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Summary
The dynamic regulation of the structure, function and turnover of mitochondria is recognized as an
immutable control node maintaining cellular integrity and homeostasis. The term ‘mitohormesis’ has
recently been coined to describe the adaptive reprogramming of mitochondrial biology in response
to low levels of metabolic substrate deprivation to augment subsequent mitochondrial and cellular
tolerance to biological stress [1]. Disruption of these regulatory programs gives rise to cardiovascular
and neurodegenerative diseases and augmentation or fine-tuning of these programs may ameliorate
mitochondrial and global cellular stress-tolerance. This is in part via the regulation of reactive oxygen
species, calcium homeostasis, and in response to caloric restriction, the capacity to augment DNA
repair. The objective of this manuscript is to briefly review these regulatory programs and to postulate
novel therapeutic approaches with the primary goal of modulating mitochondria to enhance tolerance
to cardiac ischemic stress.

Introduction
Mitochondria orchestrate an extensive repertoire of cellular functions and have tissue specific
programming to facilitate overall organ function [2]. In the heart, the roles of mitochondria
include the generation of energy, the production and metabolism of reactive radical species
and the regulation of apoptosis. These functions in turn are exquisitely controlled by regulatory
programs governing mitochondrial copy number, functional content and activity, calcium
metabolism, stress-tolerance and apoptotic pathways. The identification and characterization
of these regulatory programs have promulgated the question of whether these can be modified
to adapt mitochondrial function to improve cellular tolerance to biological stress.

In this review article we: 1) describe the innate regulatory pathways driving mitochondrial
maintenance of cellular homeostasis, 2) discuss where these programs have been shown to be
operational in enhancing stress tolerance in general and in the heart specifically, and 3) to
identify current and potential mitochondrial targeted compounds that improve cardiac stress
tolerance to prevent or treat ischemic heart disease.

Innate regulatory programs controlling mitochondrial plasticity
Mitochondrial biogenesis, the molecular control of mitochondrial turnover, content and
number exquisitely coordinates diverse homeostatic demands via communication between the
mitochondrial and nuclear genomes. The regulatory proteins and signaling pathways
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conducting this inter-genomic control has been reviewed recently [3,4]. The functional
importance of mitochondrial biogenesis in maintaining cardiac homeostasis is evident in that
the genetic ablation of master regulators of mitochondrial biogenesis, i.e. the peroxisome
proliferator activated receptor γ coactivator 1 α and β (PGC1α/β) diminish cardiac adaptation
to adrenergic stimulation and pressure-overload [5-7]. The disruption of downstream cognate
transcription factors including the three major peroxisome proliferator activated receptor
(PPAR) subtypes, also leads to cardiac contractile dysfunction and an enhanced susceptibly to
oxidative damage [8-10]. Furthermore, the modest induction of transcription factor A of
mitochondria (TFAM) evokes protection against ischemia induced heart failure [11]. However,
excessive activation of this program becomes pathological as is shown by the generation of an
over-abundance of mitochondria resulting in cardiomyopathy following sustained
overexpression of murine heart PGC1α [12]. Moreover, chronic overexpression of PPARα in
the heart blunts contractile recovery in response to ischemic stress [13]. An additional level of
regulation of mitochondrial homeostasis is the molecular control of mitochondrial fusion and
division (reviewed [14]) with unpublished data showing that enhancing mitochondrial fusion
augments cardiomyocyte ischemia-tolerance [15]. Biological compounds that activate the
mitochondrial biogenesis program will be discussed as putative modulators of ischemia-
tolerance.

Caloric restriction orchestrated mitochondrial stress response
Hormesis is defined as the activation of cellular protective and reparative properties induced
by mild physiologic stress. Caloric restriction is considered an hormetic process where chronic
mild starvation enhances cellular DNA repair capacity and antioxidant defenses [16,17] and
upregulates the mitochondrial biogenesis regulatory program [18]. Although the cardiac
mitochondrial regulatory perturbations in response to caloric restriction have not been well
characterized, short-term caloric restriction confers resistance to cardiac ischemia-reperfusion
[19]. A candidate regulatory protein that may orchestrate this cardioprotective effect is the
nutrient sensor protein sirt1. This NAD-dependent deacetylase enhances stress tolerance and
lifespan extension during caloric restriction [20]. Accordingly sirt1 has been shown to attenuate
constitutive and H2O2 mediated apoptosis in cardiomyocytes [21] and to protect the intact heart
against paraquat mediated oxidative stress [22]. While this biology requires more extensive
investigation, caloric-restriction mimetics may be candidates to blunt ischemia-reperfusion
injury.

Ischemic preconditioning identifies mitochondrial targets to enhance
ischemiareperfusion tolerance

A second stress-activated program operational in the heart and extensively investigated is the
biological phenomenon termed ischemic preconditioning [23]. Here too, the regulation of
mitochondria has been implicated in augmenting tolerance to ischemia-reperfusion. The
preconditioning-induced mitochondrial perturbations identified to date include upregulation
of antioxidant defense mechanisms including via the transient inhibition of mitochondrial
respiration [24], via transient mitochondrial uncoupling [25,26] and by upregulation of
antioxidant enzymes [27]. Furthermore, ischemic preconditioning reduces the susceptibility to
mitochondrial permeability transition [15]. In the later part of this review we will discuss
compounds that can mimic these mitochondrial effects as potential cardioprotective agents.
The proposed mechanism enhancing mitochondrial ischemia tolerance in response to caloric
restriction and preconditioning are schematized in figure 1.
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Potential mitochondrial modulators to ameliorate ischemic injury
The mitochondrial adaptations to caloric restriction and ischemic preconditioning identify
potential targets to explore as therapeutic modulators of ischemia-tolerance. In the remainder
of this review we will review compounds with specific focus on potential caloric restriction
mimetics, a class of compounds that may induce mitochondrial biogenesis, a novel anion
known to transiently inhibit mitochondrial respiration under ischemia and a mitochondrial
targeted antioxidant. Mitochondrial permeability inhibitors which have recently been reviewed
are not discussed [23].

Resveratrol – a potential caloric restriction mimetic
The plant-derived polyphenol resveratrol (3,5,4’-trihydroxystilbene) is enriched in red wine
and functions as a caloric restriction mimetic via upregulation of sirt1 and AMP-activated
kinase (AMPK) [28-30]. Additionally it exhibits antioxidant properties [31] and upregulates
the mitochondrial biogenesis program [28]. Signaling intermediates induced by this putative
‘mitohormetic’ compound have been identified [32,33]. Consistent with its known pleiotropic
effects resveratrol administration confers protection against cardiac ischemia-reperfusion
injury [31,34,35].

As a therapeutic agent, resveratrol has limitations in that it has a short initial half-life and limited
in-vivo bioavailability [31]. To counter this, numerous investigators are exploring compounds
to restrict its catabolism. Furthermore, to differentiate the cardioprotective properties from the
pleiotropic effects of resveratrol, small molecules that may directly activate, for example, sirt1
are being actively pursued [36]. Once identified, the direct cardiac-tolerance effects of
activation of sirt1 activators would need to be validated.

AMP-Kinase activating compounds and mitochondrial biogenesis
The activation of the fuel sensor AMPK by exercise or by the AMPK activators AICAR (5-
aminoimidazole-4-carboxamide 1β-D-ribofuranoside) and β-guanidinopropionic acid
enhances mitochondrial function and biogenesis in skeletal muscle [37,38]. With respect to
AICAR, this is shown to be due to the direct upregulation of PGC-1α [39-41] and to the
enhanced expression of mitochondrial proteins cytochrome c, UCP-3, and citrate synthase
[42,43]. In the heart, ischemia increases AMPK activation [44], and loss of AMPK exacerbates
ischemia-reperfusion injury [45]. However, whether the activation of AMPK augments
mitochondrial biogenesis in the heart has not been established. Conversely, the genetic
depletion of AMPKα2 isoform alters cardiac mitochondrial ultrastructure and disrupts complex
I of the electron transfer chain [46]. Cumulatively these data suggest that the activation of
AMPK may induce ameliorative effects on mitochondrial biology to enhance ischemia
tolerance.

These cardioprotective effects of AMPK activation are likely not exclusively due to
mitochondrial manipulations as activation of this fuel-sensing kinase evokes multiple
additional metabolic effects (reviewed [47]). Furthermore, the use of AICAR as a cardiac
therapeutic target is limited in that it promotes bradycardia and hypoglycemia [48]. Current
therapeutic agents that indirectly activate AMPK include the biguanides and the
thiazolidinediones [49]. Interestingly, both these anti-diabetic drugs have been shown to
augment mitochondrial biogenesis [50,51] and in separate studies, to confer protection against
cardiac ischemia [52,53]. As above, whether these effects are directly due to modulation of
mitochondrial function in the heart is not established. Nevertheless, several drug discovery
programs are pursuing more specific and potent AMPK activators [48] and with the
development of these compounds, the capacity to directly link their activation with the
modulation of mitochondria and cardiac tolerance can be explored.
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Nitrite - a novel ischemia-inducible electron transfer chain inhibitor
Chronic uncoupling of oxidative phosphorylation or inhibition of the electron chain transfer
would be incompatible with sustained ATP production essential for cardiac contraction.
However, in the context of ischemia-reperfusion, acute uncoupled respiration and inhibition
of complex I of the electron transfer chain (ETC) inhibit mitochondrial reactive oxygen species
production, via reduced electron dissociation from the ETC (reviewed [54]) and via reduced
electron flow through complex III resulting in a reduction in superoxide generation [55],
respectively. A pharmacologic agent that could dynamically replicate either of these
perturbations exclusively under ischemia-reperfusion conditions would introduce a novel
therapeutic approach.

In this respect, the nitrite anion (NO2
−) is an intriguing ‘candidate’ in that it is reduced to nitric

oxide (NO), a known cardioprotective compound [56] and an inhibitor of mitochondrial
electron transfer [57], primarily at low tissue pH and under hypoxic conditions. Under these
conditions nitrite is either directly reduced to NO by disproportionation and/or by the enzymatic
action of heme-containing proteins, including xanthine oxidoreductase, electron transfer
proteins, deoxyhemoglobin, and dexoymyoglobin [58]. Indeed, administration of nitrite in
preclinical studies confers protection against ischemia-reperfusion injury [59] in parallel with
a reduction in post ischemic reactive oxygen species production and by reducing the activation
of the MPTP [57]. In the latter study, it was shown that nitrite does not affect mitochondrial
respiration under normoxic conditions, but rather inhibits complex I of the electron transfer
chain in response to hypoxia and reoxygenation [57]. From a therapeutic perspective, the most
exciting aspects of this study are that the administration of nitrite could precede the ischemic
injury by as much as 24 hours and that this anion could be administered orally [57]. Pilot studies
in human subjects are now being planned.

MitoQ - a mitochondrial-targeted antioxidant
Although the benefit of therapeutic antioxidants to limit oxidative damage during ischemic
injury has not been realized, given the mitochondria's role as both source and target of ROS
the use of the novel mitochondria-targeted antioxidants has gained interest (Reviewed [60]).
Mitochondrial targeting is feasible by conjugating an antioxidant to a lipophilic cation. This
exploits the high inner mitochondrial membrane potential enabling mitochondrial
accumulation of this cation-conjugated target at 100−1000 times higher concentration than in
cytoplasm [61,62]. MitoQ, based on the endogenous mitochondrial ubiquinone coenzyme Q
is such a compoung. It has a redox chemistry closely regulated by the ETC possibly allowing
MitoQ to simultaneously decrease oxidative damage and upregulate respiration.

In vivo animal studies have shown that MitoQ decreases ROS, apoptosis and
ischemiareperfusion cardiac injury in conjunction with improved respiratory coupling and
increased complex I and aconitase activities [62]. MitoQ has been proven to be well tolerated
and toxic only at very high concentrations [63]. Trials are underway for neurological disorders,
but the impact of this agent on human cardiac disease remains to be tested.

Conclusions
Mitochondrial plasticity, under both acute and chronic regulation, is increasingly recognized
as integral to cellular and tissue tolerance of ischemic stress. Chronic modulation of
mitochondrial content and function via the principle of mitohormesis underlies the protective
effect of caloric restriction mimetics. Acutely, alteration of electron flow and inhibition of
reactive species production remain attractive targets for cardioprotection. Importantly, better
biologic understanding has led to therapeutics with increased specificity of action. This is
illustrated by the action of nitrite to function as a putative dynamic regulator of electron flux,
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specifically under conditions of low oxygen and acidosis. This anion may potentially represent
the first truly ischemia-activated agent. Exploiting mitochondrial biology has also enabled the
development of mitochondrial-targeting agents such as antioxidants which may ultimately
realize their long proposed benefits. The true impact of these developments on human
cardiovascular health awaits further clinical study. Finally, the proposed compounds and their
mechanisms of actions discussed in this review are shown schematically in figure 2.
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Figure 1.
Schematic of modulations of mitochondria to augment cardiac ischemia-tolerance
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Figure 2.
Mitochondrial directed therapeutic agents to enhance cardiac ischemia-tolerance
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