Versican isoforms V0/V1 are mainly
expressed in the late stages of embryonic development (Landolt
et al, 1995), whereas versican V2 is the predominant CS
proteoglycan in the mature brain (Schmalfeldt et al, 2000). The
isoforms play distinct roles due to a difference in CS domains
(Sheng et al, 2005).

Versican has been reported to be upregulated by TGF-b in a
variety of cells (Kahari et al, 1991; Schonherr et al, 1991; Robbins
et al, 1997; Venkatesan et al, 2002; Zhao and Russell, 2005). We
have previously found that TGF-b2-specific phosphorothioate
antisense molecules inhibit glioma migration in migration assays
and downregulate versican expression in gene arrays (Nickl-
Jockschat et al, 2007). Adhering to these previous results, we
investigated the distinct biological roles of versican isoforms in the
tumorigenesis of high-grade gliomas to determine whether the
major ECM proteoglycan versican plays a role in TGF-b2-mediated
migration of glioma cells leading to malignant progression of
human high-grade gliomas.

MATERIALS AND METHODS

Cell culture

Different types of glioma cell lines and primary cultures were used
for in vitro experiments. Human high-grade glioma cell lines
U87MG and A172 were obtained from American Type Culture
Collection (Manassas, VA, USA). The gliomas named as ‘HTZ’
were primary tumour cell cultures derived from surgical specimens
of human high-grade gliomas (WHO Grade IV) as described before
(Bogdahn et al, 1989). All tumour cells were maintained as
standard monolayer cultures in tumour growth medium at 371C,
5% CO2, 95% humidity in a standard tissue culture incubator.
Growth medium was comprised of Dulbecco’s modified Eagle’s
medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10%
fetal calf serum (FCS).

To elucidate the effect of exogenous TGF-b2 on the regulation
of versican isoforms, we performed treatment assays with
different concentrations of TGF-b2; glioma cells were seeded
at an equal density in cell culture flasks containing growth
medium as described above. After 24 h, triplicates of subconfluent
cells were treated with four different concentrations (1, 5, 10 and
50 ng ml�1) of activated rhTGF-b2 protein (R&D Systems,
Minneapolis, MN, USA) and incubated for 72 h. Cells and
supernatants were harvested to prepare mRNA or protein as
described below. In time-point assays, cells were treated with
10 ng ml�1 of TGF-b2 and harvested at three different time points:
days 1, 3 and 5.

TGF-b2-specific antisense phosphorothioate
oligodeoxynucleotides

The TGF-b2-specific antisense phosphorothioate oligodeoxynu-
cleotides (PTOs) (AS-11) as described previously (Nickl-Jockschat
et al, 2007) was used with the sequence 50-GTAGTGCATTTTTT
AAAAAA-30 (mRNA target region 171–190) (Sigma-Genosys,
Steinheim, Germany). As a control PTO, we used NS (mis)
with three mismatch bases (sequence: 50-GTAATGAATGTTTT
AAAAAA-30).

Reverse transcriptase polymerase chain reaction

Total RNA was extracted from tumour cells with the RNA
purification system RNeasy Mini Kit (Qiagen, Hilden, Germany)
following the manufacturer’s instructions. RNA concentration and
purity was determined by measuring optical density at wavelengths
of 260 and 280 nm using a standard spectrophotometer. First-
strand cDNA generated from 1 mg of total RNA samples by using a
reverse transcription kit (Promega, Madison, WI) was used to
amplify gene-specific cDNAs from expressed genes. Appropriate
forward and reverse primers to detect transcripts of interest were
used in reverse transcriptase polymerase chain reaction (RT–PCR)
reactions for cDNA amplification. The primers used were as
follows: TGF-b2 (forward: 50-TCTAGGGTGGAAATGGATACAC
GAACC-30; reverse: 50-TGTTACAAGCATCATCGTTGTCGTCG-30)
resulting in a 314 bp fragment. Versican primers (forward: 50-
GTGACTATGGCTGGCACAAATTCC-30; reverse: 50-GGTTGGGTC
TCCAATTCTCGTATTGC-30) were designed to detect all known
splice variants of the gene resulting in 229 bp fragment.

The specific primers for the PCR amplification of versican
isoforms were used as described before (Cattaruzza et al, 2002).
The sizes of the amplification products were 405 bp for the V0
splice form (forward: 50-TCAACATCTCATGTTCCTCCC-30 and
reverse: 50-TTCTTCACTGTG GGTATAGGTCTA-30), 336 bp for V1
(forward: 50-GGCTTTGACCAGTGCGATTAC-30; reverse: 50-
TTCTTCACTGTGGGTATAGGTCTA-30), 498 bp for V2 (forward:
50-TCAACA TCTCATGTTCCTCCC-30; reverse: 50-CCAGCCATA
GTCACA TGTCTC-30) and 429 bp for V3 (forward: 50-
GGCTTTGACCAGTGCGATTAC-30; reverse: 50-CCAGCCATAGT
CACATGTCTC-30). Annealing temperatures were optimised for
each primer pair using the following program: DNA polymerase
was activated at 951C for 5 min, amplified for 30 cycles (951C for
45 s, 57– 601C for 1 min, 721C for 45 s) and extended at 721C for
5 min. RT–PCR products were analysed on 1% agarose gel and
visualised with ethidium bromide staining. The housekeeping gene
b-actin was used as a positive control to assess cDNA quality.

Quantitative PCR

To precisely quantify mRNA expression, a real-time PCR system
(ABI PRISM 7000 Sequence Detection System, CA, USA) that
measures nucleic acid molecules based on the detection of a
fluorescent reporter molecule (SYBR Green dye) was used. Target-
cDNA-specific primers as described above were established.
Briefly, five serial twofold dilutions of cDNA were amplified in
triplicates to construct standard curves for both the target gene
and the endogenous reference (b-actin). Standard curves generated
by the software were used for extrapolation of expression levels for
the unknown samples based on their threshold cycle (CT) values.
All amplifications of unknown samples were in the linear range.
For each reaction melting curves and agarose gel electrophoresis of
PCR products were used to verify the identity of the amplification
products. Each probe was run in parallel with primers specific for
b-actin as standard for quantification of target cDNA. The target
gene amount was divided by the housekeeping gene amount to
obtain a normalised target value. Each of the experimental
normalised values was divided by the normalised control
(untreated) sample value to generate the relative expression levels
in fold.

Immunoprecipitation

Total cell lysates were prepared in radioimmuno precipitation
assay lysis buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1% Triton
X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate
(SDS)), supplemented with Complete Protease Inhibitor Cocktail
Tablets (Roche Molecular Biochemicals, Manheim, Germany).
Equal amounts of total protein quantified in a Bicinchoninic acid

Interaction of versican and TGF-b2 in glioma migration

F Arslan et al

1561

British Journal of Cancer (2007) 96(10), 1560 – 1568& 2007 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s



(BCA) assay (Uptima, Montpellier, France) were incubated with
protein G beads at 41C for 6 h for pre-clearing. After centrifuga-
tion, the nonspecifically bound G beads were discarded and then
supernatants were incubated with 2 mg ml�1 versican V0/V1 Neo-
rabit polyclonal antibody (ABR, Golden, CO) and incubated at 41C
overnight. After washing, the beads were boiled in 1� protein
loading dye for 5 min and loaded directly into pre-poured Tris-
HCl-glycine SDS–polyacrylamide gel electrophoresis (PAGE) gels
(10%) along with pre-stained molecular weight standards (Bio-rad
Laboratories, Palo Alto, CA, USA). Electrophoresis was performed
in Tris/glycine/SDS running buffer (Biorad Laboratories) at 125–
150 V for a suitable migration period. Following transfer to
polyvinylidene fluoride (PVDF) membranes (Biorad Laboratories)
at 120 mA constant current for 1 –2 h, blots were briefly washed in
Tris buffered saline with Tween (TBST) (10 mM Tris, 150 mM NaCl,
and 0.5% Tween-20, pH 8.0), blocked for 1 h at RT with 5% non-fat
dry milk and then incubated with 1 mg ml�1 of the versican V0/V1
Neo-antibody at 41C overnight. Immunocomplexes were visualised
using a horsedish peroxidase-conjugated antibody followed by
chemoluminescence reagent (Pierce Biotechnology, Rockford, IL,
USA) detection on photographic film.

Spheroid assay

Multi-cell tumour spheroids were initiated by seeding (3– 8)� 106

cells incubated in agar-coated wells in order to inhibit adhesion.
Mature spheroids with a mean diameter of 200– 250mm were
explanted to uncoated 96-well plates containing the corresponding
treatment (TGF-b2, 10 ng ml�1; versican V0/V1 Neo-antibody, 2–
20mg ml�1; AS-11, 20 mM). Six spheroids were used for each
experimental condition in each experiment. Spheroids were
allowed to migrate for 5– 7 days. Spreading of the spheroids was
monitored by microscopic photographs of each spheroid after 0, 1,
3, 5 and 7 days. For quantification, the mean diameter of randomly
selected glioma cells that had migrated from the tumour spheroid
was measured by a blinded investigator and expressed in relation
to the mean radial distance at time 0 h. Bovine serum albumin
(BSA) was used as a control protein. As unrelated controls, normal
rabit immunoglobulin G (IgG) (R&D Systems, Minneapolis, MN)
and NS (mis) were used at the same concentrations, respectively.
Assays were repeated at least twice.

After migration of cells from the spheroids, the spheroids were
collected with a pipette tip. Total cell lysates of migrated cells and
spheroids were prepared separately for protein expression. For
versican expression, western blotting with versican V0/V1-specific
antibody was used as described above.

Scratch migration assay

The spreading and migration capabilities of HTZ-349 cells were
assessed using a scratch (wound) assay measuring the expansion
of a cell population on a given surface. The cells were seeded into
uncoated six-well tissue culture dishes at a density of 2.5� 105 cells
and cultured in medium containing 10% FCS to nearly confluent
cell monolayers, which were then scratched using 1 ml sterile
pipette tips. Any cellular debris was removed by washing with PBS.
The wounded monolayers were then incubated in 10% FCS
medium containing TGF-b2 (20 ng ml�1) and BSA (20 ng ml�1) as
control for 48–72 h. The wound area in a marked field of view was
inspected at different time intervals subsequently until closure to
determine the distance migrated by the cells.

The wound areas were photographed under a light microscope
by a blinded investigator. The width of the scratch was measured at
0 and 24, 48, 72 h after treatment to measure the distance traveled
by the cells. The difference between the width of scratch (wound
area) at 0 h and at a given time point represented the distance
migrated by the cells. The quantification of the distance migrated
by the cells expressed as percentages and comparison made with

untreated control using statistical analysis. The experiments were
repeated in duplicate wells at least three times.

Statistics

The results (mean valueþ standard deviation) of control (un-
treated) vs stimulated (treated) cell samples were analysed using
the Student’s t-test for migration assays. The level of significance
was set at *Po0.05.

RESULTS

Expression profiles of TGF-b2 and versican isoforms in
human high-grade glioma cells

To evaluate the profiles of TGF-b2 and versican in two human
glioma cell lines (U87, A172) and in five primary cell cultures
(HTZ-324, HTZ-349, HTZ-417, HTZ-419, HTZ-421), expression
levels of TGF-b2 and versican isoforms were detected by RT–PCR
at mRNA level using b-actin as control gene (Figure 1A). All cell
lines expressed TGF-b2 in different amounts. Versican isoforms
were found to be differentially expressed in high-grade glioma
cells; among the four isoforms, V1 was the most prominent one
and found to be expressed in all glioma cells. V0 was
intermediately expressed in almost 30% of glioma cell lines. V3
had a heterogeneous expression pattern. The V2 isoform was
detected as a faint signal only in HTZ-417 (Figure 1A).

Regulation of versican expression by exogenous TGF-b2

Next, the modulation of versican expression by TGF-b2 was
assessed. Treatment assays were performed with the glioma cell
lines U87, A172, HTZ-417 and HTZ-349. These cell lines were
chosen because they secrete different levels of TGF-b2 and also
their growth characteristics provided consistent confluency in a
short period of time.

First, we analysed versican expression at the mRNA level by
quantitative PCR (qPCR) with a primer binding to the G3 domain
which detects all isoforms. In these experiments, a significant
increase of versican expression was detected in HTZ-349 cells
treated with TGF-b2 in comparison to untreated cells, reaching a
fold level of 2.3 with a maximum dose of TGF-b2 (50 ng ml�1)
(Figure 1B). Results with the other cell lines tested (U87, A172 and
HTZ-417) were similar with a 1.9-, 1.7- and 2.1-fold increase,
respectively (data not shown). In time-dependent assays, the
upregulation of versican expression reached a peak after 72 h (2.2-
fold) and then decreased gradually over time (Figure 1C).

Since versican V1 and V0 isoforms predominantly increase in
tumours of different origin, suggesting that these isoforms are
mainly involved in tumour development, we also elucidated
whether TGF-b2 differentially modulates the expression of
versican isoforms in high-grade glioma. We found that V1 was
the most upregulated isoform with a 1.7-fold increase (Figure 1D).
V0 was intermediately increased and the expression of V2 was not
induced by TGF-b2 (data not shown).

Next, we examined the expression of versican at protein level
with western blot and immunoprecipitation (IP) using a polyclonal
antibody (Figure 2). The versican V0/V1 Neo-antibody (Affinity
BioReagents, Golden, CO, USA) is a rabbit polyclonal antibody to
the versican Asp-Pro-Glu-Ala-Ala-Glu (DPEAAE) neo-epitope
at the GAG-b domain of human versican and recognises the
N-terminal (G1 domain) neo-epitope cleavage products of versican
after cleavage with ADAMTS at the Glu441–Ala442 bond in the V1
isoform; the corresponding peptide bond is Glu1428–Ala1429 in
the V0 isoform (Sandy et al, 2001). As the antibody does not react
with the DPEAAE sequence when it is present in intact versican
(V0) (Sandy et al, 2001; Kern et al, 2007), no high molecular
mass band representing intact versican (V0), which migrates at
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350–400 kDa (data not shown), could be detected in low-density
gels (4%) and after chondroitinase ABC digestion. However, V1,
which runs around 280 kDa, could be detected with high versican
V1 concentrations (Russell et al, 2003; Kern et al, 2006).

In IP without enzymatic digestion of chondroitin sulphate
chains, the products had the characteristic smear of proteoglycans
to which GAG chains of different sizes have been covalently
attached as described before (Yang et al, 1999). We detected high
molecular mass intact versican V1 at around 300 kDa, which is the
expected molecular mass of V1 without chondroitinase digestion
in glioma cell lines (Dours-Zimmermann and Zimmermann, 1994)
verifying that the antibody reacts with the DPEAAE sequence in
intact versican V1 (Figure 2A). The products migrating around 75
and 50 kDa represent the G1-DPEAAE-cleaved products of human
versican V1 by ADAMTS-1 and ADAMTS-4 as described before
with the same antibody (Sandy et al, 2001; Russell et al, 2003;
Somerville et al, 2003; Kern et al, 2006). These signals representing
intact versican V1 and its cleavage products were upregulated with
exogenous TGF-b2 in a concentration-dependent manner. The

highest signals were observed with 10 and 50 ng ml�1 of TGF-b2,
consistent with qPCR results. Densitometric analysis also allowed
quantification of this upregulation, which showed almost 80%
increase compared to untreated control (Figure 2B). Taken
together, these results demonstrate that exogenous TGF-b2
induces not only versican V1 expression, but also cleavage of
versican V1 via ADAMTS-1 and ADAMTS-4.

Effect of TGF-b2 on migration of glioma cells

Next, we examined the effect of TGF-b2 on glioma migration. We
generated tumour cell spheroids from the HTZ-349 cell line and
allowed the cells to migrate from the spheroids in the absence or
presence of TGF-b2 (20 ng ml�1). Exposure to TGF-b2 significantly
induced the migration rate of glioma cells in spheroid assays
compared to untreated control and BSA (Figure 3A). Quantifica-
tion of the migration rate in scratch assay showed significantly
increased migration with TGF-b2 treatment, in parallel to spheroid
assay results (Figure 3B; **Po0.01).

A

405 bp

TGF-�2

�-Actin

V0

V (unspecific) -

Concentration-dependent regulation

V1 -

Concentration-dependent regulation

V (unspecific) -

Time-dependent regulation

V1

V2

V3

336 bp

498 bp

429 bp

La
dd

er

U
nt

re
at

ed
 c

on
tro

l

U
nt

re
at

ed
 c

on
tro

l

U
nt

re
at

ed
 c

on
tro

l

D
ay

 1
 –

 U
nt

re
at

ed
 c

on
tro

l
D

ay
 3

 –
 U

nt
re

at
ed

 c
on

tro
l

D
ay

 1
 –

 T
G

F-
�2

 1
0 

ng
 m

l–
1

D
ay

 3
 –

 T
G

F-
�2

 1
0 

ng
 m

l–
1

D
ay

 5
 –

 U
nt

re
at

ed
 c

on
tro

l

D
ay

 5
 –

 T
G

F-
�2

 1
0 

ng
 m

l–
1

TG
F-

�2
 1

 n
g 

m
l–

1
TG

F-
�2

 5
 n

g 
m

l–
1

TG
F-

�2
 1

0 
ng

 m
l–

1

TG
F-

�2
 5

0 
ng

 m
l–

1

TG
F-

�2
 1

0 
ng

 m
l–

1
TG

F-
�2

 5
0 

ng
 m

l–
1

A1
72

H
TZ

-3
24

H
TZ

-3
49

H
TZ

-4
17

H
TZ

-4
19

H
TZ

-4
21

U
87

Po
si

tiv
e 

co
nt

ro
l (

C
or

te
x)

2.5

2

1

0

1.5

0.5

2.5
2

3

1

0

1.5

0.5

2

1

0

1.5

0.5

B

DC

Figure 1 Expression of versican and regulation by TGF-b2. TGF-b2 is expressed in high-grade gliomas and upregulates versican expression in a
concentration and time-dependent manner. Results show mRNA expression levels detected by PCR and qPCR. (A) Differential expression of versican
isoforms in glioma cells. RT–PCR analysis shows the semiquantitative mRNA expression of TGF-b2 and versican isoforms in different human glioma cell
lines. V1 was found to be expressed in all glioma cells. V2 was only detected in HTZ-417; cerebral cortex was used as a positive control for V2. V0 and V3
had a heterogeneous expression pattern. The housekeeping gene b-actin was used to adjust for cDNA quantity. (B) Regulation of versican mRNA
expression in TGF-b2-treated HTZ-349 cells with four different concentrations (1, 5, 10, 50 ng ml�1). Versican expression was upregulated in a
concentration-dependent manner reaching a peak of 2.3-fold increase with 50 ng ml�1 of TGF-b2. (C) qPCR results of versican expression in TGF-b2
(10 ng ml�1)-treated HTZ-349 cells at three different time points (days 1, 3, 5). The upregulation of versican expression was most pronounced at 72 h (2.2-
fold) and then showed a trend to decrease gradually over time. (D) Expression of versican isoform V1 by qPCR at mRNA level detected with a specific
primer in HTZ-349 cells treated with TGF-b2 (10, 50 ng ml�1). The increase of versican after treatment with TGF-b2 is a V1-specific effect. Normalized
values with the housekeeping gene b-actin are reported as relative expression in folds. Mean values7standard deviations are representative of triplicates.
Mean values of the untreated (control) group were set to a value of 1.
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Role of versican V0/V1 in TGF-b2-mediated glioma
migration

To elucidate the mechanisms involved in enhancement of glioma
migration mediated by TGF-b2, we evaluated whether the
upregulation of the versican isoforms V0/V1 by TGF-b2 might
be involved in this process. We used versican V0/V1 Neo-antibody
to block the GAG-b chain and IgG-unspecific controls. In these
assays, the migration rate was significantly higher in TGF-b2
20 ng ml�1-treated spheroids compared to untreated controls
(**Po0.01) (Figure 4B). As we detected previously that TGF-b2
had no effect on proliferation of HTZ-349 cells (unpublished data),
proliferation is very likely to have no contribution to the increased
area covered by cells migrating away from spheroids. When
versican V0/V1 antibody was added to TGF-b2-treated spheroids,
the enhancement of glioma migration by TGF-b2 was reversed in
a dose-dependent manner. With 20 mg ml�1 of versican V0/V1
antibody, migration was even inhibited compared to untreated
control and control IgG (**Po0.01). We also observed similar
results with versican V0/V1 antibody in the absence of exogenous
TGF-b2. These results might explain that, even without exogenous
TGF-b2, the anti-GAG-b antibody interferes with the interaction of
versican with endogenous TGF-b2 and inhibits glioma migration,

while HTZ-349 expresses and secretes high levels of TGF-b2
(Figures 1A and 2). AS-11-treated cells showed significant
decreased migration rate (28.6%) in comparison to untreated
control (100%) and control oligonucleotide (87.2%) (Po0.001)
(Figure 3C).

We also detected that cells migrating from spheroids express
significantly higher levels of versican V1 compared to immobile
glioma cells within spheroids (Figure 4A) which further supports
the involvement of versican in glioma migration.

DISCUSSION

In the present study, we demonstrate marked differences in the
expression patterns of versican isoforms in high-grade gliomas.
The largest splice variants of versican, V0 and V1, are the
predominant forms present in most glioma cell lines, whereas V2
is rarely expressed, consistent with previous studies concerning
human glioma cell lines (Dours-Zimmermann and Zimmermann,
1994; Bouterfa et al, 1999). Expression of V0/V1 isoforms increases
in different tumours (Touab et al, 2002), suggesting that these
isoforms may be involved in tumour development. In this context,
our results show that V0/V1 are the main versican isoforms related
to the malignant phenotype of glioma in vitro. Additionally, we
have demonstrated for the first time in high-grade gliomas that
TGF-b2 is able to upregulate versican expression in a concentra-
tion- and time-dependent manner. When the expression of
versican isoforms was determined with specific primers, mainly
V1 was found to contribute to this upregulation, whereas V2
expression was not induced. This observation is consistent with
previous reports that demonstrated that versican isoforms V1 and
V2 are not only differentially expressed, but also play distinct
roles in cell function which are mediated by GAG-a and GAG-b
domains, respectively (Wu et al, 2004b; Sheng et al, 2005). The
balanced expression of these two isoforms might provide a suitable
extracellular environment for normal proliferation and survival of
cells. The extracellular environment might become favourable for
cell proliferation and survival when V1 expression is increased, as
in the case of tissue development and tumour formation (Sheng
et al, 2005). Recently, in parallel to our results in high-grade
gliomas, TGF-b2 was reported to trigger the expression of V0/V1
and hyaluronan in osteosarcoma cells (Nikitovic et al, 2006).

There is increasing evidence for a prominent role of TGF-b2 in
glioma cell motility. TGF-b2 is known to induce a malignant
phenotype in glioma cell lines using exogenous TGF-b2 (Platten
et al, 2001). Brockmann et al (2003) detected motogenic effects of
TGF-b2 in glioblastoma cell lines and our results demonstrate that
exogenous TGF-b2 induces migration of glioma cells significantly
via two different migration assays. Moreover, TGF-b2-specific
phosporothioate antisense oligonucleotides as described pre-
viously (Nickl-Jockschat et al, 2007) significantly inhibit migration
compared to a control mismatch oligonucleotide in our migration
assay (Figure 3C).

It is known that cancer cells’ survival and motility are dependent
on TGF-b-mediated autocrine mechanisms (Dumont and Arteaga
2003). Treatment with paracrine/exogenous TGF-b at higher
concentrations than autocrine TGF-b further enhances the
expression of promigratory molecules and cancer cell invasion
(Shiou et al, 2006). We previously detected that expression of
K-ras, a brain-specific isoform of Ras and the most prominent
oncogene of the MAPK pathway (Spandidos and Kerr, 1998;
Johnson et al, 2001), was downregulated exclusively in the AS-11-
treated populations of glioma cell lines (Nickl-Jockschat et al,
2007). Ras leads, via activation of its downstream substrates, to an
enhanced transcription of ECM proteins and to cytoskeletal
rearrangement, favouring invasion and migration of malignant
cells (Derynck and Zhang, 2003). Considering this, downregulation
of K-ras might explain the inhibition of migration with AS-11 in
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Figure 2 Expression of versican isoforms V0/V1 induced by TGF-b2 at
protein level. (A) IP results showing the expression of versican V0/V1 in
HTZ-349 cells treated with TGF-b2 (1, 5, 10, 50 ng ml�1) at protein level.
An antibody specific for the DPEAAE peptide segment in the GAG-b
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our assays. Taken together, our results, consistent with previous
reports, suggest the involvement of both autocrine and paracrine
TGF-b mechanisms in high-grade glioma migration.

Versican-rich extracellular matrices exert an anti-adhesive effect
on the tumour cells (Yamagata and Kimata, 1994; Touab et al,
2002), thus facilitating tumour cell migration and invasion. It has
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been found to be co-localised with hyaluronan, CD44 and tenascin
in the pericellular matrix in tumours and because of its ability to
interact with modulators of glioma migration and invasion, such
as hyaluronan, tenascin, CD44, integrins and epidermal growth
factor receptor (EGFR) (Wu et al, 2005), versican may contribute
to the malignant properties of glioma cells.

We hypothesised that versican V1 overexpression induced by
TGF-b2 might be one of the mechanisms by which TGF-b2 exerts
invasiveness of high-grade gliomas. Versican isoforms V0 and V1
are overexpressed in tumours (Touab et al, 2002), suggesting that
these isoforms are mainly involved in tumour development.
Versican-rich extracellular matrices exert an anti-adhesive
effect on tumour cells (Yamagata and Kimata, 1994; Touab et al,
2002), thus facilitating tumour cell migration and invasion.
Versican has been found to be co-localised with hyaluronan,
CD44 and tenascin in the pericellular matrix in tumours, and
because of its ability to interact these modulators of invasion and
EGFR (Wu et al, 2005), versican may contribute to the malignant
properties of glioma cells. Mechanistically, versican enhances the
locomotion of astrocytoma cells and reduces cell adhesion (Ang
et al, 1999).

To understand the importance of versican V1 and TGF-b2 in
glioma migration, we blocked functionally the GAG-b domain of
versican with a specific antibody. Blockage of the GAG-b domain
was able to reverse the effect of TGF-b2 on glioma migration in a
dose-dependent manner (Figure 4B). Without exogenous TGF-b2,
the anti-GAG domain antibody itself somehow decreased the
migration rate compared to untreated cells. This effect may be due
to inhibition of the interaction between versican and endogenous
TGF-b2 secreted by HTZ-349 cells (Figure 1A). We have also found
that migrating glioma cells express significantly increased levels
of V0/V1 isoforms compared to non-migrating cells. These results
underline the importance of versican for glioma cells during
migration.

The G3 domain of versican induces glioma cell adhesion
through EGFR and b1-integrin-mediated pathways (Wu et al,
2002). GAG-b domains somehow interfere with the G3/EGFR
interaction and decrease the antiproliferative effect of G3 in
melanoma cells (Serra et al, 2005). We speculate that blockage of
this interference by a GAG-b domain-specific antibody in our
migration assays probably induced adhesion and consecutively
decreased the migration of glioma cells.

Here, we demonstrated in immunochemical analyses that
exogenous TGF-b2 induces not only versican V1 expression, but
also cleavage of versican V1 probably mediated via ADAMTS-1
and ADAMTS-4 at the Glu441–Ala442 bond in the V1 isoform; the
corresponding peptide bond is Glu1428–Ala1429 in the V0
isoform (Sandy et al, 2001). We have also shown that TGF-b2 is
capable of increasing MMP-2 activity and thereby induces the
degradation of versican V1 (Arslan et al, 2006). Cleavage of
brevican, another member of the lectican family by ADAMTS-5 is
functionally involved in glioma invasion in vivo (Nakada et al,
2005). There is a strong likelihood that breakdown products of
versican will also have biological activity in glioma probably
paving the way for the invasion into tissue (Zheng et al, 2004).
However, it is not entirely clear if proteolytic degradation of
versican by MMP-2 and ADAMTS-1 and 4 induced by TGF-b2 has
a pathophysiological role in glioma progression.

Versican appears not only to present or recruit molecules to the
cell surface, but also modulates the expression levels of genes
and co-ordinates complex signaling pathways. Versican V1
induces integrin-mediated extracellular signal-regulated kinase
(ERK) pathway (Wu et al, 2004b); recently, we reported that the
ERK pathway is responsible for TGF-b tumour promoting effects
in high-grade gliomas (Nickl-Jockschat et al, 2007). Complex
interactions of functional TGF-b and EGF signal cascades in
human gliomas have also been described (Held-Feindt et al, 2003).
It is currently under investigation whether versican V1 and TGF-
b2 can interact with each other also in regard of their activated
signaling cascades, such as the EGFR- and integrin-mediated ERK
pathways, enhancing the malignant progression of glioma.

In conclusion, our data provide the first evidence for the
functional importance of versican isoforms V0/V1 in glioma
migration mediated by TGF-b2. Previously, the versican G3
domain was found to be important in astrocytoma cell prolifera-
tion, glioma adhesion, tumour growth and angiogenesis (Wu et al,
2002, 2004a; Zheng et al, 2004). Our results indicate that the V0/V1
isoforms modulate glioma migration through their common GAG-
b-domain. Thus, there is mounting evidence for a crucial role of
different domains of versican in glioma tumorigenesis. Since
certain domains of versican possess unique biological activities
in vitro, further studies are required to precisely define the
molecular mechanisms behind the effects of such domains
(isoforms) and to outline the biological consequences in vivo.
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